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general porous medium equation
Oru =V - (uVp)

m =2, p= hsu, s — the Riesz potential, 2s =2 — «
L. Caffarelli, J. L. Vazquez (2010)

p = h-a(f(u))
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Particular cases and related equations

the porous medium equation: vt >0, a =2, m>1

1
Oeu = 71V . (uVum_l) =AWm), t>0, x¢€ RrRY
m

m = 2 — the Boussinesq equation

the (inviscid) aggregation equation (or granular media equation)

Oru =V - (u(VK * u)).
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a fractal version of the classical thin film equation: « = m =3

deu =V - (u¥V(=A)20)
C. Imbert, A. Mellet (2009)
the evolution of the dislocation density in crystals
(u=wy, x €R)
a=1, A. K. Head, N. Louat (1955)
up =V (JuV*u), a€(0,2]

P. Biler, G. Karch, R. Monneau (Comm. Math. Phys. 294,
145-168 (2010))
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Equation for the primitive

d=1 wy=u, ac(0,2),
92 a/2

w(x,0) =wp(x) x€eR

Lévy—Khintchine formula

2\ /2 ]
<_aaxz> v = C(a)/]R (w(x +2) = w(x) = 2w/ (x) 1z <1y) |zydl+a
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existence of self-similar solutions

For a € (0,2) there exists a nondecreasing function W, € C1t%/2,
analytic in (—Ya, Ya):

0 on (_007 _ya)7
v, =
1 on (Yo, +00),

if x<0,
if x>0.



Stability of self-similar solutions

€ (0,2), wp € BUC(R):

x—||>rl]oo WO(X) =0 XETOO WO(X) =1

viscosity solutions w = w(x, t)
wr = wh(x, t) = w(x, \*H1t)

K C (R x [0,400)) \ {(0,0)} — compact

w(x, t)—>\|1a< e +1)) in LK) for \— +o0

March 2023, F. del Teso, E. Jakobsen: Finite differences
approximations



An existence result for the Cauchy problem - fpme
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An existence result for the Cauchy problem - fpme

Opu — V- (uV(Jul™ 1)) = 0.
L. Caffarelli, J. L. Vdzquez (2010)
m =2, up € LY(R?) N L>(RY):
0 < up(x) < Ae™* for some A,a > 0.

Then there exists a weak solution u satisfying

Ju(t,x)dx = [ up(x)dx.

u: (0, T) x RY = R is a weak solution in Q7 = (0, T) x RY,
u(0,x) = uo(x) if u € LY(Q7), hs(u) € L1(0, T; WLL(RY)),
UVI25(U) € Ll(QT)

/ / u(ipe — Vhs(u) - Vip)dxdt + / uo(x)p(x) dx = 0

for all continuous functions ¢ : QT — R, V4 continuous, ¢ has
compact support in the space variable x, and vanishes near t.= T.
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in C([0, T], L*(R¥) N L>®(RY))

Intermediate asymptotics, entropy estimates
mass conservation
positivity preserving property

the speed of propagation of solutions is proved to be finite
using comparison with suitable supersolutions (C. Imbert)

comparison principle ?
regularity of solutions (C. Imbert, R. Tarhini, F. Vigneron)
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Decay of the L norms — hypercontractivity

m>11<p< oo,
lu(®)]p < Ct™°

i I
1 5 - P(

C = C(d,or,m, p)lluoll;

These estimates are sharp.
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Kato and Stroock—Varopoulos inequalities

/(—A)gwsgnwdx >0,

/(—A)gww+dx20, /(—A)gww_dx§0

wt = max{0,w}, w~ = max{0, —w}

2
dx

(—A)%W|W|p_2WdX2 M V%|W|§
p2

w e LP(RY): (=A)zZw e LP(RY)




Proof of hypercontractivity estimates
uP~1 integrate by parts

li/]ul”dx = —(p—1)/uup_2va_1(um_l)~Vudx
- ”;1 uP(—A)% (4™ 1) dx

e Gy
p+m—1

IN

‘2

2
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Proof of hypercontractivity estimates
uP~1 integrate by parts

1d
dt/]u]pdx = —(p—l)/uup_zva_l(um_1)~Vudx
-1 a
- J’T uP(—A)% (4™ 1) dx
e 9 (=)
< =
- (p+m— 1)2 ’ ( ) 2
Nash inequality

2(1+2 a 2o
I < cullvEvIBIvIy

v with v € LY(R9), V2 v € L2(RY) with a constant Cy = C(d, )
the Gagliardo—Nirenberg type inequality

|2 b
lullz < Cn ||V Jul | lall

d +a a—+d(r
a:% (r d) b_pd(p(l)p)




Interpolating

1- 5 -6
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Interpolating
1—
lullp < lJullFully™,

_ p-1
v = r—1

o

_ r=2
0= -1

TS
o
~ o

d

some K >0

lullg < lullRlull;™,

—b
G [ 1o dx < =Kilulzal;
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Interpolating

lullp < ulllfull;™, lulls < ulldlul;™,
2
_ p-1 _r=2
V="t 0= 517
d p a —b
= [ Il dx < =K Jullz]ul;
some K >0

d a
—f(t) < —KM~bf(t
T (t) < (t)e

F(t) = llu(t)llp, M = lluollr, a/p > 1,

1 4p(p—1)(m—1)
Cn (p+m-— ].)2

f(t) < (K (? _ 1) M_bt)—;l_l

K =

and one more iteration scheme
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Self-similar solutions

1 X
u(t; ) = eV <(1+ t)>\>

— 1 _ X
A= marar Y T @

—AV - (yU) = V- (UV L U™ 1y)

U:R SR m>1

[e3

¢m7a(y) = k(l - ’y|2)—2&-(m71)

then u defined with U = ®,, , is a weak solution in (a, T) x R¢,

O<ax<T, ﬁ—Hélder at the interface.

Mass of u(t,.) is conserved, and by suitable scaling of P, U
its mass can be prescribed as any M € [0, o).



Omaly) = (kaa(l - y|z)§)m1_1

_ dr(g)
od = a1+ ST (59)

a = 2: classical Kompaneets—Zeldovich—Barenblatt—Pattle
solutions



Omaly) = (kaa(l - y|z)§)m1_1

_ dr(%)
ka,d = (d+a)2oT (1+2)r(%2)

a = 2: classical Kompaneets—Zeldovich—Barenblatt—Pattle
solutions

Self-similar solutions enjoy the optimal decay rates.
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—Ayd = ovetemt
® vanishing outside By: ® ~ (1 — [y[2)3"
Ay =V¥leml in B

the homogeneous Dirichlet condition should be understood under
the form ® = 0 outside Bz, and not only & =0 on 0B;.

Getoor
a 6 (07 2]1
Kaa(—A)2(1—|y) =-1 in B
()
Kood = 2or(irg )T (%)



more generally:
the Weber—Schafheitlin integrals for 0 < b < a

+oo YA A1 (vEr AL
/ t~*Ju(at)d,(bt) dt = —— 2 - 1( 2 )
0 M= +v)

A+l v—p—XA+1 b2
X oF1 vihp i ,V a + ;V—i—l;—2 )
2 2 a

for the hypergeometric function 2Fi(a, by c;z) = > ;2 %Zn

complex numbers a, b, c and |z| < 1, where
Ma+n
(a)n = (r(Jg)) =a(a+1)...(a+n—1) (and (a)o =1)
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Laplacian

P>d, V=(-A)2P >0,
either P=® or V =0,
with a € (0,2) and ®(y) = C — a|y|?

'D(y) = Iy (¢a,2,R) (y)'
I, is the Riesz potential,

Do2(y) = kad(R2 = |y?)2



Classical boundary obstacle problems:

given a smooth Q C R, d > 3, seek a function u that:

— in the interior of Q, u satisfies a nice, elliptic equation, say
Au=f,

— along the boundary of €2, instead of giving Dirichlet or Neumann
conditions we prescribe “complementary conditions’:

as long as u is bigger than some prescribed function ¢, there is no
flux across 0€2: Ou/Jv = 0 . But as soon as u becomes equal to
¢, boundary flux, du/dv, is turned on (Qu/dv > 0) to keep u
above ¢.
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— in the interior of Q, u satisfies a nice, elliptic equation, say
Au=f,

— along the boundary of €2, instead of giving Dirichlet or Neumann
conditions we prescribe “complementary conditions’:

as long as u is bigger than some prescribed function ¢, there is no
flux across 0€2: Ou/Jv = 0 . But as soon as u becomes equal to
¢, boundary flux, du/dv, is turned on (Qu/dv > 0) to keep u
above ¢.

This type of problem arises in elasticity (the Signorini problem)
when an elastic body is at rest, partially lying on a surface,

— in optimal control of temperature across a surface,

— in the modelling of semipermeable membranes where some saline
concentration can flow through the membrane only in one
direction,

— and in financial math when the random variation of underlying
asset changes in a discontinuous fashion (a Lévy process).



Another point of view:

u> ¢, (~A)2u=0for u> ¢, (—~A)*?u >0 for x € R?
— a variational problem in H*/2(R),
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— a Hamilton-Jacobi equation min{(—A)*/?u,u— ¢} = 0.
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Another point of view:

u> ¢, (~A)2u=0for u> ¢, (—~A)*?u >0 for x € R?
— a variational problem in H*/2(R),

— the least supersolution of (—A)*/2v >0 among v > ¢,

— a Hamilton-Jacobi equation min{(—A)*/?u,u— ¢} = 0.

optimal regularity of the solution
and
regularity of the free boundary

Fractional Laplacian as “Dirichlet to Neumann” operator
(as for a = 1):

u(x,0) > ¢(x) for x € RY,

V- (y1"*Vu(x,y)) =0 for y >0

limy~ 0 y* ™9y u(x, y) = 0 for u(x,0) > ¢(x),

limy~ 0 y1 70, u(x, y) < 0 for x € RY.
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