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Turing patterns

Reaction-Diffusion System

Turing (1952): Such systems can spontaneously give rise to patterns.
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Turing patterns in modeling of self-organization phenomena

in biology

(from K. Painter’s web site) (from J. Murray Mathematical Biology)
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Turing Bifurcation: Set up

System of m diffusing and reacting chemicals

∂U

∂t
= D∇2U + F(U, λ̃).

where U = (U1, . . . ,Um), λ̃ =bifurcation parameter.
Suppose U0 = const is a steady state for all λ̃: F(U0, λ̃) = 0. Consider

∂u

∂t
= (A + D∇2)u +Q(u, u) + C(u, u, u) + λ̃Bu + h.o.t (1)

Here A = ∂F
∂U(U0,0), u = U−U0.
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Theorem (Turing 1952) The system can (nevertheless) produce spatial
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Namely: ansatz u = exp(µt)

∏
i cos(ki xi) ū gives (at λ̃ = 0)

µ ū =
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∑
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Suppose U0 is stable w.r.t. spatially homogeneous perturbations.
Theorem (Turing 1952) The system can (nevertheless) produce spatial
patterns.
Namely: ansatz u = exp(µt)

∏
i cos(ki xi) ū gives (at λ̃ = 0)

µ ū =

A−
∑
i

k2
i D

 ū
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∑

i k2
i .



3D Turing patterns Stability of Turing patterns
7

Patterns: Stripes and Spots

• Patterns are of the form

u0 + ε
∏
i

cos(ki xi) + h.o.t.,

corresponding to wave number k2 =
∑

i k2
i .

• Symmetry of the domain leads to different patterns with same wave
number



3D Turing patterns Stability of Turing patterns
7

Patterns: Stripes and Spots

• Patterns are of the form

u0 + ε
∏
i

cos(ki xi) + h.o.t.,

corresponding to wave number k2 =
∑

i k2
i .

• Symmetry of the domain leads to different patterns with same wave
number
Eg., k2 = 62:
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0 π

x

0

π

y

cos 6x cos 6y cos 6x + cos6y
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Set up

Suppose we have a Turing bifurcation on the cube [0, π]n at λ̃ = 0 for
k2 = 1, i.e.:

• A−D has a nontrivial kernel

• A− k2D has only negative eigenvalues for k2 6= 1
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Set up

Suppose we have a Turing bifurcation on the cube [0, π]n at λ̃ = 0 for
k2 = 1, i.e.:

• A−D has a nontrivial kernel

• A− k2D has only negative eigenvalues for k2 6= 1

Write for steady state bifurcating solution branch
uε(x) = u0 + ε

∑
i si cosxi + ε2u1(x) +O(ε3)

λ̃ = ε2λ +O(ε3)

Theorem (Ermentrout 1991) In 2D, spots or stripes can be stable for certain
parameter ranges, but not at the same time.



3D Turing patterns Stability of Turing patterns
9

Situation in 3D
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|s1| = · · · = |sp| 6= 0, sp+1 = · · · = sn = 0

(after a permutation of the indices of x1, . . . , xn, if necessary.)
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Define numbers a = a(A,Q, C), b = b(A,Q, C).
Theorem (Alber, G, Hentschel, Kazmierczak, Newman) Consider the bifur-
cating solution

uε(x) = u0 + ε(s1 cosx1 + · · ·+ sn cosxn)e + ε2u1 + · · ·

1. There is an integer p (1 ≤ p ≤ n) such that

|s1| = · · · = |sp| 6= 0, sp+1 = · · · = sn = 0

(after a permutation of the indices of x1, . . . , xn, if necessary.)

2. The stability of uε is determined as follows:
(a) p = 1: uε is stable iff b < a < 0

(b) p = n: uε is stable iff a < min{b,−(n− 1)b}
(c) 1 < p < n: uε is always unstable.
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EQUILIBRIUM CONCENTRATION SURFACES

IN 3-DIMENSIONAL TURING PATTERNS
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Brief Reminder: Minimal Surfaces in R3

Minimal Surfaces are critical points of the Area functional S 7→ AreaS =
∫
S dS.

So they satisfy δ
∫
S dS = 0.

The Euler Lagrange equations are:

H = 0,

where H = 1
2(κ1 + κ2) is the mean curvature.

κ1 = 1/r, κ2 = 1/r′
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m) = const is a steady state for all λ̃.
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Definition

Recall: Turing steady state pattern U = (U1, . . . , Um) satisfies

0 = D∇2U + F(U, λ̃).

where U0 = (U0
1 , . . . , U0

m) = const is a steady state for all λ̃.

Call level surfaces {x : Ui(x) = U0
i } equilibrium concentration sur-

faces .
They are the interfaces between regions of high and low concentrations.
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Examples: Turing patterns close to the equilibrium

lamellae

cylinders

nodule – close to Schwarz’ P-surface
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Examples: Turing pattern far from equilibrium

x

y

z

x Scherk’s surface

reported numerically by De Wit, Borckmans, Dewel (1997), Leppaänen et
al. (2004)
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Variational Principles for Equilibrium Concentration Surfaces I

In the following: Consider functions u that satisfy

0 = ∇2u(x) + ϕ(u(x)),

where ϕ(z) is a function whose only zero is at z = 0: ϕ(0) = 0.
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Variational Principles for Equilibrium Concentration Surfaces I

In the following: Consider functions u that satisfy

0 = ∇2u(x) + ϕ(u(x)),

where ϕ(z) is a function whose only zero is at z = 0: ϕ(0) = 0.

ϕ′(0) > 0 ϕ′(0) < 0
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Variational Principles for EC Surfaces II

What’s the connection of u to (Turing) patterns?

1) If the reaction kinetics F satisfy F(z · e) = ϕ(z) · De, then U(x) =
u(x) · e is a stationary Turing pattern.

2) If U(x) = U0 + εu(x) · b + · · · is an expansion of a Turing pattern
close to the Turing bifurcation, then u is an eigenfunction of the Laplacian,
i.e. ∇2u = −k2u for some k2.

UPSHOT: The following variational principles apply exactly for certain classes
of reaction kinetics, and to first order for all Turing patterns close to the
Turing bifurcation.
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Variational Principles for EC Surfaces III

Let S0 = {u(x) = 0} be the EC surface of u.
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Variational Principles for EC Surfaces III

Let S0 = {u(x) = 0} be the EC surface of u.

Theorem (“Geometric var. prin. I”) Consider the functional

G1 : S 7→
∫
S
∇u ·NS dS,

where S is a perturbation of S0.
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Variational Principles for EC Surfaces III

Let S0 = {u(x) = 0} be the EC surface of u.

Theorem (“Geometric var. prin. I”) Consider the functional

G1 : S 7→
∫
S
∇u ·NS dS,

where S is a perturbation of S0. Then S0 is a

maximum

minimum

 of G1 ifϕ′(0) > 0

ϕ′(0) < 0

.
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Sketch (for ϕ′(0) < 0)

u > 0 ⇐⇒ ϕ(u) < 0 ⇐⇒ ∇2u > 0

−NS0

B+

B+

B
−

NZǫ

S0 = {u = 0}

Zǫ

B

u < 0 ⇐⇒ ϕ(u) > 0 ⇐⇒ ∇2u < 0

G1 : S 7→
∫
S ∇u ·NS dS
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Proof (for ϕ′(0) < 0)

u > 0 ⇐⇒ ϕ(u) < 0 ⇐⇒ ∇2u > 0

−NS0

B+

B+

B
−

NZǫ
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Zǫ

B

u < 0 ⇐⇒ ϕ(u) > 0 ⇐⇒ ∇2u < 0
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Proof (for ϕ′(0) < 0)

u > 0 ⇐⇒ ϕ(u) < 0 ⇐⇒ ∇2u > 0
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−
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∇u ·NdS

=
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∇u ·NdS
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Proof (for ϕ′(0) < 0)

u > 0 ⇐⇒ ϕ(u) < 0 ⇐⇒ ∇2u > 0

−NS0

B+

B+

B
−

NZǫ

S0 = {u = 0}

Zǫ

B

u < 0 ⇐⇒ ϕ(u) > 0 ⇐⇒ ∇2u < 0

I. 0 ≤
∫
B+

∇2u d3x =
∫
∂B+

∇u ·NdS

=
∫
∂B+∩Zε

∇u ·NdS −
∫
∂B+∩S0

∇u ·NdS

II. 0 ≥
∫
B−∇

2u d3x = −
∫
∂B−∩Zε

∇u ·NdS +
∫
∂B−∩S0

∇u ·NdS
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Proof (for ϕ′(0) < 0)

u > 0 ⇐⇒ ϕ(u) < 0 ⇐⇒ ∇2u > 0

−NS0

B+

B+

B
−

NZǫ

S0 = {u = 0}

Zǫ

B

u < 0 ⇐⇒ ϕ(u) > 0 ⇐⇒ ∇2u < 0

I. 0 ≤
∫
B+

∇2u d3x =
∫
∂B+

∇u ·NdS

=
∫
∂B+∩Zε

∇u ·NdS −
∫
∂B+∩S0

∇u ·NdS

II. 0 ≥
∫
B−∇

2u d3x = −
∫
∂B−∩Zε

∇u ·NdS +
∫
∂B−∩S0

∇u ·NdS

I − II : 0 ≤
∫
Zε
∇u ·NdS −

∫
S0
∇u ·NdS = G1(Zε)− G1(S0)
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Variational Principles for EC Surfaces IV

Let S0 = {u(x) = 0} be the EC surface of u.
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Variational Principles for EC Surfaces IV

Let S0 = {u(x) = 0} be the EC surface of u.

Theorem (“Geometric var. prin. II”) S0 is a critical point of the functional

G2 : S 7→
∫
S
|∇u| dS.
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Variational Principles for EC Surfaces IV

Let S0 = {u(x) = 0} be the EC surface of u.

Theorem (“Geometric var. prin. II”) S0 is a critical point of the functional

G2 : S 7→
∫
S
|∇u| dS.

(Recall that minimal surfaces are critical points of the area functional S 7→∫
S dS!)
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Variational Principles for EC Surfaces V

Consider now perturbations of the chemical field u of the form

wε(x) = u(x) + ε η(x),

with the additional orthogonality condition

∇η · ∇u = 0 on S0.
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Variational Principles for EC Surfaces V

Consider now perturbations of the chemical field u of the form

wε(x) = u(x) + ε η(x),

with the additional orthogonality condition

∇η · ∇u = 0 on S0.

Theorem (“Chemical var. prin.”) Consider the functional C defined via

wε = u + ε η 7→ C(wε) =
∫
Sε

|∇wε| dS,

where Sε = {x : wε(x) = 0} is the zero level surface of the function wε.
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Variational Principles for EC Surfaces V

Consider now perturbations of the chemical field u of the form

wε(x) = u(x) + ε η(x),

with the additional orthogonality condition

∇η · ∇u = 0 on S0.

Theorem (“Chemical var. prin.”) Consider the functional C defined via

wε = u + ε η 7→ C(wε) =
∫
Sε

|∇wε| dS,

where Sε = {x : wε(x) = 0} is the zero level surface of the function wε.

Then u is a critical point of C. That is, i.e. ∂
∂ε

∣∣∣∣∣
ε=0

C(wε) = 0.
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Variational Principles “in words”

Consider EC surface in Turing patterns close to the equilibrium with zero
flux boundary conditions.

• Keep the chemical field constant. Then the EC surface is the surface
with maximum diffusive flux.

• Vary the chemical field. Then the Turing pattern has extremal diffusive
flux through the EC surface.


