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Fragmentation—coagulation processes

ey !

I

Pure fragmentation and coagulation

Coagulation and fragmentation belong to the most fundamental
processes occurring in animate and inanimate matter. The range

of applications includes:
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o Chemical engineering: polymerization/depolimerization
processes, with possible mass loss through dissolution,
chemical reactions, oxidation etc, or mass growth due to the
deposition of material on the clusters.

o Biology: Blood cells’ coagulation and splitting, animal
grouping, phytoplankton at the level of aggregates,
flocculation.

o Planetology: merging of planetesimals.

o Aerosol research: coagulation of smoke, smog and dust

particles, droplets in clouds.
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Thus, together with the Boltzmann equation that describes
collision phenomena in rarefied gases, the Navier-Stokes and Euler
equations modelling the flow of viscous fuids, the
coagulation-fragmentation equation, in its original form going back
to Smoluchowski, describing rearrangements of particles, is
considered to be one of the most fundamental equations of the

classical description of matter.
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We shall refer to the fundamental building blocks of the aggregates
as monomers and a cluster of n monomers will be called an n-mer.
The Smoluchowski population balance equations, describing the

time-evolution of the number density of n-mers of size n > 2, is

given by
df, -
E(t) = —anfp(t) + Z ajbn jf(t)

j=n+1

- ;zkw i Zk,Jf 1)

Jacek Banasiak



where

o fp(t) is the number density of n-mers at time t > 0;

o a, is the net rate of break-up of an n-mer;

o by, is the daughter distribution function that gives the
average number of n-mers produced upon the break-up of a
J-mer;

o knj = kjn represents the coagulation rate of an n-mer with a
Jj-mer.

Since monomers do not fragment and loss of monomers can only

arise due to coagulation, for n =1 we have

*fl Zajbldj )_Zkl,jfl(t)ﬂ'(t)- (2)
j=1
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Continuous fragmentation-coagulation models

In many applications, such as aerosols or polymers, it makes sense
to allow the clusters to be of any size. Then the size of building
blocks must be infinitesimal and hence we consider a continuous
size variable x € R as the only variable required to differentiate

between the reacting particles.
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Oef(t,x) = Frf(t,x)+Cf(t,x),

£(0,x) = f(x), x € (0,00) ,

(t,x) € (0,00) ,



Here f is the density of particles of mass x, a is the fragmentation
rate and b describes the distribution of particle masses x spawned

by the fragmentation of a particle of mass y. Further

[e.e]

M(t) = /Xf(x, t)dx (7)
0

is the total mass at time t. Local conservation principle requires
y

[ ety =y, (8)
0
with the expected number of particles produced by a particle of

mass y is given by

noly) = / b(x. y)dx.
0
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Fragmentation—coagulation equation with vital dynamics.
Organisms’ grouping
Q active, resulting from conscious actions of individuals (herds,
swarms, fish schools),
Q passive, resulting from physical or chemical properties of the
organisms and the dynamics of the surrounding medium

(bacteria, phytoplankton aggregates).
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Why do animals form groups?

Frogs' grouping to reduce danger zone, W.D. Hamilton,

Geometry of Selfish Herd, JTB, 1971
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Fish schools
Niwa (2003, 2004) observed that fish school-size distribution

(f;)i>1 is well described by
2e(2)
lav lav

oo .
: . f;
Iy = g I~
i=1 Y if;

i=1

where

is the average size the group an individual belongs to and

d(x) = le_x+0'5xefx ~ le‘X.
X X
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Scaled size-distribution
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Empirical school size distribution of six types of pelagic fish

(Niwa, 2003)
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For a Smoluchowski type model, Degond derives
_ = (D))" n/3
O, (x) =2(6x) 23 FEEET] (6x)

Plot of ® for Niwa's, simplified Niwa's and Degond's distribution

profiles. Inset: ratios ®/®, for all three cases. (Degond et al., 2017)

Jacek Banasiak



Fragmentation-coagulation with growth and decay.

In all discussed models the fragmentation and coagulation
processes, which are just rearrangements of monomers, should be
accompanied by growth (and death) terms — if a cell divides inside

a cluster, it increases in size.

Fragmentation

Cell division
2
-
-
-
~
~
~
S !
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Particle evaporation
K
-
-
-
~
N
~
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Then, in the continuous case, fragmentation can be supplemented
by growth/decay, transport or diffusion processes. For instance,

Oif(x,t) = £0[r(x)f(x,t)] — a(x)f(x,t)

o

+ / a(y)b(x, y)F(y, t)dy

X

+% /OX k(x —y,y)f(t,x —y)f(t,y)dy
(%) /0 " k(xy)F(t,y) dy (9)

where r(x) > 0 describes either decay of the substance (e.g. by
chemical reaction or simply evaporation or dissolving) with "+" or
growth by birth or multiplication, with "-" (evolution of

phytoplankton aggregates.)



Why do we need functional analysis to deal with such
models?

Fragmentation just rearranges the mass distribution and the total
mass should be conserved by (8). However, consider a
fragmentation equation describing binary fragmentation: with
b(x,y) =2/y and a(x) = 1/x it takes the form

e}

Oif(x,t) = —X_lf(X, t) + 2/y_2f(y, t)dy, (10)

For mono-disperse initial condition f(x,0) = d(x — /), / > 0, it has

a solution
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iy 2t t2 /1 1
ﬁ(X,t):et/ <5(X—I)+l2—/2 7—* y X§/, (11)

X

and fi(x, t) = 0 for x > /. Hence the total mass of the ensemble is
given by
t2
M(t) = et/ (/ +t+ 2/> , (12)
and clearly decreases monotonically in time.

Solutions do not have the properties used for the derivation of the

model
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Multiple solutions.

On the other hand, taking a(x) = x, b(x,y) = 2/y yields

Oif(x,t) = —xu(x, t) + 2 / f(y,t)dy. (13)
Separating variables we get
et
filx, t) = ———= 14
1(X7 ) (1 +X)37 ( )

with initial condition f1(x,0) = (1 + x)~3 (of finite mass).
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However,

o0

+/(1_:X)3[2t+t2(y—x)]dy ,

X

1
(1+x)3

h(x,t)=e ™

is also a solution to (13) satisfying the same initial condition.

Another example of nonuniqueness for this equation is offered by
f(t,x) = t2e . (15)

Routine calculations show that this function is a nontrivial solution
to (13) emanating from zero so that (13) is not well-posed in the
pointwise sense.

This shows that to ensure well-posedness of the problem we must

carefully define what we mean by the solution.
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Mathematical setting — state spaces.

The natural space to analyse the continuous fragmentation -

coagulation processes is
oo
X1 = Li(Ry, xdx) = ¢ u; |jull1 = / lu(x)|xdx < 400
0

as for nonnegative u we have ||u||; = M(u), the mass of the

ensemble with density u. Best results are obtained in spaces

Xio = LR (1x)a)=S i o= [ [ul(1 -+ x*)dx < +oc
0

a>1.
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Ways of approaching the fragmentation-coagulation
equations.

Difficulties in solving

0:f(t,x) = FFf(t,x)+CFf(t,x), (t,x) € (0,00)? ,

£(0,x) = f(x), x € (0,00) , (16)

come from the fact that both the fragmentation rate a and the
coagulation rate can be unbounded, for instance at x = oo.
1. Truncation method. We construct solutions f, to the problem

with the coefficients a and k modified as follows
a(x) for x<r k(x,y) for x+y<r

ar(x) = kr(x,y) =
0 for x>r, 0 for x+y>r.
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(f)r>0 is a weakly compact net whose accumulation point is a
solution to a suitable weak formulation of (16).

Advantages: possibility to handle very general coagulation
coefficients.

Disadvantages: weak solutions, additional work required to prove
mass conservation, uniqueness, etc; fragmentation subordinated to

coagulation.
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2.Semigroup method. Considering (16) as a nonlinear perturbation

of the linear dynamics generated by
F=A+5.

Advantages: classical unique mass-conserving solutions.
Disadvantages: The coagulation part subordinated to the
fragmentation, typically bounded.

So, first, how to solve

Ocf = Ff = Af + Bf ?
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Between model and its analysis

Equations derived through a modelling process are formulated
pointwise: all operations, such as differentiation and integration,
are understood in the classical ‘calculus’ sense and the equation
shoud be satisfied for all values of the independent variables:

0
af(t,x) = [Kf(t,)](x), x€Q

f(t,0) = f, (17)

where K is a differential, integral, or functional expression. We aim
to describe the evolution by a family of operators (G(t))t>0 in a
state space X, parameterised by time, that map an initial state f

of the system to all subsequent states in the evolution.
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That is, solutions are represented as
f(t) = G(t)f. (18)

From G we expect some form of continuity in t, the semigroup
property G(t +s) = G(t)G(s),t,s >0, and G(0) = /d.
Then we try to write (17) as the Cauchy problem for an ordinary

differential equation in X: for t > 0
0:f = Kf, f(0)="f¢eX, (19)

where K is certain realization of IC in X. Problem (19) is

well-posed if K is the generator of (G(t))¢>o0.
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Semigroups — crash course

Let X be a Banach space, K be a linear operator in X with
domain D(K).

Definition 2

A family (G(t))¢>0 of bounded linear operators on X with

G(0) =/, is called a Cp-semigroup if
(i) G(t +s) = G(t)G(s) for all t,s > 0;
(ii) lim;o+ G(t)f = f for any f € X.

An operator K is called the generator of (G(t))¢>0 if

Kf = tim S0 = F

2
h—0+ h ’ (20)

and D(K) is the set of all f € X for which this limit exists.




From (20) and (ii), for f € D(K) we have

Q
L
N
o
Il
=
o)
=
N—r
u"\
-
v
“O

G(0)f = F, (21)

so the function f(t,f) = G(t)f is a classical solution to the
Cauchy problem (19). If f € X\ D(K), the function

f(t,f) = G(t)f is continuous but, in general, not differentiable.
Thus, if we have a semigroup, we can identify the Cauchy problem
of which it is a solution. We are, however, interested in finding the

semigroup for a given equation.
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Let o(K) denote the spectrum of K and p(K) = C\ o(K) be the
resolvent set of K.

Theorem 3 (Hille-Yosida)
K € G(M,w) if and only if K is closed and densely defined and

there exist M > 0,w € R such that (w,o0) C p(K) and for all

n>1,\>w,

ICRO KM= (1A = K)™H)" < (22)

M
(A—w)
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Analytic semigroups

If a densely defined K is sectorial, that is, if the estimate

C
IR K| < o (23)
holds in some sector
™
Szi5:={A€C; largA| < > +du{0}, >0, (24)

then K is the generator of an analytic semigroup given by

= / eMR(A, K)dA, (25)
27i
J

Gk(t) =

where [ is an unbounded smooth curve in Sz, 5.
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Benefits of analyticity

If K is sectorial, then

o t — Gk(t)f solves the Cauchy problem (21) for arbitrary

°

f e X,

o it is possible to define fractional powers (—K)*,0 < a < 1,

with domains satisfying
D(K) c D((—K)*) C X;
o foreveryt >0and 0 < a <1, we have
[T (=K) "Gk (t)]| < Ma (26)

for some constant M,,.
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For example, if K = A on the maximal domain in L(R"), then
D(K) = W2(R") and D((—K)%) = W2%(R") and the heat

semigroup regularizes initial conditions.
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Perturbation techniques

Verifying conditions of the Hille=Yosida theorem for a concrete

problem is usually an impossible task. Then we consider

Problem P. Let (A,D(A)) be a generator of a Cp-
semigroup on a Banach space X and (B, D(B)) be another
operator in X. Under what conditions does A+ B, or an

extension K of A+ B, generate a Cp-semigroup on X?
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Power of positivity and L; spaces

Recall that natural state spaces for fragmentation and coagulation
problems are X; = L1(R4, xdx) and Xo o = L1(R4, (1 4+ x¥)dx).
They are Banach lattices. In a Banach lattice X we can identify the

cone of positive elements X, and define Z, := ZN Xy for Z C X.

Definition 4
We say that the semigroup (G(t))¢>0 on X is positive if for any

feXyandt>0,

G(t)f > 0.
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From now on, X is an L;-space. We say that (G(t))¢>o is a
substochastic semigroup if for any t > 0 and f >0, G(t)f >0 and
|G(t)f|| < |If]], and a stochastic semigroup if additionally
IG(&)F | = [IF] for £ € X,.

With regards to Problem P., the existence of a semigroup

(Gk(t))r>0 associated with
f, = Af + Bf

depends to large extent on whether we can prove

a) || BR(A\, A)|l < 1, or only
b) [BR(X, A)|| < 1.
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In case b), we have Kato type theorem:

Let X = L1(R, n) and suppose that the operators A and B satisfy

1. (A, D(A)) generates a substochastic semigroup (Ga(t))t>0;
2. D(B) > D(A) and Bf > 0 for f € D(A),;

3. forall f € D(A)+
/ (A + Bf)dpu < 0. (27)
Q

Then there is an extension (K, D(K)) of (A+ B, D(A)) generating

a positive Co-semigroup of contractions, say, (Gk(t))>o0-
- V.
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In case a), we have the Desch—Miyadera type theorem,

Theorem 6 (W. Desch)

Let (Ga(t)),>o be a positive Co-semigroup on some L' space X
with generator A and let B be positive on D(A)4. If
|BR(A, A)|| <1 for large A > 0, then

K=A+B:D(A) > X

is the generator of a positive Cyo-semigroup on X.

Moreover, if (Ga(t))e>0 is analytic, (Gk(t))e>o is also analytic.

Jacek Banasiak



Back to the pathologies of the fragmentation problem

Recall
fr(x, t) = Af(x, t) + Bf(x, t)
= —a(x)f(x,t) + 7a(y)b(x,y)f(y, t)dy. (28)
We denote X

Fmin=A+ B, on D(Fmin) = D(A) = {f,af € L1(R, xdx)}
and
Frax = A+B on D(Fmax) = {f, Af + Bf € Ll(RJ,_,XdX)}.
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Since, using (8), we get

[ =atue + [ at)ptey)uty)y | xax =0
0 0

for 0 < f € D(Fmin) = D(A), there is a generator, say F, of a
substochastic fragmentation semigroup associated to (28).

Hence, if the solutions are in D(F,in) = D(A) = D(B), then

Ol u()l]x, = /(Au(t) + Bu(t))xdx
0
= [ Au(t)xdx + [ Bu(t)xdx =0 (29)
[t |

so that (Gk(t))r>0 is mass-conserving.
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The conservativeness may be extended to the case, when the

solutions stay in D(Fpmin), where Frin is explicitly defined as
Finf = lim (Af, + Bf,)
n—oo

where D(Fpin) 2 fn — f € D(Fmin), whenever the limits exist.
Then it is easy to see that (29) holds for f(t) € D(Fmin)

[e.e]

/A + Bf(t)xdx = 0. (30)
0

But does f(t) € D(Fmin)?
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F, Fin, Fmin, Fmax and pathologies of the model.
The generator F always satisfies Fin C F C Fpax- The place of F
on this scale determines the well-posedness of the problem (28).

All following situations are possible
Q Fmin = F = Fmax,
Q Fmin & F = Finin = Fimax,
O Fmin =F & Fmax,
Q Frin & F = Finin & Finax,

omgFgFmax-
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Each of these cases has its own specific interpretation in the model.
If F & Fmax, we don't have uniqueness: there are differentiable
Xi-valued solutions to emanating from zero and therefore they are

not described by the semigroup:
‘there is more to life, than meets the semigroup’.

If Fnin & F, then despite the fact that the equation is formally
conservative, the solutions are not: the modelled quantity leaks out
from the system and the mechanism of this leakage is not present

in the model.
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Typical dynamics in L;(R;, xdx)
Let a(x) be such that both limits lim a(x) (possibly infinite)

x—00,0

exist and let b(x,y) = (v + 2)x”/y**1. Then,

1

F = Fmax if m ¢ Ll([NvoO))7 (31)
FoFoo if X}X) ¢ L1([0, ). (32)

for some N, 0 € (0, 00).
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Fragmentation in higher moment spaces.

Assume that
y
ais bounded at 0 & /b(x,y)dy = no(y) < bo(1 —i—y’), (33)
0
where | € [0, 00[ and by > 1. Recall the notation
Xo,m = L1(R4, (1 4+ x™)dx). (34)

We note that, due to the continuous injection Xg ,m < X1, m > 1,

any solution in Xp m, is also a solution in the basic space Xj.
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Further, define
y

nm(y) = /b(x,y)xmdx
0
forany m>0and y € R, and

No(y) := no(y) —1 >0,

Nm(y) :=y™ — nm(y) > 0,

with N; = 0.
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Let a, b satisfy (33) and for some mg > 1

lim inf Nemo () > 0. (35)
y—o0  y'mo

Then
Q (35) holds for all m > 1;

Q F := A+ B is the generator of a positive analytic semigroup

(GF(t))e>0, on Xo,m for any m > max{1, I}.
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Example 8

One of the forms of b(x,y) most often used in applications is

1 X
b(x,y) =—h <> 36
(x,5) A (36)
which is referred to as the homogeneous fragmentation kernel. In

this case the distribution of the daughter particles does not depend

directly on their relative sizes but on their ratio. In this case

y 1
1
nm(y) = / ’ <X> xTdx =y / h(z)z"dz =: hmy™.
AN )
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Example 9

y 1
1
y=m(y) = y/h (i) xdx = y/h(z)zdz = hy
0 0

we have h; = 1 so that h,, < 1 for any m > 1 and
Nm(y) = y™(1 — hy). Hence, (35) holds.

Since

On the other hand, fragmentation processes in which daughter
particles tend to accumulate close both to 0 and to the parent’s

size may not satisfy (35).
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Full fragmentation-coagulation problems

Recall that we deal with the equation

o0

@fu;n::—4xvo«w+1/aooMx00ﬂy¢yw

X

~ ulx,) [ ke, )y
0

+ % / k(x —y,y)f(x —y,t)u(y, t)dy. (37)

0
Next, we denote by C the nonlinear part of (37) so that the initial
value problem for (37) can be written as
of = FfF+Cf,  u(0)= f. (38)



A brief on semilinear problems

Next we consider the semilinear abstract Cauchy problem

fr = Kf + g(f), (39a)

£(0) = f, (39b)

where K is the generator of (Gk(t))s>0 and g is a known function

in X. We approach the problem using the integral formulation

F(£) = Gu()F + / Gr(t — s)g(F(s))ds. (40)
0

For this to work, g must be a Lipschitz function on X - no

unbounded g is allowed.
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It is possible to relax the restrictions on g, when (G (t))¢>0 is an
analytic semigroup. If we take 0 < o < 1 and t — f(t)is

D((—K)®)-valued, then for f € D((—K)*) we can write

(—K)*f(t) = Gr(t)(—K)*f

t
+ [ (K6t = )e((~ k) (~K)*F(5))ds.
0
where the integral is defined if h(-) = g((—K)~*:) is bounded as a
function from D((—K)“) to X. In other words, we repeat the
Picard iteration process in X for v(t) = (—K)*f(t); that is,

t

v(t) = Gk(t)v + /(—K)O‘GK(t —s)h(v(s))ds,

0
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where v = (—K)“d. For this h should be Lipschitz continuous in
X; that is, it suffices that g be only Lipschitz continuous from
D((—K)®) to X. Due to the integrable singularity that appears

under the sign of the integral due to (26),
[t7%(=K) "Gk (t)]| < Ma,

we obtain a Volterra equation with a weakly singular kernel.
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Back to the fragmentation—coagulation equation
We assume that b satisfies (33), F = A+ B generates an analytic

semigroup, and the coagulation kernel k(x, y) satisfies
0 < k(x,y) < L((1+a(x))*(1 + a(y)), (41)

for some L > 0 and 0 < o« < 1. This will suffice to show local in
time solvability of (37), whereas to show that the solutions are

global in time we need to strengthen (57) to

0 < k(x,y) < L((1+a(x))" + (1 +a(y))")- (42)
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To formulate the main theorem we have to introduce a new class of
spaces which, as we shall see later, is related to intermediate spaces

which play the role of the domains of fractional powers of —F,
X = {f € Xoom: / ()] (w + a(x))*(1 + x™) dx < oo} ,
0

where w is a sufficiently large constant. We assume that all
assumptions that ensure analyticity of (Gg(t))r>0 are satisfied.

Then

Jacek Banasiak



Theorem 10

1. If k satisfies (57), then, for each f € X,S,QJ)F there is tmax(f) > 0
such that the initial-value problem (38) has a unique nonnegative

classical solution f in X\ that is,
fecC ([o, tmax(F)),x,S,“)) nct ((o, tmaX(F)),xn(?)) :

2. If k satisfies (42), then, for each f € X,Sfﬁ)r the corresponding

local nonnegative classical solution is global in time.
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Suppose we have a(x) = x/,j > 0, and k(x,y) = x® + y®. Then
we can write

k(x,y) = a(x)?" + a(y)*H

so that a = 3/j. The assumption for local solvability require
«a < 1; that is, 8 < j. The same condition is required for global
solvability. On the other hand, if k(x,y) = x%y#, then the

conditions of the local solvability remain the same, while from

2xByB < x28 4 2B

it follows that we require 8 < j/2.
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Relation to weak solutions
Weak solutions to (37) are constructed as weak limits of solutions

u, to the problem with the coefficients a and k modified as follows

a(x) for x<r k(x,y) for x+y<r
ar(x) = ke (x,y) =
0 for x>r, 0 for x+y>r.

Assume that the assumptions of Theorem 10 are satisfied and u is
the solution to (38). If (uy)r>o are approximate solutions defined
above, then

lim u, =u (43)

r—oo
in ([0, T], X' for any T < tmax(f).




Back to the fragmentation—coagulation equation with growth

Let us recall that we are dealing with the problem

Otf(x, t) = —0x[r(x)f(x, t)] + Ff(x,t) + Cf(x,t),
f(x,0) = f(x), (44)

where we assume

0 <a€ Ly ioc([0,00)); (45)

1/r € L1 joc(Ry) and 0 < r(x) < rg + rix < F(1+ x), (46)

for some nonnegative constants rp, r; and F.
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We distinguish two cases of behaviour of r(x) close to x = 0:

/rc(i)):):—i-oo or 0[:(1)):)<+oo. (47)

0+
In the latter, we need a boundary condition at x = 0 and hence we

define Tof := —(rf)x — af, in the first case on
D(To) = {f S X07m : (rf)x, qf c X07m}, (48)
and in the second case we use

D(To) :={f € Xo,m : (rf)x,qf € Xom, r(x)f(x) = 0as x — 0}.
(49)
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We consider the full linear part in the abstract form

fo = Tof + Bf, t >0; f(0) =", (50)

where B is the restriction to D(Tp) of

m/ ()b(x,y)F(¥)dy.

Then, under the same assumptions on b that ensured analyticity of

the fragmentation semigroup, we have

Then (K, D(To)) = (To + B, D(Ty)) generates a positive

Co-semigroup, (Gk(t))e>0, on Xo,m.

The proof is carried out by the Desch theorem, applicable since we

deal with positive operators in L; spaces.
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An application to spectral gap and AEG.
Theorem 14

Let the assumptions of the previous theorem be satisfied, and let r
be continuous, satisfy (46) and 1/r be integrable close to 0.
Further, let the sublevel sets of a be thin at infinity in the sense

that for any ¢ > 0

+oo 1
/1 Lix>0: a(x)<c} A )dy < +00 (51)

(e.g., let limy_ oo a(x) = 400 ). Then (Gk(t)),»q has AEG, that

is,
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Theorem 14
there is € > 0 such that

He_’\tGK(t)f ~(e*- f)eH — O(e™®Y), (52)

where X is the isolated algebraically simple dominant eigenvalue of

K, and e and e* are strictly positive eigenvectors of, respectively,

the generator and its dual.
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Application to problems with coagulation
For pure fragmentation and coagulation problems (with r = 0), the
linear part generates an analytic semigroup (Gg(t))¢>0 which

allows to deal with the integral equation
X t
f(t) = Ge(t)f +/ Gr(t —s)Cf(s)ds, t € Ry. (53)
0

even when the kernel k of C is unbounded (but with growth
controlled by a).

With r # 0, however, (Gk(t))+>0 is not analytic.
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Moment regularization. We have the following result.

Theorem 15 (E. Bernard & P. Gabriel, 2020)

In addition to the conditions required for Theorem 13 to hold,

assume that positive constants ag ,~o and xg exist such that
a(x) > apx™,  for all x > xg. (54)

Then, for any n, p and m satisfying max{1,/} < n < p < m, there

are constants C > 0 and 6 > 0 such that

om < Cett 7o |[fllop, forall f € Xop.  (55)

16k (t)f
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Full problem (44)

Here, the coagulation kernel is required to satisfy
k(x,y) < ko(L + x*)(1 +y%), (56)

for some 0 < a < 7.
Assume that the generation assumptions of this section hold, k

satisfy (56) and, in addition, m > « 4+ max{1, /}.
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Theorem 16

Then, for each f € Xo .+, the problem (44) has a unique
nonnegative mild solution f € C([0, tmax), Xo,m) defined on its
maximal interval of existence [0, tmax(f)). If tmax(f) < co, then

o

| (t)|lo,m is unbounded as t — tmax(f)~.
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In the next theorem we address the issue of differentiability of the
mild solution and it being a classical solution. The result is similar
to that for analytic semigroups in that the mild solution in a
smaller space (here Xy m) is a classical solution in a bigger space

(here Xo,p). Denote by Dy(K) the domain of K in Xg .

Assume that f € Xo,m N Dp(K), where p = m — a. Then the mild

solution f constructed in Theorem 16, defined on its maximal
interval of existence [0, tmax), satisfies

f € C([0, tmax), Xo,m) N CH((0, tmax), Xo,m) N C((0, tmax), Dp(K))

and is a classical solution to (44) in Xop.
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Global solvability. For this, we assume
k(x,y) < ko(1 +x* +y), (57)

0 <a< .

Theorem 18
If for x > 0 either

a) there are constants my and my such that
(no(x) — 1)a(x) < mo + m1x,

or

b) r(x) < Fx,

then the solutions of Theorem 16 are global in time.
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