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fractal porous medium equation — fpme

∂tu −∇ · (u∇α−1(|u|m−1)) = 0

α ∈ (0, 2], ∇βu = F−1(iξ|ξ|β−1Fu), x ∈ Rd , t > 0, m > 1

∇βU(x) = Cd ,β

∫
(U(x + z)− U(x))

z

|z |d+β+1
dz

Cd ,β > 0, U – smooth

general porous medium equation

∂tu = ∇ · (u∇p)

m = 2, p = I2su, I2s – the Riesz potential, 2s = 2− α
L. Caffarelli, J. L. Vázquez (2010)

p = I2−α(f (u))



fractal porous medium equation — fpme

∂tu −∇ · (u∇α−1(|u|m−1)) = 0

α ∈ (0, 2], ∇βu = F−1(iξ|ξ|β−1Fu), x ∈ Rd , t > 0, m > 1

∇βU(x) = Cd ,β

∫
(U(x + z)− U(x))

z

|z |d+β+1
dz

Cd ,β > 0, U – smooth

general porous medium equation

∂tu = ∇ · (u∇p)

m = 2, p = I2su, I2s – the Riesz potential, 2s = 2− α
L. Caffarelli, J. L. Vázquez (2010)

p = I2−α(f (u))



fractal porous medium equation — fpme

∂tu −∇ · (u∇α−1(|u|m−1)) = 0

α ∈ (0, 2], ∇βu = F−1(iξ|ξ|β−1Fu), x ∈ Rd , t > 0, m > 1

∇βU(x) = Cd ,β

∫
(U(x + z)− U(x))

z

|z |d+β+1
dz

Cd ,β > 0, U – smooth

general porous medium equation

∂tu = ∇ · (u∇p)

m = 2, p = I2su, I2s – the Riesz potential, 2s = 2− α
L. Caffarelli, J. L. Vázquez (2010)

p = I2−α(f (u))



fractal porous medium equation — fpme

∂tu −∇ · (u∇α−1(|u|m−1)) = 0

α ∈ (0, 2], ∇βu = F−1(iξ|ξ|β−1Fu), x ∈ Rd , t > 0, m > 1

∇βU(x) = Cd ,β

∫
(U(x + z)− U(x))

z

|z |d+β+1
dz

Cd ,β > 0, U – smooth

general porous medium equation

∂tu = ∇ · (u∇p)

m = 2, p = I2su, I2s – the Riesz potential, 2s = 2− α
L. Caffarelli, J. L. Vázquez (2010)

p = I2−α(f (u))



Particular cases and related equations

the porous medium equation: u ≥ 0, α = 2, m > 1

∂tu =
1

m − 1
∇ · (u∇um−1) = ∆(um), t > 0, x ∈ Rd

m = 2 – the Boussinesq equation

the (inviscid) aggregation equation (or granular media equation)

∂tu = ∇ · (u(∇K ∗ u)).
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a fractal version of the classical thin film equation: α = m = 3

∂tu = ∇ · (u3∇(−∆)1/2u)

C. Imbert, A. Mellet (2009)

the evolution of the dislocation density in crystals
(u = wx , x ∈ R)
α = 1, A. K. Head, N. Louat (1955)

ut = ∇ ·
(
|u|∇α−1u

)
, α ∈ (0, 2]

P. Biler, G. Karch, R. Monneau (Comm. Math. Phys. 294,
145–168 (2010))
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Equation for the primitive

d = 1, wx = u, α ∈ (0, 2),

wt = −|wx |
(
− ∂2

∂x2

)α/2

w R× (0,+∞)

w(x , 0) = w0(x) x ∈ R

Lévy–Khintchine formula

(
− ∂2

∂x2

)α/2

w(x) = C (α)

∫
R

(
w(x + z)− w(x)− zw ′(x)1{|z|≤1}

) dz

|z |1+α
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invariant scaling

wλ(x , t) = w(λx , λα+1t)

wα(x , t) = Ψα(y) with y = x
t1/(α+1)

−(α+1)−1 y Ψ′α(y) = −(
(
−∂2/∂x2

)α/2
Ψα(y)) Ψ′α(y) for y ∈ R

−(α + 1)−1 y = −(
(
−∂2/∂x2

)α/2
Ψα(y)) for y ∈ R
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existence of self-similar solutions

For α ∈ (0, 2) there exists a nondecreasing function Ψα ∈ C 1+α/2,
analytic in (−yα, yα):

Ψα =

{
0 on (−∞,−yα),
1 on (yα,+∞),

w0(x) = H(x) =

{
0 if x < 0,
1 if x > 0.



Stability of self-similar solutions

α ∈ (0, 2), w0 ∈ BUC (R):

lim
x→−∞

w0(x) = 0 lim
x→+∞

w0(x) = 1

viscosity solutions w = w(x , t)

wλ = wλ(x , t) ≡ w(λx , λα+1t)

K ⊂ (R× [0,+∞)) \ {(0, 0)} – compact

wλ(x , t)→ Ψα

( x

t1/(α+1)

)
in L∞(K ) for λ→ +∞

March 2023, F. del Teso, E. Jakobsen: Finite differences
approximations



An existence result for the Cauchy problem - fpme

∂tu −∇ · (u∇α−1(|u|m−1)) = 0.

L. Caffarelli, J. L. Vázquez (2010)

m = 2, u0 ∈ L1(Rd) ∩ L∞(Rd):

0 ≤ u0(x) ≤ Ae−a|x | for some A, a > 0.

Then there exists a weak solution u satisfying∫
u(t, x) dx =

∫
u0(x) dx .

u : (0,T )× Rd → R is a weak solution in QT = (0,T )× Rd ,
u(0, x) = u0(x) if u ∈ L1(QT ), I2s(u) ∈ L1(0,T ;W 1,1

loc (Rd)),
u∇I2s(u) ∈ L1(QT )∫∫

u(ϕt −∇I2s(u) · ∇ϕ)dxdt +

∫
u0(x)ϕ(x) dx = 0

for all continuous functions ϕ : QT → R, ∇xϕ continuous, ϕ has
compact support in the space variable x , and vanishes near t = T .
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approximations:
bounded domain, nondegenerate equation, regularized kernel

Alternative approach: Construction of weak solutions —
approximations via parabolic regularization

∂tu −∇ · (u∇α−1(|u|m−1)) = ε∆u

Duhamel formula in W
min{α−1,0}
p , p � 1,

u(t) = eδt∆u0 +
∫ t

0 ∇e
δ(t−s)∆ · |u|∇α−1G (u)ds

in C([0,T ], L1(Rd) ∩ L∞(Rd))

Intermediate asymptotics, entropy estimates
mass conservation
positivity preserving property

the speed of propagation of solutions is proved to be finite
using comparison with suitable supersolutions (C. Imbert)

comparison principle ?
regularity of solutions (C. Imbert, R. Tarhini, F. Vigneron)
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Decay of the Lp norms – hypercontractivity

m > 1, 1 ≤ p <∞,
‖u(t)‖p ≤ Ct−β

C = C (d , α,m, p)‖u0‖

m−1
p +α

d
m−1+α

d
1 , β = p−1

p(m−1+α
d )

These estimates are sharp.
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Kato and Stroock–Varopoulos inequalities

∫
(−∆)

α
2 w sgnw dx ≥ 0,∫

(−∆)
α
2 w w+ dx ≥ 0,

∫
(−∆)

α
2 w w− dx ≤ 0

w+ = max{0,w}, w− = max{0,−w}

∫
(−∆)

α
2 w |w |p−2w dx ≥ 4(p − 1)

p2

∫ ∣∣∣∇α
2 |w |

p
2

∣∣∣2 dx

w ∈ Lp(Rd): (−∆)
α
2 w ∈ Lp(Rd)
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Proof of hypercontractivity estimates
up−1, integrate by parts

1

p

d

dt

∫
|u|pdx = −(p − 1)

∫
uup−2∇α−1(um−1) · ∇u dx

= −p − 1

p

∫
up(−∆)

α
2 (um−1)dx

≤ −4(p − 1)(m − 1)

(p + m − 1)2

∥∥∥∇α
2

(
u

p+m−1
2

)∥∥∥2

2

Nash inequality

‖v‖2(1+α
d

)

2 ≤ CN‖∇
α
2 v‖2

2‖v‖
2α
d

1

v with v ∈ L1(Rd), ∇
α
2 v ∈ L2(Rd) with a constant CN = C (d , α)

the Gagliardo–Nirenberg type inequality

‖u‖ap ≤ CN

∥∥∥∇α
2 |u|

r
2

∥∥∥2

2
‖u‖b1

a = p
p−1

d(r−1)+α
d , b = pα+d(r−p)

d(p−1)
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Interpolating

‖u‖p ≤ ‖u‖γr ‖u‖
1−γ
1 , ‖u‖ r

2
≤ ‖u‖δp‖u‖1−δ

1 ,

γ = p−1
r−1

r
p , δ = r−2

p−1
p
r

d

dt

∫
|u|p dx ≤ −K‖u‖ap‖u‖−b1

some K > 0
d

dt
f (t) ≤ −KM−bf (t)

a
p

f (t) = ‖u(t)‖pp, M = ‖u0‖1, a/p > 1,

K =
1

CN

4p(p − 1)(m − 1)

(p + m − 1)2

f (t) ≤
(
K
(

a
p − 1

)
M−b t

)− 1
a
p−1

and one more iteration scheme
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Self-similar solutions

u(t, x) =
1

(1 + t)dλ
U

(
x

(1 + t)λ

)
λ = 1

(m−1)d+α , y = x
(1+t)λ

−λ∇ · (yU) = ∇ · (U∇α−1(Um−1))

U : Rd → R, m > 1

Φm,α(y) = k(1− |y |2)
α

2(m−1)

+

then u defined with U = Φm,α is a weak solution in (a,T )× Rd ,
0 < a < T , α

2(m−1) -Hölder at the interface.

Mass of u(t, .) is conserved, and by suitable scaling of Φm,α, u
its mass can be prescribed as any M ∈ [0,∞).
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λ = 1

(m−1)d+α , y = x
(1+t)λ

−λ∇ · (yU) = ∇ · (U∇α−1(Um−1))

U : Rd → R, m > 1

Φm,α(y) = k(1− |y |2)
α

2(m−1)
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0 < a < T , α

2(m−1) -Hölder at the interface.
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its mass can be prescribed as any M ∈ [0,∞).
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α = 2: classical Kompaneets–Zeldovich–Barenblatt–Pattle
solutions

Self-similar solutions enjoy the optimal decay rates.
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−λyΦ = Φ∇α−1Φm−1

Φ vanishing outside B1: Φ ∼ (1− |y |2)
α

2(m−1)

+

−λy = ∇α−1Φm−1 in B1

the homogeneous Dirichlet condition should be understood under
the form Φ ≡ 0 outside B1, and not only Φ = 0 on ∂B1.
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more generally:
the Weber–Schafheitlin integrals for 0 < b ≤ a

∫ +∞

0
t−λJµ(at)Jν(bt) dt =

bν2−λaλ−ν−1Γ(ν+µ−λ+1
2 )

Γ(−ν+µ+λ+1
2 )Γ(1 + ν)

× 2F1

(
ν + µ− λ+ 1

2
,
ν − µ− λ+ 1

2
; ν + 1;

b2

a2

)
.

for the hypergeometric function 2F1(a, b; c ; z) =
∑∞

n=0
(a)n(b)n
(c)nn! zn

complex numbers a, b, c and |z | < 1, where

(a)n ≡ Γ(a+n)
Γ(a) = a(a + 1) . . . (a + n − 1) (and (a)0 = 1)



Boundary obstacle problem for the fractional
Laplacian

P ≥ Φ, V = (−∆)
α
2 P ≥ 0,

either P = Φ or V = 0,

with α ∈ (0, 2) and Φ(y) = C − a|y |2

P(y) = Iα (Φα,2,R) (y),
Iα is the Riesz potential,

Φα,2(y) = kα,d(R2 − |y |2)
α
2
+
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Classical boundary obstacle problems:

given a smooth Ω ⊂ Rd , d ≥ 3, seek a function u that:
– in the interior of Ω, u satisfies a nice, elliptic equation, say
∆u = f ,
– along the boundary of Ω , instead of giving Dirichlet or Neumann
conditions we prescribe “complementary conditions”:
as long as u is bigger than some prescribed function φ, there is no
flux across ∂Ω: ∂u/∂ν = 0 . But as soon as u becomes equal to
φ, boundary flux, ∂u/∂ν, is turned on (∂u/∂ν > 0) to keep u
above φ.

This type of problem arises in elasticity (the Signorini problem)
when an elastic body is at rest, partially lying on a surface,
– in optimal control of temperature across a surface,
– in the modelling of semipermeable membranes where some saline
concentration can flow through the membrane only in one
direction,
– and in financial math when the random variation of underlying
asset changes in a discontinuous fashion (a Lévy process).
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Another point of view:

u ≥ φ, (−∆)α/2u = 0 for u > φ, (−∆)α/2u ≥ 0 for x ∈ Rd

– a variational problem in Ḣα/2(Rd),
– the least supersolution of (−∆)α/2v ≥ 0 among v ≥ φ,
– a Hamilton-Jacobi equation min{(−∆)α/2u, u − φ} = 0.

optimal regularity of the solution
and

regularity of the free boundary

Fractional Laplacian as “Dirichlet to Neumann” operator
(as for α = 1):
u(x , 0) ≥ φ(x) for x ∈ Rd ,
∇ · (y1−α∇u(x , y)) = 0 for y > 0
limy↘0 y

1−α∂yu(x , y) = 0 for u(x , 0) > φ(x),
limy↘0 y

1−α∂yu(x , y) ≤ 0 for x ∈ Rd .
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