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Origins of HIV
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Monkey models:
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The “Classical” Model of AIDS Pathogenesis

Anti-HIV CTL,
Neutralizing Abs,
ART

Progressive exhaustion.... AIDS



In support of the classical model:

HIV infects and kills CD4+ T cells.

CD4+ T cells decline progressively during infection
and the level of CD4+ T cells predicts the risk of

developing AIDS.

Suppression of HIV replication by antiretroviral
therapy (ART) is followed by increase of CD4+ T cells.



AIDS is more than an HIV-mediated loss of
CD4+ T cells;

 Similar rate of cell death for CD4+ and CD8+ T cells

* Most of the CD4+ T cells that die during chronic HIV
infection are NOT directly infected by the virus

« Chronic, generalized immune activation results in

functional defects and increased apoptotic cell death
of uninfected T cells (both CD4+ and CD8+)



Virus replication
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How HIV and SIV infection cause AIDS:
Lessons from natural SIV infections

Chronic immune activation ﬂ Virus replication in central and
& mucosal immune dysfunction h stem-cell memory CD4+ T cells
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MTCT in natural SIV hosts

MTCT is rare in all studied species of natural SIV hosts
(Pandrea, J Virol 2008; Chahroudi, J Virol 2011).

When infected, either naturally or experimentally, newborns
of SMs and AGMs show low or undetectable viremia
(Chahroudi, J Virol 2011; Brenchley, Blood 2012).

Virus replication does not appear to be controlled by immune
mechanisms, but rather by paucity of CD4+CCR5+ target cells
(Chahroudi, PLoS Pathogens, 2014).

Evolutionary pressure to protect newborns from SIV infection
might have resulted in immunological adaptations that
protect adults from pathogenesis (Chahroudi, Science 2013).



Immune responses to HIV: a fine balancing act

Activated CD4+ T cells
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The key for an immunization strategy that successfully
controls HIV transmission and/or early replication is to fully
exploit the antiviral role of CD4+ T cells without the side
effect of creating additional target cells for the virus.




Strategies to cure HIV/AIDS:

 Full suppression of virus replication

* |ldentification of persistent reservoirs
-establishment
-regulation/ractivation
-persistence

« Elimination of reservoirs

Modified from Dr. Steve Deeks



Mechanisms of HIV Persistence under ART

Fate of latently infected cells

Latently infected resting
memory CD4* T cell
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CD8+ T lymphocytes mediate viral
control in HIV/SIV infection

Strong association between control of viremia and specific
MHC class | alleles in both humans and macaques.

Appearance of HIV/SIV-specific CTL responses is temporally
coordinated with the postpeak decline in viral replication

Escape mutations in CTL-targeted epitopes develop early
during infection.

LTNP/EC have more polyfunctional HIV-specific CD8+ T-cells
compared to progressors.

Antibody-mediated CD8+ lymphocytes depletion in SIV-infected
macaques results in increased viremia and rapid disease
progression.




CD8 depletion is followed by dramatic increase
of viremia in “controller” SIV-infected RMs

SIV copies/ml plasma
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KEY QUESTIONS:

What is the role of CD8+ lymphocytes
in controlling viremia on ART?

What is the role of CD8+ lymphocytes
In the establishment and maintenance
of the persistent reservoir of latently
infected cells under ART?



OPEN 8 ACCESS Freely available online

PLOS

1,24

CD8+ Lymphocytes Control Viral Replication in
SIVmac239-Infected Rhesus Macaques without
Decreasing the Lifespan of Productively Infected Cells
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No difference in lifespan of productively infected cells in the presence or
absence of CD8+ lymphocytes in both early or late chronic infection.

Similar result by Wong, Dandekar et al., PLoS Pathogens 2010.

We concluded that non-cytolytic mechanisms may contribute to CD8+
lymphocyte-mediated suppression of virus replication.



CD8 depletion is followed by increase in VL
under highly suppressive ART
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CD8+ lymphocytes are required to maintain undetectable viremia in
ART-treated SlIV-infected macaques (Cartwright et al., Immunity, 2016)



Is the virus production observed after
CD8+ lymphocyte depletion in ART-treated
SlV-infected macaques just due to

increased levels of CD4+ T cell activation?



CD4+ T cell depletion is followed by a significant
increase of proliferating, Ki67+ CD4+ T cells
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... but is NOT associated with increase in viremia
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Kumar et al., J Virol, 2018



Study Design
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N-803 does not induce virus reactivation in ART-
treated SlIV-infected macaques
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CD8 depletion is still associated with increased
virus production even after 12 months of ART
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N-803 induce strong and persistent virus
reactivation in ART-treated CD8-depleted macaques

Group 3: CD8 Depletion + N-803
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N-803 induce strong and persistent virus
reactivation in ART-treated CD8-depleted macaques
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N-803 + CD8 depletion induces robust virus reactivation
in HIV-infected ART-treated BLT humanized mice
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Co-culture of latently infected CD4+ T cells with
autologous unprimed CD8+ T cells results in decreased
expression of HIV Gag after LRA treatment.
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Unprimed CD8+ T cells suppress HIV
replication in a dose-dependent fashion

CD8+/CD4+ co-culture assay:

v’ Positive control wells with infected
CDA4* cells alone

v’ Co-culture wells with Infected CD4+ plus
CD8+ at 1:1 and 5:1 effector-to-target cell
(E:T) ratios

v’ Negative control wells (MOCK) with
uninfected CD4* cells and/or CD8+ cells

v' For cell density control, the total number of
cells per well remained constant
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In vitro HIV infection of memory CD4+ T cells (mCD4)
shows the impact of CD8+ T cell suppression activity
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Transcriptomics analyses showed reduced HIV
RNA expression in sorted CD4+ T cells from in
vitro CD8+ T cell co-cultures
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Metabolism, effector function and apoptosis
pathways are downregulated in CD4+ T cells
from CD4:CD8 co-cultures
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Quiescence, memory maintenance
pathways are upregulated in CD4+ T cells
from CD4:CD8 co-cultures
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Whnt signaling plays an important role in the
regulation of lymphocyte differentiation,
survival and stemness
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Conclusions

* In vitro data using peripheral blood from HIV-naive
individuals reveals a CD8- specific suppression of HIV
expression in CD4+ T cells

* This reduction of HIV expression is not derived from a

decrease in the frequency of infected cells, but
reduced virus transcription

« CD8+ T cell modulation of the Wnt signaling axis (that
includes NFKB/IL-10/Bcl-2/Dead-box) may play a key
role in modulating stemness and pro-survival
pathways that contribute to HIV persistence

 Ongoing experiments are centered on identifying and
manipulating the Wnt/NFKB/IL-10/Bcl-2/Dead-box

pathways



Antiviral activities of CD8+ T cells

CTL activity HIV silencing
Suppression of virus YES YES
replication in absence of ART
MHC-I restriction YES NO
Present in HIV-neg subjects NO YES
Requires cell-cell contact YES Partly
Mediating factors Perforin, granzyme B Unknown
Subject to escape and exhaustion YES NO
Impact on virus reservoir clearance stabilization
under ART
Impact on CD4 activation none down-modulation
Effect on latency reversal none inhibition




What about SARS-CoV-2 and COVID-19?
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Immune responses & Immunopathology

Exposure to
SARS-CoV-2
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Garcia et al., Front Immunol 2020



Antiviral and/or
Immuno-modulatory Interventions

1. EARLY STAGES INTERVENTIONS: antivirals
(remdesivir, molnupiravir, paxlovi); monoclonal
antibodies.

2. LATE STAGES INTERVENTIONS: Immuno-
modulatory interventions, blockade of IL-6,
JAK/STAT, IL-1 etc.

3. The “therapeutic” role of vaccines — vaccinated
individuals are better at early control of viremia



Immuno-modulatory interventions

Study Design and Analyses
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Immuno-modulatory Interventions

Hsoang T, ... Silvestri G, Bosinger S, Paiardini M.
Baricitinib treatment resolves lower airway inflammation and
neutrophil recruitment in SARS-CoV-2-infected rhesus macaques.

Volume 183
Number 4
November 12, 2020




Reduced SARS-CoV-2 T cell responses in MIS-C
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Auto-reactive IgM in severe COVID-19 patients

Cell Reports

Medicine

Broad auto-reactive IgM responses are common in
critically ill patients, including those with COVID-19

Graphical abstract
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In brief

Critical illness can be associated with
immune dysregulation; yet, mediators
contributing to disease severity in COVID-
19 are unclear. Wong et al. show a high
percentage of critically ill patients
possess auto-reactive IgM, which, in
SARS-CoV-2 infection, are capable of
binding diverse targets across key organs
and inflicting complement-dependent
cytotoxicity.

Highlights
e More than 90% of critically ill COVID-19 patients have auto-
reactive IgM antibodies

e Auto-reactive IgM binds diverse targets across multiple
organ types

e IgM and complement component C4d are abundant in
COVID-19 non-survivor lung tissue

e COVID-19-associated auto-IgM fixes complement to induce
cell death in vitro

= Wong et al., 2021, Cell Reports Medicine 2, 100321
S June 15, 2021 © 2021 The Author(s).
https://doi.org/10.1016/j.xcrm.2021.100321

Wong et al., Cell Reports Med 2021



Severe COVID-19 as an endotheliopathy

Normal condition

ACE / ACE2 imbalance in the
pathogenesis of the COVID-19-
associated cytokine storm
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Severe COVID-19 as an endotheliopathy

Adult Cohort
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Lipidomics/metabolomics analysis in plasma from severe COVID
patients reveals changes of the following pathways: arginine and
prolin metabolism; arginine biosynthesis; glycin, serine, and
threonine metabolism; biosynthesis of unsaturated fatty acids,
linoleic acid and glycerophospholipids; glutathione metabolism.



Severe COVID-19 as an endotheliopathy: lipidomics
and metabolomics analysis in MIS-C
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Multiplatform analyses reveal
coagulopathy and endotheliopathy as key drivers of

systemic pathogenesis in severe COVID-19
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Druzek S, Iffrig E et al., in revision



Key unknowns about COVID-19 pathogenesis

1. What is the role of genetic factors in influencing
transmission and/or pathogenesis?

2. What is the role of pre-existing cross-reactive immunity
against other human Coronaviruses?

3. Why does COVID-19 have a disproportionate impact on the
elderly and people with specific pre-existing conditions?

4. How can severe COVID-19 be treated from the point of view
of patho-physiology?

Viral pathogenesis is a COMPLICATED business!



Immune responses to HIV: a fine balancing act
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The key for an immunization strategy that successfully
controls HIV transmission and/or early replication is to fully
exploit the antiviral role of CD4+ T cells without the side
effect of creating additional target cells for the virus.




Immune responses & Immunopathology

Exposure to
SARS-CoV-2
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Garcia et al., Front Immunol 2020



Immune responses & Immunopathology

Other examples of viruses that are less pathogenic in natural hosts
“endemic” vs. non-natural “recent” hosts include Hantaviruses, Rabies,
Nepah viruses, Ebola, Marburg, and many others.

Seal et al., Evolution of pathogen tolerance and emerging infections: A missing
experimental paradigm. Elife 2021

“Researchers worldwide are repeatedly warning us against future zoonotic diseases
resulting from humankind's insurgence into natural ecosystems. The same zoonotic
pathogens that cause severe infections in a human host frequently fail to produce any
disease outcome in their natural hosts. What precise features of the immune system enable
natural reservoirs to carry these pathogens so efficiently? To understand these effects, we
highlight the importance of tracing the evolutionary basis of pathogen tolerance in reservoir
hosts, while drawing implications from their diverse physiological and life-history traits, and
ecological contexts of host-pathogen interactions. Long-term co-evolution might allow
reservoir hosts to modulate immunity and evolve tolerance to zoonotic pathogens, increasing
their circulation and infectious period. Such processes can also create a genetically diverse
pathogen pool by allowing more mutations and genetic exchanges between circulating
strains, thereby harboring rare alive-on-arrival variants with extended infectivity to new hosts
(i.e., spillover). Finally, we end by underscoring the indispensability of a large
multidisciplinary empirical framework to explore the proposed link between evolved
tolerance, pathogen prevalence, and spillover in the wild.”
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