

COURSE OFFERED IN THE DOCTORAL SCHOOL OF IPPT PAN

Name of the course	Polish		Podstawy teorii drgań układów dyskretnych I ciągłych								
Name of the course	English		Fundamentals of Vibration Theory for Discrete and Continuous Systems								
Type of the course		Specialized c	ourse								
Course coordinator		Prof. Tomasz Szolc, Ph.D., D.Sc., Mech. Eng.				Course teacher Prof. Tomasz Szolc, Ph.D., D.Sc., Mech. Eng.					
Implementing unit		ZTI		Scientifi dis	c discipli ciplines	ne /		Mechanical engineering			
Level of education		doctoral studies		Semester		- -	summer or winter				
Language of the cou	rse	English or F	Polish								
Type of assessment		examination		Number of hou a semester			30		ECTS credits	4	
Type of classe		S	Lectu		Audito	ry class	es Proje	ct classes	Laboratory	Seminar	
Number of hours		in a week	2			0		0	0	0	
		in a semester	30			0		0	0	0	

1. Prerequisites

Knowledge of mathematics in the field of higher technical studies, including the ability to solve ordinary and selected partial differential equations. Fundamentals of general mechanics, rigid body dynamics and basics of physics in the area of electromagnetism.

2. Course objectives

The aim of the course is to familiarize students with fundamentals of vibration theory for discrete and continuous systems including also wave propagation effects. This lecture is mainly dedicated to mechanical systems and structures, nevertheless, the gained knowledge can be also used for current vibrations in electrical circuits. Moreover, the primary cases of parametric, self-excited, non-linear vibrations, vibrations of rotating systems as well as fundamentals of dynamic diagnostics and vibro-isolation of technical objects will be considered.

3. Course content (separate for each type of classes)
Lecture
Main topics:
1. Fundamentals of mechanical vibration theory.
2. Dynamic analysis of discrete systems.
3. Dynamic analysis of continuous and discrete-continuous (hybrid) systems.
4. Fundamentals of elastic and visco-elastic wave propagation in one - and two-dimensional media.
5 Fundamentals of parametric self-excited non-linear vibrations and vibrations of rotating systems

- 5. Fundamentals of parametric, self-excited, non-linear vibrations and vibrations of rotating systems.
- 6. From the continuous system to finite elements.
- 7. Introduction to dynamic diagnostics and vibro-isolation problems.

Laboratory

- does not apply

4. Learnir	ng outcomes		
Number of the learning outcome	Learning outcomes description	Reference to the learning outcomes according to the 8 th level of PRK	Learning outcomes verification methods*
	Knowledge		
1	The graduate acquires basic knowledge of the theory of vibrations of discrete and continuous systems	P8S_WG	examination
2	The graduate acquires basic knowledge about the types of vibrations and methods of their analysis.	P8S_WG	examination
3	The graduate knows how to transfer the acquired knowledge to the industrial sphere and disseminate the results of his research.	P8S_WK	assessment of activity during classes
	Skills		
1	The graduate is able to solve problems of natural vibrations and examine the forced vibrations of discrete and continuous systems as well as analyze the dynamic characteristics of mechanical systems and structures.	P8S_UW	examination
2	The graduate is able to solve the basic equations of motion of natural and forced vibrations of discrete and continuous systems and examine electromechanical analogies.	P8S_UW	examination
3	The graduate is ready to apply the acquired knowledge of the theory of vibrations of discrete and continuous systems in the field of his/her scientific research.	P8S_UW	assessment of activity during classes and examination
4	The graduate is able to transfer the acquired knowledge to the industrial environment and disseminate the results of his research.	P8S_UW	assessment of activity during classes
	Social competence	S	
1	The graduate is ready to think and act in a creative and entrepreneurial way.	P8S_KO	assessment of activity during classes
2	The graduate is ready to critically evaluate the achievements of the represented scientific discipline, including his or her own contribution to the development of this discipline.	P8S_KK	assessment of activity during classes

*Allowed learning outcomes verification methods: exam; oral exam; written test; oral test; project evaluation; report evaluation; presentation evaluation; active participation during classes; homework; tests

THE DOCTORAL SCHOOL OF IPPT PAN

5. Assessment criteria

assessment of activity during classes, results of the examination

6. Literature

Primary references:

[1] Kaliski S. et. al.: Vibration and Waves, PWN Eds. Warsaw 1966. (in Polish)

[2] Kruszewski J. et. al.: Finite Element Method for Dynamics of Structures, (team work), Arkady Eds., Warsaw, 1984. (*in Polish*)

Secondary references:

[1] **Dimarogonas A.**: *Vibration for engineers*, Prentice Hall, Upper Saddle River, New Jersey 07458, 1996.

[2] Den Hartog J. P.: Mechanical Vibrations, Courier Corporation, 1985.

No.	Description	Number of hours
1	Hours of scheduled instruction given by the lecturer in the classroom	30
2	Hours of consultations with the lecturer, exams, tests, etc.	15
3	Amount of time devoted to the preparation for classes, preparation of presentations, reports, projects, homework	25
4	Amount of time devoted to the preparation for exams, test, assessments	35
	Total number of hours	105
	ECTS credits	4