

COURSE OFFERED IN THE DOCTORAL SCHOOL OF IPPT PAN

Name of the course	Polish		Równania różniczkowe cząstkowe fizyki matematycznej								
	English		Partial differential equations of mathematical physics								
Type of the course	Specialized course										
Course coordinator		Wasyl Kowalczuk, PhD, D.Sc			1	Cours	se teachers	Wasyl Kowalczuk, PhD, D.Sc. Barbara Gołubowska, PhD			
Implementing unit		ZTOCIN		Scientifi dis	cientific discipline / disciplines			Mechanical engineering			
Level of education		Doctoral studies		Semester				Winter or summer			
Language of the course		English									
Type of assessment		Examination		Number of hou a semeste		urs in r	60		ECTS credits	4	
Type of classe		es	Lectu		Auditory classes		es Proje	ct classes	Laboratory	Seminar	
Number of hours		in a week	2		2			0	0	0	
		in a semester	30		:	30		0	0	0	

1. Prerequisites

The full understanding of the material presented in this course demands from the students at least the basic knowledge of main types of ordinary differential equations (ODEs).

2. Course objectives

The aim of this course is to acquaint the students with the basic types of partial differential equations (PDEs) as mathematical models of many physical phenomena, like, e.g., wave equation, heat diffusion, and steady state of heat equation. During the course will be discussed the main methods of solution of linear first- and second-order PDEs and their systems (i.e., method of characteristics, separation of variables, integral transform, etc.) together with the classification of different types of initial/boundary conditions (Dirichlet, Neumann, Robin).

3. Course content (separate for each type of classes)

Lecture

Main topics:

- 1. Introduction with examples of applications.
- 2. Equations of first order: linear, quasilinear, nonlinear. Hamilton-Jacobi theory.
- 3. Classification of linear equations of second order: hyperbolic, parabolic, elliptic.
- 4. Hyperbolic equations: wave equation, characteristics, initial-boundary value problems.
- 5. Fourier transform, its application in analysis of partial differential equations.
- 6. Parabolic equations: heat diffusion, method of separation of variables.
- 7. Elliptic equations: steady state of heat equation, Laplace/Poisson equation, Green function.

Laboratory

- does not apply

4. Learning outcomes

THE DOCTORAL SCHOOL OF IPPT PAN

Number of the learning outcome	Learning outcomes description	Reference to the learning outcomes according to the 8 th level of PRK	Learning outcomes verification methods*					
	Knowledge							
1	The graduate acquires basic knowledge of main types of partial differential equations and methods of their solution.	P8S_WG	examination					
2	The graduate knows how to apply the acquired knowledge to solution of practical problems, especially in the field of mechanical engineering.	P8S_WK	assessment of activity during auditory classes					
Skills								
1	The graduate is able to solve practical problems in the field of mechanical engineering that demand to find solutions of various partial differential equations.	P8S_UW	assessment of activity during auditory classes and examination					
2	The graduate is able to apply the acquired knowledge directly to the field of his/her scientific research as well as disseminate the obtained results to the scientific community.	P8S_UW	assessment of activity during auditory classes					
Communication								
1	The graduate is able to initiate a debate and participate in scientific discourse, as well as to provide appropriate arguments in scientific discussions and public debates on various topics.	P8S_UK	assessment of activity during auditory classes					
Social competences								
1	The graduate is ready to think and act in a creative and entrepreneurial way.	P8S_KO	assessment of activity during auditory classes					
2	The graduate is ready to critically evaluate the achievements of the represented scientific discipline, including his or her own contribution to the development of this discipline.	P8S_KK	assessment of activity during auditory classes					

*Allowed learning outcomes verification methods: exam; oral exam; written test; oral test; project evaluation; report evaluation; presentation evaluation; active participation during classes; homework; tests

5. Assessment criteria

Assessment of activity during auditory classes, result of final examination.

6. Literature

Primary references:

[1] M. Renardy, R. C. Rogers, An introduction to partial differential equations, Texts in Applied Mathematics, Vol. 13, Springer-Verlag, New York, 2004.

[2] F. John, Partial Differential Equations, Applied Mathematical Sciences, Vol. 1, Springer-Verlag, New York-Heidelbeg-Berlin, 1978.

THE DOCTORAL SCHOOL OF IPPT PAN

Secondary references:

[1] V. Ivrii, Partial differential equations, Department of Mathematics, University of Toronto, Canada, 2022.

[2] S. J. Farlow, Partial differential equations for scientists and engineers, Dover Publications Inc., New York, 1993.

7. PhD student's workload necessary to achieve the learning outcomes**				
No.	Description	Number of hours		
1	Hours of scheduled instruction given by the lecturer in the classroom	60		
2	Hours of consultations with the lecturer, exams, tests, etc.	15		
3	Amount of time devoted to the preparation for classes, preparation of presentations, reports, projects, homework	30		
4	Amount of time devoted to the preparation for exams, test, assessments	15		
	120			
	4			
** 1 ECTS = 25–30 hours of the PhD students work (2 ECTS \approx 60 hours; 4 ECTS \approx 110 hours, etc.)				