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Scales and Physical Models
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Micro- and Nanoscale etfects
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Increasing impoertance of surtace to veolume
effects (suriace tension important, gravity;
unimportant)

slip, no-slip boundary: conditions

gas, liquid differences (1 wm? -25 millions, of air
molecules, 34 billion water molecules)

non-linear etftects, thermodynamical
nonequilibritm



Nano- and Micro- Effects
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Models of fluids

Continuum

Meso-scale

Microscopic

Global parameters:
density, velocity,
energy, temperature

averaged properties,
Brownian mechanics,
stochastic equations of
motion

local description,
molecules kinetic
energy and
intermolecular
interaction potential




Meso-scale physics

Brownian motion of coiled DNA Micro-biological motor (1.50 um/s)




Meso-scale physics

[_langevin description ofi Brownian motion (1908)

mL - -EMV+FR)+0|]
dt
L, ):l V- vglpcity
> R position; dR/dt =V
* & M V — systematic contribution of forces
& M — friction coefficient
F(R) — external forces
O(t)- random forces
T, v, 1/¢ — relaxation time, without random forces

Assumption: Typical time scale on which collisions take place is very
small compared to the evolution of the average velocity

(O, 1))=0  (0,(1)04(1))=20,8,;0(t 1)

uncorrelated character of collisions



Meso-scale physics

[_langevin description ofi Brownian motion (1908)

Langevin equation as an evolution
equation for PDE of velocity.

1/& — relaxation time scale
<V(H) V(0)> 4 <(R®)-R(0))2>

3k, T/M
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Evolution from ballistic to the diffusive motion
Diffusion D = k,T/ M ¢§

Fokker-Plank equation; Kramers Smoluchowski: SDE -> PDE for PDF
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Fluctuation-Dissipation
Theorem

General solution of the Langevin equation

t

V(1) = V(0) exp(—& 1) + % [dsexp(-£=5) OG)

im(ver)- 2%

from equipartition theorem

lim (V®?)= 3];3T

t o0

Fluctuation-Dissipation theorem ensures for equilibrium
that PDF is equal to Maxwell distribution



Numerical methods

Continuum fluid
mechanics

Meso-scale mechanics

Microscopic
mechanics

Global parameters:
density, velocity, energy,
temperature

lattice methods

sacrifice detail in potential
model, simpler interactions
and motion rules; LBM

particle methods

particles as mesoscopic
object; replace small particle
with random forces; DPD,
SPH

Molecular Dynamics

computation of forces, based
on the interaction potential,
particle move according to
Newton’s equation of motion

Monte Carlo
methods

Set a configuration, make a
trial move;
acceptance/rejection
procedure, and accumulation
of averages




Dissipative Particle Dynamics

Spherical formulation
two particle interaction

total force
im 4
......... Lennard-Janes (6-12}
I ——  golt sphere (14240
- II
i

L ] from M-C simulations

Three type of forces
conservative (purely repulsive, represents ‘pressure

dissipative (reducing velocity difference between
particles, “friction forces’)

stochastic (‘degree of freedom’ removed by coarse
graining procedure)

Separation distance

Fe =1 afry) e;;
Fp :VMC"(@') (ey' "y) €j;
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Dissipative Particle Dynamics

R,.j— distance between
centers of Voronois, i'and
J;

o — unit vectoer normallto
the faceilj, eriginated!from
the Voronol center i

A;—area of the contact
surface: lengthiin 2D;

r,= Vector indicating the

Mass center of the
contact surface 11
originated from| the: CeEnter:
of the surface Ij: edge in
2D

V/.—is) Voronoi volume:
surface in 2.
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Dissipative Particle Dynamics

Classical DPD
: R
Ly (4= 3 Il 2l 5,
dZ Vi3
DPDE — energy conservation dey _ Eﬂqy N dg;” dql'jR E
dt J#H dt dt dt o
Voronoi DPD
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Channel Flow:
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Channel Flow:




Flow
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Numerical Issues




Eluctuation-Relaxation Model
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Fluctuation-Relaxation Model

«Relaxation time determines it velocity: slip or thermal jump
occurs; it defines scale for which meso-scopic (non-
equilibrium) and continuum: (equilibritm)boeundary: condition
OCCUrs

» Fluctuation Theorem (FDT) compensates molecular level
interactions, which has been lost in coarse-grained procedure

« Gas-solid, liquid-solid interface need to be treated similarly;
fluid-solid boundary interaction is represented as'a nomn-
equilibrium reological process, the difference between liguid
and gas would be mainly in the relaxation time of this
phenomena.



Slip : No-Slip Phenomena
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Conclusion

Mesoscopic description of fiuid;
Time scale and relaxation phenomena
— slip, self-erganization;

Mesoscopic solid-fluid interaction — the

most Important scale for nano- and
micro fluidics




