

THE DOCTORAL SCHOOL OF IPPT PAN

COURSE OFFERED IN THE DOCTORAL SCHOOL OF IPPT PAN

Name of the	Polish M		Matematyczne podstawy uczenia maszynowego						
course	English		Mathematical Foundations of Machine Learning						
Type of the course	Lectu	re							
Course coordinator			Course teacher		Dr Tomasz Steifer				
Implementing unit	ZI	MD	Scientific discipline / disciplines	pline / Computer science					
Level of education D		Doctor	oral studies		Semester winter				
Language of the	course	Englisł	ı						
Type of assessment		exam		Nur	nber of hours in a semester	30	ECTS credits	3	
Type of classes			Lect	ıre	Auditory classes	Project class	es Laboratory		
Number of hours		in a weel	in a week 2		0	0	0	0	
		in a semest	ter 30)	0	0	0	0	

1. Prerequisites

Elementary mathematical education on the university level, esp.

probability theory. Additionally, some programming experience

or equivalently, a course in mathematical logic.

2. Course objectives

This course will give an overview of standard mathematical frameworks in the machine learning theory. The lectures will begin with historical models of Gold and Solomoff, then continue through the basics of computational learning theory, then from prediction with expert advice to stochastic gradient descent to modern neural network architectures. The course plan can be adapted to fit the scientific interests of the students.

3. Course content (separate for each type of classes)

Lecture

1. Inductive inference

2. Solomonoff's Induction, Bayesian mixtures of probability

measures.

3. Halving algorithm, perceptron.

4. PAC learning, concentration inequalities, uniform

convergence for finite classes.

5. Uniform convergence for infinite classes, VC dimension, the

fundamental theorem of statistical learning.

6. Weak and strong learning, AdaBoost algorithm.

7. Online learning, Littlestone dimension, Standard Optimal

Algorithm (SOA).
8. Prediction with expert advice, Exponential Weights
Algorithm.
9. Stochastic Gradient Descent.
10. Neural Networks, the universal approximation theorem.
11. Limitations of the transformer architecture.
12. The Weisfeiler-Leman test and the expressiveness of graph
neural networks.
Laboratory

4. Learnii	ng outcomes						
Number of the learning outcome	Learning outcomes description	Reference to the learning outcomes according to the 8 th level of PRK	Learning outcomes verification methods*				
Knowledge							
1	The graduate acquires basic knowledge of the mathematical models of machine learning.	P8S_WG	Oral exam				
2							
3							
Skills							
1	The graduate is able to prove basic mathematical results in machine learning theory.	P8S_UW	Oral exam				
2							
3							
4							
Communication							
1							
2							
3							
Social competences							
1	The graduate is ready to critically evaluate the achievements of the represented scientific discipline, including his or her own contribution to the development of this discipline	P8S_KK	active participation during classes				
2							

*Allowed learning outcomes verification methods: exam; oral exam; written test; oral test; project evaluation; report evaluation; presentation evaluation; active participation during classes; homework; tests

5. Assessment criteria

active participation during classes, oral exam

6. Literature

1. Shalev-Shwartz, Shai, and Shai Ben-David. Understanding machine learning: From theory to algorithms. Cambridge

<u>2019.</u>

THE DOCTORAL SCHOOL OF IPPT PAN

<u>university press, 2014.</u>
<u>2. Sanford, Clayton, Daniel J. Hsu, and Matus Telgarsky.</u>
<u>"Representational strengths and limitations of</u>
<u>transformers.</u>" Advances in Neural Information Processing
<u>Systems 36 (2024).</u>
<u>3. Vaswani, A. "Attention is all you need.</u>" Advances in Neural
Information Processing Systems (2017).
<u>4. Morris, Christopher, et al.</u> "Weisfeiler and Leman go neural:
<u>Higher-order graph neural networks.</u>" Proceedings of the
<u>AAAI conference on artificial intelligence. Vol. 33. No. 01.</u>

No.	Description	Number of hours
1	Hours of scheduled instruction given by the lecturer in the classroom	30
2	Hours of consultations with the lecturer, exams, tests, etc.	5
3	Amount of time devoted to the preparation for classes, preparation of presentations, reports, projects, homework	15
4	Amount of time devoted to the preparation for exams, test, assessments	40
	90	
	3	