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Turing patterns

Reaction-Diffusion System

Altocatalysis

i K& ' low Diffusion
Degradation 17 Activator A 5
) <. 3
17 Inhibitor B

fast Diffusion

Turing (1952): Such systems can spontaneously give rise to patterns.
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Turing patterns in modeling of self-organization phenomena

In biology

4]

(from K. Painter’s web site) (from J. Murray Mathematical Biology)
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Turing Bifurcation: Set up

System of m diffusing and reacting chemicals

ou ~
where U = (Uyq,...,Um), A =bifurcation parameter.
Suppose Uy = const is a steady state for all \: F(Ug, A) = 0. Consider
o N
a—? = (A 4+ DV )u + O(u,u) 4+ Clu,u,u) + AMBu+h.ot (1)

Here A = g—g(UO, 0), w=1U--—U,s,.
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Suppose Uy is stable w.r.t. spatially homogeneous perturbations.
Theorem (Turing 1952) The system can (nevertheless) produce spatial
patterns.

Namely: ansatz u = exp(ut) []; cos(k; x;) @ gives (at A = 0)
pa = (A—ZkED) i
i

u=Re Max EV (A-Fk°D)

N
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Patterns: Stripes and Spots
e Patterns are of the form
ug + ¢ H cos(k; x;) + h.o.t.,
)

corresponding to wave number k2 = 3, k2.

e Symmetry of the domain leads to different patterns with same wave
number
Eg., k2 = 62
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Set up

Suppose we have a Turing bifurcation on the cube [0, 7]™ at A = O for
k2 =1,ie.

e A — D has a nontrivial kernel

e A — k2D has only negative eigenvalues for k2 # 1

Write for steady state bifurcating solution branch
ue(x) = ug + e s; cosx; + e2uq () + O(e3)
A =2\ 4 0(3)

Theorem (Ermentrout 1991) In 2D, spots or stripes can be stable for certain
parameter ranges, but not at the same time.
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Situation in 3D

n—‘
m Z
0
s
X

-
y cos z (3-sheet)
y COSx + COSvy (%-bar)

y COSx + COSy + COS z
(3-nodule)
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Define numbers a = a(A, Q,C), b = b(A, 9,C).
Theorem (Alber, G, Hentschel, Kazmierczak, Newman) Consider the bifur-
cating solution

ue(z) = ug + (51 COSx1 + - - - + 8 COS xR )e + e2uq + - -

1. Thereis aninteger p (1 < p < n) such that

s1]="---=|sp| #0,  spy1=:=sp =0
(after a permutation of the indices of x4, ..., xn, if necessary.)

2. The stability of u. is determined as follows:
(@) p=1: wucisstableiffb <a <O
(b) p =n: weisstableiffa < min{b, —(n — 1)b}
(c) 1 <p<n: wuelisalways unstable.
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EQUILIBRIUM CONCENTRATION SURFACES

IN 3-DIMENSIONAL TURING PATTERNS
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Brief Reminder: Minimal Surfaces in R3

Minimal Surfaces are critical points of the Area functional S — AreaS = g dS.
So they satisfy § [¢dS = 0.
The Euler Lagrange equations are:

H =0,

where H = J(x1 + x2) is the mean curvature.

k1 =1/r ko = 1/7
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Definition

Recall: Turing steady state pattern U = (U4, ..., Uy,) satisfies

0 = DV?U + F(U, \).

where UY = (U?,...,U9) = const is a steady state for all \.
Call level surfaces {x: U;(xz) = UZ-O} equilibrium concentration sur-
faces.

They are the interfaces between regions of high and low concentrations.

13
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Examples: Turing patterns close to the equilibrium

lamellae

cylinders

nodule — close to Schwarz’ P-surface
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Examples: Turing pattern far from equilibrium

Scherk’s surface

reported numerically by De Wit, Borckmans, Dewel (1997), Leppaanen et
al. (2004)

15
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Variational Principles for Equilibrium Concentration Surfaces |

In the following: Consider functions = that satisfy

0 = V2u(x) + ¢(u(x)),

where ©(z) is a function whose only zero is at z = 0: ¢(0) = O.

@ w

©'(0) >0 ©'(0) <0
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Variational Principles for EC Surfaces Il

What's the connection of @ to (Turing) patterns?

1) If the reaction kinetics F satisfy F(z - e) = ¢(z) - De, then U(z) =
u(x) - e is a stationary Turing pattern,

2) If U(x) = U + eu(z) - b + --- is an expansion of a Turing pattern
close to the Turing bifurcation, then @ is an eigenfunction of the Laplacian,
i.e. V2u = —k2u for some k2.

UPSHOT: The following variational principles apply exactly for certain classes
of reaction kinetics, and to first order for all Turing patterns close to the
Turing bifurcation.
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Variational Principles for EC Surfaces Il

Let Sg = {u(x) = O} be the EC surface of w.

Theorem (“Geometric var. prin. I”)  Consider the functional

gq: SI—>/SVE-N5d5,

where S is a perturbation of Sg. Then Sj is a {mammum } of G1 If

minimum
©'(0) >0
©'(0) <0 |

18
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Sketch (for ¢/(0) < 0)

>0 <= 0@ <0 < V7u>0

B

So ={u=0}

u<0 < 9@ >0 < V<0
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Proof (for ¢/(0) < 0)
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Proof (for ¢/(0) < 0)

>0 <= o) <0 < Vu>0

<0 < o >0 < Vu<0

1.0< [p, V?ud®z = [yp, Vu- NdS
— f8B+ﬂ25Vﬂ'NdS—f@B+mSOVE'NdS

I1.0> [p V?udcz = — [y3p_nz Vu-NdS+ [yp_ng, VU NdS

I—1II:0< [, Va-NdS — [g, V- NdS = G1(Z:) — G1(So)
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Variational Principles for EC Surfaces IV

Let Sg = {u(x) = 0} be the EC surface of w.

Theorem (“Geometric var. prin. II")  Sp is a critical point of the functional

Go: S|—>/S|Vﬁ|dS.

(Recall that minimal surfaces are critical points of the area functional S —
Jg dS")
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Consider now perturbations of the chemical field = of the form

we(x) = u(x) + en(z),

with the additional orthogonality condition
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Variational Principles for EC Surfaces V

Consider now perturbations of the chemical field = of the form

we(z) = u(z) + en(z),
with the additional orthogonality condition
Vn-Vu=0 on 5p.
Theorem (“Chemical var. prin”)  Consider the functional C defined via
we=u+en — Clwe) = /Ss |Vwe| dS,
where Sz = {z: ws(x) = 0} is the zero level surface of the function wse.

Then @ is a critical point of C. That is, i.e. % C(wez) = 0.

e=0

22
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Variational Principles “in words”

Consider EC surface in Turing patterns close to the equilibrium with zero
flux boundary conditions.

e Keep the chemical field constant. Then the EC surface is the surface
with maximum diffusive flux.

e Vary the chemical field. Then the Turing pattern has extremal diffusive
flux through the EC surface.
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