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What is turbulence?

turbulent
flow -

Properties of turbulence

chaotic and random state of a fluid
@ three dimensional and rotational
@ space- and time-dependent

@ deterministic

@ sensitive to initial conditions

°

wide range of nonlocally interacting
laminar degrees of freedom

flow ——
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Why turbulence is important?

Studies of turbulence

@ physics - to understand
o dispersion of pollution
@ ocean circulation
e atmosphere dynamics (weather)

@ engineering - to control/use
@ combustion, mixing
e multiphase flows
o catalyst processes
e complex fluids: jets, sprays,
bubbles/particles interactions
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Why turbulence is so difficult?

Mathematical description:
Newton’s law (F = ma) written for a viscous fluid leads to...

...the Navier-Stokes equations

@ nonintegrable
— uniqueness of solution
@ nonlocal
— sensitivity to small changes

@ nonlinear
<— enormous amount
of interacting scales
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Navier-Stokes equations

Incompressible and nondimensional form:

ou(x, t 1
ou(x, 1) + U-VY)u —=—V2u+Vvp=0
ot ——— Re
nonlinear convection D
dissipation

@ Velocity u(x, t) and pressure p(x, t)

. __ inertial forces __ UL
@ Reynolds number: Re = ;2 fce=r = =

Flow around a car: ,
L=1[m]; U=10[2];» =10"%[T] — Re = 10°
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How to solve these equations?

boundary conditions

1 . . T, § -

; T o

- N =

. o L . .
initial o N ] + time-integration — humerical
condition TR T A S solver = solution
K@D Lﬂ’ arimE u(t'\x)—> u(t"x)
grid T gl
(7]
0 L X
xi xi+[

discretization

Direct Numerical Simulations

@ numerically exact solution of NS equations
@ need to capture all scales by resolution
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Reynolds number sets the smallest scales of turbulent motion

Computational challenge

@ L - characteristic length
@ 1 - size of the smallest scales (Kolmogorov scale)
@ from dimensional analysis: % ~ Re%/4

@ discretization accounts the smallest scales: N > %

@ 3D problem: N® > Re%* computational points

Flow around a car:
Re = 10 — N > 32.000; N3 > 32 - 10" points
AX<n
— computationally not feasible
— need for a theory or modeling! T x
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Kolmogorov K41 description - universal cascade of eddies

Integral Inertial Dissipative
scale range scale
eddies = E pomm— Dissipationless Viscous dissipation
&) NErgy mpu turbulent cascade into heat
’- ~
¥ =
=) ot
@] 5
A, %0
B S B 2
vy v
@oee
ATy
OO OB 0D
Richardson (1920) B log k 7

eddies break up Kolmogorov (1941) - equilibrium state
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Motivation
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Motivation

K41 theory serves well in many cases
... but turbulent flows in complicated
geometries

... do not follow K41 theory.
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Flow through porous region

Modeling attempts

@ Macroscopic approximations
— lack of incorporated scales

@ Explicit boundary conditions
< computationally not feasible

Porous object (metal foam)
— thermo-acoustic pump
application @ Forcing

— ?
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Extended forcing strategy

Forcing as part of modeling

@ Multi-scale application

@ Energy spectrum modification
— controlled non-Kolmogorov

, turbulence
. FRACTAL
OBJECT
B E(k) Ek) . K58
v N\ k*"? t K7
u—l] ~~~~~~ |-_IIJ T “\“
FLOW S0 2 %
—>» |FORCING| /& 7z o O
? w w =
: H A
3 S 3 @ -

P>

k ko
CLASSICAL EXTENDED
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Spatially localized broadband forcing of turbulent flow

Forced Navier-Stokes equations

ou
ot

1
+(u-V)u— R—evzu + Vp = F(x, 1)

A

F(x, t) - force
@ can be localized in physical space
@ can explicitly agitate specified scales (fractal-like)
@ can follow time-protocol (stirring, shaking)

A

Ek)

4: ' YA R
A Amalgamated Research Inc.
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Fractal stirrer

"Fractal generated turbulence”,
B. Mazzi, J.C. Vassilicos, JFM, 2004

@ drag force ~ surface area
@ forcing amplitude ~ number of boxes of size k!
@ fractal object described by the fractal dimension Dy

Forcing term in spectral space: . ( u(k, t) zk < u(k, t))
F(k, 1) — KD 2fe(k, 1) u(k. ) Tk Ju(k, )]
£ Ew e - unit vector
° Y |u(k, t)| kDi—2 ew - demanded energy input

kek ~ - normalization parameter
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Influence of forced turbulence on transport properties

Passive scalar T(x, f)

T 1
— +(u-V)T-—V2T=0
ot —_ -~ ReSc
convection e .
diffusion

Quantified turbulent dispersion
@ Schmidt number Sc

@ Developed level-set integration method:
- surface-area at specified iso-levels
- surface-wrinkling: small-scale characteristics

o o ¥
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Turbulence simulations

Outline

e Turbulence simulations
@ Numerical method
@ Computational effort
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Numerical implementation

3D parallel Navier-Stokes solver

@ Canonical problem
— Incompressible Navier-Stokes equations
— Periodic geometry with pseudo-spectral method
— Compact storage 4-stage Runge-Kutta method

@ Parallel processing for various CPU topologies
— Message Passing Interface (MPI)

@ Fast Fourier Transforms
— 3D with FFTW/SCSL-SGl libraries

@ Data storage and parallel /O
— Hierarchical Data Format (HDF5)
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Computational effort

Memory requirements

Discretization

. N Memory

@ goal: to simulate flows at
moderate Reynolds number 2 08 MB
. c 64 6 MB
@ N =512 in each direction 128 50 MB
o N8> 108 grld points 192 170 MB
@ 3 velocity components: 3.2 GB 256 0.4 GB
@ stationary statistics 384 14GB
— long-time simulations 512 3.2GB
” 1024 26 GB
el . ded 2048 206 GB
— parallel processing neede A0%6 L6 T8
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(o] le}

Computational speedup - how much we can gain with parallelization

Amdahl’s law
@ Ideal speedup: S(n) =n
@ p - parallelized code
_ 1
° S(n) = 5+(1-p) ®0 ideal
@ p=0.99%4 50

40

Measured speedup at 4, 8,
16, 32 and 64 processors

30

S(speedup)

20

60

0 20

40
n(CPUs)

Cost: communication between CPUs
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Simulations on SGI Origin and Altix supercomputers

SARA Supercomputing Center

=

S
N
N
N
N
S
N
&)
N
N
3

@ resolution: 1283
up to 5123

@ simulations: 1 day
up to a few weeks
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e Broadband forced turbulence
@ Energy dynamics
@ Mixing quantification
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Broadband forced turbulence
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Key-research questions

FLOW
—» |FORCING| =&

@ How forcing influences turbulence (flow-structuring)?
@ How forcing changes energy dynamics?
@ How forcing modulates transport properties?

@ Is there an efficient way to stir/force turbulence?
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Spatially localized broadband forcing of tubulence
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Numerical experiments

@ How broadband forcing changes
the energy dynamics?
EA(k) — varying the location (ki, ko) <

— varying the power ¢, 1
i @ Consequences for mixing?
"&." T < passive scalar simulations
%)
7] ©)
uOIJ 5 Canonical problem (R, = 50, 100)
- & @ Large-scale forcing kg < 1
) L
= I ew=0.150re, = 0.60
0k Kk K B w w

@ Broadband forcing in (ki, k2)
supplementary ¢, = 0.45
bands: (4,8) and (12,16)
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Energy spectra - varying the location (ki < k < ko)
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Forcing modifies energy cascade — different scaling
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Broadband forced turbulence
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Energy spectra - varying the power ¢,

LARGE-SCALE FORCING
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o i ‘ e
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Forcing removes energy from large scales — nonlocality

Arkadiusz Kuczaj Direct numerical simulations of modulated turbulence



Broadband forced turbulence
@00000

Dispersion of a tracer in forced turbulence

n 10 0

— forcing induces small-scale mixing
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Influence of forcing on the flow and its transport properties

Velocity (top) and passive s.calar (bottom) snapshots

Arkadiusz Kuczaj Direct numerical simulations of modulated turbulence



Broadband forced turbulence
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Quantified turbulent dispersion

Mixing process in time

@ instantaneous
@ cumulative
o final total effect

Developed level-set integration method

@ surface area A at specified iso-levels
@ surface wrinkling W — small-scale characteristics

Averaged growth parameters of:
@ surface area J4(t) = A(t)/A(0)
@ wrinkling 9 (t) = W(t)/W(0)
@ accumulated area (4(t) — time-integrated
@ accumulated wrinkling (y/(t) — time-integrated

v
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Surface area and wrinkling

Two-band forcing — different localization of the second band

4 16
£
35 / I 1
3 N E(K) |
.‘ . t
25

= 2 N '\ Large-scale forcing @ |
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\
1 “‘. 4
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0
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Cumulative surface area and wrinkling

Time-integral over area and wrinkling as the total effect

35 15
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Cumulative surface area and wrinkling

Different energy-input proportions between two forced bands

3.5 15
£,=0.60 +¢,=0.00
ol | 57045 +¢,=0.15
£,=0.30 + £,=0.30
£,=0.15 +£,=0.45
251 | 5,20.05 +5,=055
—_ 2
=
<
~15
Two-band forcing
1 E(k)
05 ™
0 0.5 1 15 2
t
Surface area Wrinkling

Arkadiusz Kuczaj irect numerical simulations of modulated turbulence



Conclusions

Outline

e Conclusions

Arkadiusz Kuczaj Direct numerical simulations of modulated turbulence



Conclusions

Summary

Conclusions

@ Feasibility of forcing application as a modeling tool

@ Modification of cascading process in turbulence
@ Small-scale forcing — nonlocal large-scale effects

@ Spatially localized broadband forcing — modeling method

@ Quantified mixing — relevance for technological processes
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