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I. Einleitung. 

129 

So sehr auch bis heute die Literatur über Koagulation kolloid er 
Lösungen angewachsen ist, sind doch unsere Kenntnisse betreffs des 
quantitativen Verlaufs, sowie betreffs des Mechauismus des Koagulations.:. 
prozesses äusserst mangelhaft. Die meisten Forscher begnügen sich mit 
qualitativen Beobachtungen oder stellen ihre Messungsreihen in Tabellen 
oder Kurvenform 1) dar, da. die mathematische Wiedergabe derselben auf 
aussergewöhnliche Schwierigkeiten stösst. 

In den interessanten Arbeiten 2) von S. Miyaza wa, N. Ishizaka, 
H. Freundlich, J. A. Gann wird allerdings eine formelmässige Zu­
sammenfassung des empirischen Versuchsmaterials, sowie eine Aufklärung 
desselben nach Analogie mit den Gesetzen der chemischen Kinetik an­
gestrebt. Aber klare Gesetzmässigkeiten haben sich bisher auf diese 
Weise nicht ergeben, und wurden sogar gewisse, anfangs aufgestellte 
Gesetzformeln (Paine, Freundlich und Ishizaka) bei exakterer Prüfung 
(Freundlich und Gann) als unhaltbar zurückgenommen 3). 

Die Erfolglosigkeit der bisherigen Versuche,· aur dem. e,wp~risc,h- . 
induktiven Wege zn einem Verständnis der hier geltendeu"'Gesetze zn 
gelangen, kann man nun als e.inen Grund auffassen, einmal den. um-

1) Vg1. z. B.: A. Galecki, Zeitschl'. f .. anorg. Chemie 74,174 (1912); Kolloid­
Zeitschr. 10, 169 (1912); A. IJottermoser, Kolloid-Zeitschr.lD, 145 (1914); H. H 
Pai ne, KoBoidchem. Beihefte 4, 24 (1912); Kolloid-Zeitschr. 11, 115 (1912). 

2) S.Miyazawa, Jouru. Chem~ Soc.'l'okio33,1l79,1210(1912); N.Ishizaka, 
. Zeitschr. f. physik. Chemie 83, 97 (1913); H. Freundlich u. N. Ishizaka, ebendort 
85, 398 (1913); Kolloid-Zeitschr.12, 230 (1913); J: Gann, Kolloidchem. Beihefte 8, 
64 (Hllß). 

3) Siehe Abschnitt VI. 
Zeltschrin f. physllc. Chemie. XCI[. 9 
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Fragmentation–coagulation processes

Figure: Pure fragmentation and coagulation

Coagulation and fragmentation belong to the most fundamental

processes occurring in animate and inanimate matter. The range

of applications includes:
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Chemical engineering: polymerization/depolimerization

processes, with possible mass loss through dissolution,

chemical reactions, oxidation etc, or mass growth due to the

deposition of material on the clusters.

Biology: Blood cells’ coagulation and splitting, animal

grouping, phytoplankton at the level of aggregates,

flocculation.

Planetology: merging of planetesimals.

Aerosol research: coagulation of smoke, smog and dust

particles, droplets in clouds.
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Thus, together with the Boltzmann equation that describes

collision phenomena in rarefied gases, the Navier-Stokes and Euler

equations modelling the flow of viscous fuids, the

coagulation-fragmentation equation, in its original form going back

to Smoluchowski, describing rearrangements of particles, is

considered to be one of the most fundamental equations of the

classical description of matter.
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We shall refer to the fundamental building blocks of the aggregates

as monomers and a cluster of n monomers will be called an n-mer.

The Smoluchowski population balance equations, describing the

time-evolution of the number density of n-mers of size n ≥ 2, is

given by

dfn
dt

(t) = −anfn(t) +
∞∑

j=n+1

ajbn,j fj(t)

+
1

2

n−1∑
j=1

kn−j ,j fn−j(t)fj(t) −
∞∑
j=1

kn,j fn(t)fj(t) , (1)
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where

fn(t) is the number density of n-mers at time t ≥ 0;

an is the net rate of break-up of an n-mer;

bn,j is the daughter distribution function that gives the

average number of n-mers produced upon the break-up of a

j-mer;

kn,j = kj ,n represents the coagulation rate of an n-mer with a

j-mer.

Since monomers do not fragment and loss of monomers can only

arise due to coagulation, for n = 1 we have

d

dt
f1(t) =

∞∑
j=2

ajb1,j fj(t) −
∞∑
j=1

k1,j f1(t)fj(t). (2)
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Continuous fragmentation-coagulation models

In many applications, such as aerosols or polymers, it makes sense

to allow the clusters to be of any size. Then the size of building

blocks must be infinitesimal and hence we consider a continuous

size variable x ∈ R+ as the only variable required to differentiate

between the reacting particles.
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Then,

∂t f (t, x) = F f (t, x) + Cf (t, x) , (t, x) ∈ (0,∞)2 , (3)

f (0, x) = f̊ (x) , x ∈ (0,∞) , (4)

where

F f (t, x) = −a(x)f (t, x) +

∫ ∞

x
a(y)b(x , y)f (t, y)dy , (5)

and

Cf (t, x) =
1

2

∫ x

0
k(x − y , y)f (t, x − y)f (t, y)dy

− f (t, x)

∫ ∞

0
k(x , y)f (t, y) dy (6)
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Here f is the density of particles of mass x , a is the fragmentation

rate and b describes the distribution of particle masses x spawned

by the fragmentation of a particle of mass y . Further

M(t) =

∞∫
0

xf (x , t)dx (7)

is the total mass at time t. Local conservation principle requires
y∫

0

xb(x , y)dx = y , (8)

with the expected number of particles produced by a particle of

mass y is given by

n0(y) =

y∫
0

b(x , y)dx .
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Fragmentation–coagulation equation with vital dynamics.

Organisms’ grouping

1 active, resulting from conscious actions of individuals (herds,

swarms, fish schools),

2 passive, resulting from physical or chemical properties of the

organisms and the dynamics of the surrounding medium

(bacteria, phytoplankton aggregates).
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Why do animals form groups?

Figure: Frogs’ grouping to reduce danger zone, W.D. Hamilton,

Geometry of Selfish Herd, JTB, 1971
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Fish schools

Niwa (2003, 2004) observed that fish school-size distribution

(fi )i≥1 is well described by

fi ∼
1

iav
Φ

(
i

iav

)
,

where

iav =
∞∑
i=1

i
ifi

∞∑
i=1

ifi

is the average size the group an individual belongs to and

Φ(x) =
1

x
e−x+0.5xe−x ≈ 1

x
e−x .
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Figure: Empirical school size distribution of six types of pelagic fish

(Niwa, 2003)
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For a Smoluchowski type model, Degond derives

Φ⋆(x) = 2(6x)−2/3
∞∑
n=0

(−1)n

Γ
(
4
3 − 2

3n
)(6x)n/3

 

Figure: Plot of Φ for Niwa’s, simplified Niwa’s and Degond’s distribution

profiles. Inset: ratios Φ/Φ⋆ for all three cases. (Degond et al., 2017)
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Fragmentation-coagulation with growth and decay.

In all discussed models the fragmentation and coagulation

processes, which are just rearrangements of monomers, should be

accompanied by growth (and death) terms – if a cell divides inside

a cluster, it increases in size.

Cell division

Fragmentation

Particle evaporation

Fragmentation
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Then, in the continuous case, fragmentation can be supplemented

by growth/decay, transport or diffusion processes. For instance,

∂t f (x , t) = ±∂x [r(x)f (x , t)] − a(x)f (x , t)

+

∞∫
x

a(y)b(x , y)f (y , t)dy

+
1

2

∫ x

0
k(x − y , y)f (t, x − y)f (t, y) dy

− f (t, x)

∫ ∞

0
k(x , y)f (t, y)dy (9)

where r(x) > 0 describes either decay of the substance (e.g. by

chemical reaction or simply evaporation or dissolving) with ”+” or

growth by birth or multiplication, with ”-” (evolution of

phytoplankton aggregates.)
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Why do we need functional analysis to deal with such

models?

Fragmentation just rearranges the mass distribution and the total

mass should be conserved by (8). However, consider a

fragmentation equation describing binary fragmentation: with

b(x , y) = 2/y and a(x) = 1/x it takes the form

∂t f (x , t) = −x−1f (x , t) + 2

∞∫
x

y−2f (y , t)dy , (10)

For mono-disperse initial condition f (x , 0) = δ(x − l), l > 0, it has

a solution
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fl(x , t) = e−t/l

(
δ(x − l) +

2t

l2
− t2

l2

(
1

l
− 1

x

))
, x ≤ l , (11)

and fl(x , t) = 0 for x > l . Hence the total mass of the ensemble is

given by

M(t) = e−t/l

(
l + t +

t2

2l

)
, (12)

and clearly decreases monotonically in time.

Solutions do not have the properties used for the derivation of the

model
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Multiple solutions.

On the other hand, taking a(x) = x , b(x , y) = 2/y yields

∂t f (x , t) = −xu(x , t) + 2

∞∫
x

f (y , t)dy . (13)

Separating variables we get

f1(x , t) =
et

(1 + x)3
, (14)

with initial condition f1(x , 0) = (1 + x)−3 (of finite mass).
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However,

f2(x , t) = e−xt

 1

(1 + x)3
+

∞∫
x

1

(1 + x)3
[2t + t2(y − x)]dy

 ,

is also a solution to (13) satisfying the same initial condition.

Another example of nonuniqueness for this equation is offered by

f (t, x) = t2e−xt . (15)

Routine calculations show that this function is a nontrivial solution

to (13) emanating from zero so that (13) is not well-posed in the

pointwise sense.

This shows that to ensure well-posedness of the problem we must

carefully define what we mean by the solution.
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Mathematical setting – state spaces.

Example 1

The natural space to analyse the continuous fragmentation -

coagulation processes is

X1 = L1(R+, xdx) =

u; ∥u∥1 =

∞∫
0

|u(x)|xdx < +∞


as for nonnegative u we have ∥u∥1 = M(u), the mass of the

ensemble with density u. Best results are obtained in spaces

X1,α = L1(R+, (1+xα)dx)=

u; ∥u∥0,α=

∞∫
0

|u|(1 + xα)dx < +∞

 ,

α > 1.
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Ways of approaching the fragmentation-coagulation

equations.

Difficulties in solving

∂t f (t, x) = F f (t, x) + Cf (t, x) , (t, x) ∈ (0,∞)2 ,

f (0, x) = f̊ (x) , x ∈ (0,∞) , (16)

come from the fact that both the fragmentation rate a and the

coagulation rate can be unbounded, for instance at x = ∞.

1. Truncation method. We construct solutions fr to the problem

with the coefficients a and k modified as follows

ar (x) =

 a(x) for x ≤ r

0 for x > r ,
kr (x , y) =

 k(x , y) for x + y ≤ r

0 for x + y > r .
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(fr )r>0 is a weakly compact net whose accumulation point is a

solution to a suitable weak formulation of (16).

Advantages: possibility to handle very general coagulation

coefficients.

Disadvantages: weak solutions, additional work required to prove

mass conservation, uniqueness, etc; fragmentation subordinated to

coagulation.
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2.Semigroup method. Considering (16) as a nonlinear perturbation

of the linear dynamics generated by

F = A + B.

Advantages: classical unique mass-conserving solutions.

Disadvantages: The coagulation part subordinated to the

fragmentation, typically bounded.

So, first, how to solve

∂t f = F f = Af + Bf ?
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Between model and its analysis

Equations derived through a modelling process are formulated

pointwise: all operations, such as differentiation and integration,

are understood in the classical ‘calculus’ sense and the equation

shoud be satisfied for all values of the independent variables:

∂

∂t
f (t, x) = [Kf (t, ·)](x), x ∈ Ω

f (t, 0) = f̊ , (17)

where K is a differential, integral, or functional expression. We aim

to describe the evolution by a family of operators (G (t))t≥0 in a

state space X , parameterised by time, that map an initial state f̊

of the system to all subsequent states in the evolution.
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That is, solutions are represented as

f (t) = G (t)f̊ . (18)

From G we expect some form of continuity in t, the semigroup

property G (t + s) = G (t)G (s), t, s ≥ 0, and G (0) = Id .

Then we try to write (17) as the Cauchy problem for an ordinary

differential equation in X : for t > 0

∂t f = Kf , f (0) = f̊ ∈ X , (19)

where K is certain realization of K in X . Problem (19) is

well-posed if K is the generator of (G (t))t≥0.
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Semigroups – crash course

Let X be a Banach space, K be a linear operator in X with

domain D(K ).

Definition 2

A family (G (t))t≥0 of bounded linear operators on X with

G (0) = I , is called a C0-semigroup if

(i) G (t + s) = G (t)G (s) for all t, s ≥ 0;

(ii) limt→0+ G (t)f = f for any f ∈ X .

An operator K is called the generator of (G (t))t≥0 if

Kf = lim
h→0+

G (h)f − f

h
, (20)

and D(K ) is the set of all f ∈ X for which this limit exists.
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From (20) and (ii), for f̊ ∈ D(K ) we have

∂tG (t)f̊ = KG (t)f̊ , t > 0,

G (0)f̊ = f̊ , (21)

so the function f (t, f̊ ) = G (t)f̊ is a classical solution to the

Cauchy problem (19). If f̊ ∈ X \ D(K ), the function

f (t, f̊ ) = G (t)f̊ is continuous but, in general, not differentiable.

Thus, if we have a semigroup, we can identify the Cauchy problem

of which it is a solution. We are, however, interested in finding the

semigroup for a given equation.
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Let σ(K ) denote the spectrum of K and ρ(K ) = C \ σ(K ) be the

resolvent set of K .

Theorem 3 (Hille-Yosida)

K ∈ G(M, ω) if and only if K is closed and densely defined and

there exist M > 0, ω ∈ R such that (ω,∞) ⊂ ρ(K ) and for all

n ≥ 1, λ > ω,

∥(R(λ,K ))n∥ = ∥((λI − K )−1)n∥ ≤ M

(λ− ω)n
. (22)
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Analytic semigroups

If a densely defined K is sectorial, that is, if the estimate

∥R(λ,K )∥ ≤ C

|λ|
. (23)

holds in some sector

Sπ
2
+δ := {λ ∈ C; |arg λ| < π

2
+ δ} ∪ {0}, δ > 0, (24)

then K is the generator of an analytic semigroup given by

GK (t) =
1

2πi

∫
Γ

eλtR(λ,K )dλ, (25)

where Γ is an unbounded smooth curve in Sπ
2
+δ.
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Benefits of analyticity

If K is sectorial, then

t → GK (t)f̊ solves the Cauchy problem (21) for arbitrary

f̊ ∈ X ;

it is possible to define fractional powers (−K )α, 0 < α < 1,

with domains satisfying

D(K ) ⊂ D((−K )α) ⊂ X ;

for every t > 0 and 0 ≤ α ≤ 1, we have

∥t−α(−K )−αGK (t)∥ ≤ Mα (26)

for some constant Mα.
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For example, if K = ∆ on the maximal domain in L2(Rn), then

D(K ) = W 2
2 (Rn) and D((−K )α) = W 2α

2 (Rn) and the heat

semigroup regularizes initial conditions.
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Perturbation techniques

Verifying conditions of the Hille–Yosida theorem for a concrete

problem is usually an impossible task. Then we consider

Problem P. Let (A,D(A)) be a generator of a C0-

semigroup on a Banach space X and (B,D(B)) be another

operator in X . Under what conditions does A + B, or an

extension K of A + B, generate a C0-semigroup on X?
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Power of positivity and L1 spaces

Recall that natural state spaces for fragmentation and coagulation

problems are X1 = L1(R+, xdx) and X0,α = L1(R+, (1 + xα)dx).

They are Banach lattices. In a Banach lattice X we can identify the

cone of positive elements X+ and define Z+ := Z ∩ X+ for Z ⊂ X .

Definition 4

We say that the semigroup (G (t))t≥0 on X is positive if for any

f ∈ X+ and t ≥ 0,

G (t)f ≥ 0.
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From now on, X is an L1-space. We say that (G (t))t≥0 is a

substochastic semigroup if for any t ≥ 0 and f ≥ 0, G (t)f ≥ 0 and

∥G (t)f ∥ ≤ ∥f ∥, and a stochastic semigroup if additionally

∥G (t)f ∥ = ∥f ∥ for f ∈ X+.

With regards to Problem P., the existence of a semigroup

(GK (t))t≥0 associated with

ft = Af + Bf

depends to large extent on whether we can prove

a) ∥BR(λ,A)∥ < 1, or only

b) ∥BR(λ,A)∥ ≤ 1.
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In case b), we have Kato type theorem:

Theorem 5

Let X = L1(Ω, µ) and suppose that the operators A and B satisfy

1. (A,D(A)) generates a substochastic semigroup (GA(t))t≥0;

2. D(B) ⊃ D(A) and Bf ≥ 0 for f ∈ D(A)+;

3. for all f ∈ D(A)+ ∫
Ω

(Af + Bf )dµ ≤ 0. (27)

Then there is an extension (K ,D(K )) of (A + B,D(A)) generating

a positive C0-semigroup of contractions, say, (GK (t))t≥0.
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In case a), we have the Desch–Miyadera type theorem,

Theorem 6 (W. Desch)

Let (GA(t))t≥0 be a positive C0-semigroup on some L1 space X

with generator A and let B be positive on D(A)+. If

∥BR(λ,A)∥ < 1 for large λ > 0, then

K = A + B : D(A) → X

is the generator of a positive C0-semigroup on X .

Moreover, if (GA(t))t≥0 is analytic, (GK (t))t≥0 is also analytic.
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Back to the pathologies of the fragmentation problem

Recall

ft(x , t) = Af (x , t) + Bf (x , t)

= −a(x)f (x , t) +

∞∫
x

a(y)b(x , y)f (y , t)dy . (28)

We denote

Fmin = A + B, on D(Fmin) = D(A) = {f , af ∈ L1(R+, xdx)}

and

Fmax = A + B on D(Fmax) = {f ,Af + Bf ∈ L1(R+, xdx)}.
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Since, using (8), we get

∞∫
0

−a(x)u(x) +

∞∫
0

a(y)b(x , y)u(y)dy

 xdx = 0

for 0 ≤ f ∈ D(Fmin) = D(A), there is a generator, say F , of a

substochastic fragmentation semigroup associated to (28).

Hence, if the solutions are in D(Fmin) = D(A) = D(B), then

∂t∥u(t)∥X1 =

∞∫
0

(Au(t) + Bu(t))xdx

=

∞∫
0

Au(t) xdx +

∞∫
0

Bu(t) xdx = 0 (29)

so that (GK (t))t≥0 is mass-conserving.
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The conservativeness may be extended to the case, when the

solutions stay in D(Fmin), where Fmin is explicitly defined as

Fminf = lim
n→∞

(Afn + Bfn)

where D(Fmin) ∋ fn → f ∈ D(Fmin), whenever the limits exist.

Then it is easy to see that (29) holds for f (t) ∈ D(Fmin)

∞∫
0

A + Bf (t)xdx = 0. (30)

But does f (t) ∈ D(Fmin)?
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F ,Fmin,Fmin,Fmax and pathologies of the model.

The generator F always satisfies Fmin ⊂ F ⊂ Fmax. The place of F

on this scale determines the well-posedness of the problem (28).

All following situations are possible

1 Fmin = F = Fmax,

2 Fmin ⊊ F = Fmin = Fmax,

3 Fmin = F ⊊ Fmax,

4 Fmin ⊊ F = Fmin ⊊ Fmax,

5 Fmin ⊊ F ⊊ Fmax.
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Each of these cases has its own specific interpretation in the model.

If F ⊊ Fmax, we don’t have uniqueness: there are differentiable

X1-valued solutions to emanating from zero and therefore they are

not described by the semigroup:

‘there is more to life, than meets the semigroup’.

If Fmin ⊊ F , then despite the fact that the equation is formally

conservative, the solutions are not: the modelled quantity leaks out

from the system and the mechanism of this leakage is not present

in the model.

Jacek Banasiak Processes of fragmentation and coagulation – Smoluchowski’s equations and beyond



Typical dynamics in L1(R+, xdx)

Let a(x) be such that both limits lim
x→∞,0

a(x) (possibly infinite)

exist and let b(x , y) = (ν + 2)xν/yν+1. Then,

F = Fmax iff
1

xa(x)
/∈ L1([N,∞)), (31)

F = Fmin iff
1

xa(x)
/∈ L1([0, δ]), (32)

for some N, δ ∈ (0,∞).
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Fragmentation in higher moment spaces.

Assume that

a is bounded at 0 &

y∫
0

b(x , y)dy = n0(y) ≤ b0(1 + y l), (33)

where l ∈ [0,∞[ and b0 ≥ 1. Recall the notation

X0,m = L1(R+, (1 + xm)dx). (34)

We note that, due to the continuous injection X0,m ↪→ X1, m ≥ 1,

any solution in X0,m is also a solution in the basic space X1.
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Further, define

nm(y) :=

y∫
0

b(x , y)xmdx

for any m ≥ 0 and y ∈ R+, and

N0(y) := n0(y) − 1 ≥ 0,

Nm(y) := ym − nm(y) ≥ 0, m ≥ 1,

with N1 = 0.
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Theorem 7

Let a, b satisfy (33) and for some m0 > 1

lim inf
y→∞

Nm0(y)

ym0
> 0. (35)

Then

1 (35) holds for all m > 1;

2 F := A + B is the generator of a positive analytic semigroup

(GF (t))t≥0, on X0,m for any m > max{1, l}.
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Example 8

One of the forms of b(x , y) most often used in applications is

b(x , y) =
1

y
h

(
x

y

)
(36)

which is referred to as the homogeneous fragmentation kernel. In

this case the distribution of the daughter particles does not depend

directly on their relative sizes but on their ratio. In this case

nm(y) =
1

y

y∫
0

h

(
x

y

)
xmdx = ym

1∫
0

h(z)zmdz =: hmy
m.
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Example 9

Since

y = n1(y) =
1

y

y∫
0

h

(
x

y

)
xdx = y

1∫
0

h(z)zdz = h1y

we have h1 = 1 so that hm < 1 for any m > 1 and

Nm(y) = ym(1 − hm). Hence, (35) holds.

On the other hand, fragmentation processes in which daughter

particles tend to accumulate close both to 0 and to the parent’s

size may not satisfy (35).
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Full fragmentation-coagulation problems

Recall that we deal with the equation

∂t f (x , t) = −a(x)f (x , t) +

∞∫
x

a(y)b(x , y)f (y , t)dy

− u(x , t)

∞∫
0

k(x , y)f (y , t)dy

+
1

2

x∫
0

k(x − y , y)f (x − y , t)u(y , t)dy . (37)

Next, we denote by C the nonlinear part of (37) so that the initial

value problem for (37) can be written as

∂t f = Ff + Cf , u(0) = f̊ . (38)
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A brief on semilinear problems

Next we consider the semilinear abstract Cauchy problem

ft = Kf + g(f ), (39a)

f (0) = f̊ , (39b)

where K is the generator of (GK (t))t≥0 and g is a known function

in X . We approach the problem using the integral formulation

f (t) = GK (t)f̊ +

t∫
0

GK (t − s)g(f (s))ds. (40)

For this to work, g must be a Lipschitz function on X - no

unbounded g is allowed.
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It is possible to relax the restrictions on g , when (GK (t))t≥0 is an

analytic semigroup. If we take 0 ≤ α < 1 and t 7→ f (t) is

D((−K )α)-valued, then for f̊ ∈ D((−K )α) we can write

(−K )αf (t) = GK (t)(−K )αf̊

+

t∫
0

(−K )αGK (t − s)g((−K )−α(−K )αf (s))ds,

where the integral is defined if h(·) = g((−K )−α·) is bounded as a

function from D((−K )α) to X . In other words, we repeat the

Picard iteration process in X for v(t) = (−K )αf (t); that is,

v(t) = GK (t)v̊ +

t∫
0

(−K )αGK (t − s)h(v(s))ds,
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where v̊ = (−K )αů. For this h should be Lipschitz continuous in

X ; that is, it suffices that g be only Lipschitz continuous from

D((−K )α) to X . Due to the integrable singularity that appears

under the sign of the integral due to (26),

∥t−α(−K )−αGK (t)∥ ≤ Mα,

we obtain a Volterra equation with a weakly singular kernel.
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Back to the fragmentation–coagulation equation

We assume that b satisfies (33), F = A + B generates an analytic

semigroup, and the coagulation kernel k(x , y) satisfies

0 ≤ k(x , y) ≤ L((1 + a(x))α(1 + a(y))α, (41)

for some L > 0 and 0 ≤ α < 1. This will suffice to show local in

time solvability of (37), whereas to show that the solutions are

global in time we need to strengthen (57) to

0 ≤ k(x , y) ≤ L((1 + a(x))α + (1 + a(y))α). (42)
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To formulate the main theorem we have to introduce a new class of

spaces which, as we shall see later, is related to intermediate spaces

which play the role of the domains of fractional powers of −F ,

X
(α)
m :=

{
f ∈ X0,m;

∫ ∞

0
|f (x)|(ω + a(x))α(1 + xm) dx < ∞

}
,

where ω is a sufficiently large constant. We assume that all

assumptions that ensure analyticity of (GF (t))t≥0 are satisfied.

Then
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Theorem 10

1. If k satisfies (57), then, for each f̊ ∈ X
(α)
m,+, there is tmax(f̊ ) > 0

such that the initial-value problem (38) has a unique nonnegative

classical solution f in X
(α)
m , that is,

f ∈ C
(
[0, tmax(f̊ )),X

(α)
m

)
∩ C 1

(
(0, tmax(f̊ )),X

(α)
m

)
.

2. If k satisfies (42), then, for each f̊ ∈ X
(α)
m,+, the corresponding

local nonnegative classical solution is global in time.
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Example 11

Suppose we have a(x) = x j , j > 0, and k(x , y) = xβ + yβ. Then

we can write

k(x , y) = a(x)β/j + a(y)β/j

so that α = β/j . The assumption for local solvability require

α < 1; that is, β < j . The same condition is required for global

solvability. On the other hand, if k(x , y) = xβyβ, then the

conditions of the local solvability remain the same, while from

2xβyβ ≤ x2β + y2β,

it follows that we require β < j/2.
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Relation to weak solutions

Weak solutions to (37) are constructed as weak limits of solutions

ur to the problem with the coefficients a and k modified as follows

ar (x) =

 a(x) for x ≤ r

0 for x > r ,
kr (x , y) =

 k(x , y) for x + y ≤ r

0 for x + y > r .

Theorem 12

Assume that the assumptions of Theorem 10 are satisfied and u is

the solution to (38). If (ur )r>0 are approximate solutions defined

above, then

lim
r→∞

ur = u (43)

in C ([0,T ],X
(α)
m ) for any T < tmax(f̊ ).
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Back to the fragmentation–coagulation equation with growth

Let us recall that we are dealing with the problem

∂t f (x , t) = −∂x [r(x)f (x , t)] + Ff (x , t) + Cf (x , t),

f (x , 0) = f̊ (x), (44)

where we assume

0 ≤ a ∈ L∞,loc([0,∞)); (45)

1/r ∈ L1,loc(R+) and 0 < r(x) ≤ r0 + r1x ≤ r̃(1 + x), (46)

for some nonnegative constants r0, r1 and r̃ .
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We distinguish two cases of behaviour of r(x) close to x = 0:∫
0+

dx

r(x)
= +∞ or

∫
0+

dx

r(x)
< +∞. (47)

In the latter, we need a boundary condition at x = 0 and hence we

define T0f := −(rf )x − af , in the first case on

D(T0) := {f ∈ X0,m : (rf )x , qf ∈ X0,m} , (48)

and in the second case we use

D(T0) := {f ∈ X0,m : (rf )x , qf ∈ X0,m, r(x)f (x) → 0 as x → 0} .

(49)
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We consider the full linear part in the abstract form

ft = T0f + Bf , t > 0; f (0) = f̊ , (50)

where B is the restriction to D(T0) of

f 7→
∫ ∞

x
a(y)b(x , y)f (y)dy .

Then, under the same assumptions on b that ensured analyticity of

the fragmentation semigroup, we have

Theorem 13

Then (K ,D(T0)) = (T0 + B,D(T0)) generates a positive

C0-semigroup, (GK (t))t≥0, on X0,m.

The proof is carried out by the Desch theorem, applicable since we

deal with positive operators in L1 spaces.
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An application to spectral gap and AEG.

Theorem 14

Let the assumptions of the previous theorem be satisfied, and let r

be continuous, satisfy (46) and 1/r be integrable close to 0+.

Further, let the sublevel sets of a be thin at infinity in the sense

that for any c > 0∫ +∞

1
1{x>0: a(x)<c}

1

r(y)
dy < +∞ (51)

(e.g., let limx→+∞ a(x) = +∞ ). Then (GK (t))t≥0 has AEG, that

is,
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Theorem 14

there is ε > 0 such that∥∥∥e−λtGK (t)f̊ − (e∗ · f̊ )e
∥∥∥ = O(e−εt), (52)

where λ is the isolated algebraically simple dominant eigenvalue of

K , and e and e∗ are strictly positive eigenvectors of, respectively,

the generator and its dual.
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Application to problems with coagulation

For pure fragmentation and coagulation problems (with r ≡ 0), the

linear part generates an analytic semigroup (GF (t))t≥0 which

allows to deal with the integral equation

f (t) = GF (t)f̊ +

∫ t

0
GF (t − s)Cf (s)ds, t ∈ R+. (53)

even when the kernel k of C is unbounded (but with growth

controlled by a).

With r ̸= 0, however, (GK (t))t≥0 is not analytic.
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Moment regularization. We have the following result.

Theorem 15 (E. Bernard & P. Gabriel, 2020)

In addition to the conditions required for Theorem 13 to hold,

assume that positive constants a0 , γ0 and x0 exist such that

a(x) ≥ a0x
γ0 , for all x ≥ x0. (54)

Then, for any n, p and m satisfying max{1, l} < n < p < m, there

are constants C > 0 and θ > 0 such that

∥GK (t)f̊ ∥0,m ≤ Ceθtt
n−m
γ0 ∥f ∥0,p, for all f ∈ X0,p. (55)
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Full problem (44)

Here, the coagulation kernel is required to satisfy

k(x , y) ≤ k0(1 + xα)(1 + yα), (56)

for some 0 < α < γ0.

Assume that the generation assumptions of this section hold, k

satisfy (56) and, in addition, m > α + max{1, l}.
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Theorem 16

Then, for each f̊ ∈ X0,m,+, the problem (44) has a unique

nonnegative mild solution f ∈ C ([0, tmax),X0,m) defined on its

maximal interval of existence [0, tmax(f̊ )). If tmax(f̊ ) < ∞, then

∥f (t)∥0,m is unbounded as t → tmax(f̊ )−.
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In the next theorem we address the issue of differentiability of the

mild solution and it being a classical solution. The result is similar

to that for analytic semigroups in that the mild solution in a

smaller space (here X0,m) is a classical solution in a bigger space

(here X0,p). Denote by Dp(K ) the domain of K in X0,p.

Theorem 17

Assume that f̊ ∈ X0,m ∩ Dp(K ), where p = m − α. Then the mild

solution f constructed in Theorem 16, defined on its maximal

interval of existence [0, tmax), satisfies

f ∈ C ([0, tmax),X0,m) ∩ C 1((0, tmax),X0,m) ∩ C ((0, tmax),Dp(K ))

and is a classical solution to (44) in X0,p.
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Global solvability. For this, we assume

k(x , y) ≤ k0(1 + xα + yα), (57)

0 < α < γ0.

Theorem 18

If for x ≥ 0 either

a) there are constants m0 and m1 such that

(n0(x) − 1)a(x) ≤ m0 + m1x ,

or

b) r(x) ≤ r̃ x ,

then the solutions of Theorem 16 are global in time.
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Figure: Shameless self-promotion
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