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Action of E and B (Leenov & Kolin 1954, Marty & Alemany 1984)7
e Liquid: current j = o(E — V¢ + u A B), Lorentz body force f = j A B
e P, : current j, = o,(E — V¢, + u™ A B), Lorentz body force f, = j, A B

Migrations triggered by: E, B and o — o),/
Unknown quantities: liquid flow and rigid-body motions u(™

(u, P) and (U™ Q)7

Potential applications?
e Solid impurities removal in conducting liquids (liquid metals, liquid glass)

e Particules separation or/and deposition on solid boundaries



Previous results

e Kolin 1953, Leenov & Kolin 1954. Analytical solution for a conducting sphere
e Marty & Alemany 1984: experiments for cylindrical and spherical bodies
e Moffatt & Sellier 2002: symmetry considerations for an insulating particule

e Sellier 2003, 2004, 2005, 2007: boundary formulation for arbitrarily-shaped insulating particules,
analytical solution for conducting ellipsoids, numerical solution
for conducting and arbitrarily-shaped particules, particule-particule interactions for
two insulating particules.

Some basic 1ssues

e Case of arbitrary collections of solid and conducting particules:
asymptotic and numerical analysis. Present work!

e Case of bubbles: under investigation.

e Case of wall-particle interactions.
Sellier 2006: semi-analytical solution for a sphere. To be further extended to several particules.

e Case of droplet? Micro-mixing inside the droplets?



Adopted assumptions

eSmall particules with typical length and velocity scales a and U such
Re=pUa/p <1, R, = pnoUa < Re, M?*=0B%* <1
Consequences: decoupled electrostatic and flow problems

B, jNU(E_VCb)a jnNan(E_v¢n)

e Electrostatic problem
Vip,=01in P,, V¢=01in Q, V¢ — 0if r — oo,
on(E—V¢,)n=0c(E—-V¢)n and ¢ = ¢, on 5,

Well-posed. Permits to calculate the net force and torque exerted on P, :

F, = an[/ (E—Va¢,)dv] AB, G = an/ OnM A [(E — V¢,) A B]dv

n

Henceforth, we use the decompositions and notations

F =0,V..EAB)—A,AB], G, =0,/C,A(EAB)—-B,]

A, = / Vé,dv, C, = / 0,Mdv, B, = / O.M A (Vé, A B)dv



e Flow problem for (u, p+ o(E A B).x)
Vu=0, puVu=Vp+oVpAB inQ
(u,p) — (0,0) if r — oo,
u=U"4+Q"A0,M on§,

- Non-uniform body force acting in the entire liquid domain!
- If (u, p) has stress tensor o
the flow exerts on P,, the net force and torque:

F, = / o.ndS —oV,(E N B)

G, = / OnM A [o.n]dS — 0[/ O,Mdv| A (E A B)

n

e Additional relations U™ QM 7
Particules of negligible inertia

F,+F, =0 G,+G,=0

- Quite a very few analytical solutions (sphere, ellipsoids)
- Numerical method? Iterative procedure? High cpu-time cost and poor accuracy!



Analytical solution for a conducting sphere

eSphere with radius a, and conductivity o,, (Leenov & Kolin 1954)

20 o
od “EAB), C, = On 9
S on + 20

o —o, U -

ePossible to calculate the velocity field u about the sphere
It the sphere has center O,, and x,, = O,,,, = |x,,| then

cacC, . a 5 X

= ()2 —1][(Ex,)B + (B.x,)E] A =

w= T (BB o+ (B, B A T
3 1 (n) (U(()n).xn)xn a’ (n) 3(U(()”) X, )Xy, 3(1) x X

eFruitful resultats for several distant spheres
- Using the so-called reflection method
- Case of 2 distant spheres (today)
- Case of several “equally” distant spheres: achieved (too long to present)
- Spheres interactions: short or long range ones?

- Sensitivity to (E, B)?



Case of 2 distant spheres

) Q

T B = Be2 n (U) ,U,)
Sy

— P S n

a 0, 0 w T3

e Here d = 0105 > a; + ay and e := 0201/d.
The asymptotic analysis yields

3 2C
U ~ Ul & ; ‘;2 {U + (U eg1)enr — JC;QM V1 +
) 2 2
ay . 0alCh gaCy as + 2a 2 2
(5)3{ 4; Vv GL (1—-2C)E'AB + 2405 1[U(() ) _ 3(U(() )-621)921}},

3 CLQ {U N\ €91 O'CLQCQ

S
El = E — 3(E.€21)€21, V = [(E.GQ1)B + (B.egl)E} N €91

[(EB) — 3(E.e21)(B.e21)}e21},



By superposition sufficient to deal with 5 different Cases
oCase (i): B.esg =0and EA ey =0

as. 5, (8C1 — 1)ai —
DT

3&2

U~ U+ {5

2
Lnu?,

oCase (ii): E.esy =0 and B A ey = 0. QW still given as above and

2
1 a2 a 2
Ul ~ o+ () (1= OS]0y
2
eCase (iii): E.B = E.ey; = B.ey; = 0. This time QM = 0 and

2 2
as + 2aj
2
2a;3

3 as as
Ut~ U+ (50 - (2P

jJuy

eCases (iv)-(v) with EA B = 0.
E.ey = 0 for (iv) and E A eg; = 0 for (v). Here UV = 0 and

3 a9 QO'CLQCQ

Qb o 222
4(d)

(E.B)ey; (iv), QU ~ _§(@)20a202
3y ’ 2°d 3

(E.B)e21 (’U)
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Surface quantities for the electrostatic problem

e Electrostatic problem

V2¢,=01in P,, V¢=0inQ, Vo —0 asr — 0o,
on(E—V¢,)n=0cE—-V¢)n and ¢ = ¢, on S,

e Polarisation charge density g on S = S; U ...U Sy
4mip(M) = /q(P)dS/PM in R, o= in Q, ¢,=1 in P,
i e Inside P,
F,=0,V.(EAB)—A,AB], G =0,]C,AN(EAB)—-B,]

A,= | Véudv= | ¢ndS
Pn Sn
B 1 [ q(P)MP.n(P)
C, = / n O.Mdv,  h(M)= - /S S a8
B, = / O.M A (Vé, AB)dv = | {¢[B.OxM]n — (O,M.n)B] + hB}dS
n Sn

e One solely requires q and ¢ = ¢,, on .S



Surface quantities for the flow problem

e Flow problem (u, p + o(E A B).x)
Vau=0, pVu=Vp+oV4AB inQ
(u,p) — (0,0) if 7 — oo,
u=U"4+0"A0,M onS,
e 6N Stokes flows (ug,?)’i,pg?)’i), (ug)’i,pg)’i)

f' =0, ug,?)’i = 0pm€i, ug)’i = 0pme; AN OaM  on S,
(n),

Associated surface tractions f ;0 on S and coefficients

—p AN = / e;.£,""dS,,, —uB"" = / (e; A OmM).£;"dS,,

m Sm

e Reciprocal identity

/[u.a’.n —u'.o.nldS = /[u'.f — u.f']dQ
S Q

e Volume integrals

C[f"] = 8rp /Q u\ [V¢ A BJdQ



Linear system

o [t 5, = 0,/0, UM = UMe; and Q" = Qe;

(n),i
()i r(m) | ()i (m) O Lt
A2 Ui +B 0 7w —;{((% ~OVWEAB] - 6,A, AB+ ——}.e
n).2.9 m n).2 m £ f(n),z
APIIT™ 4 B, :3{( —1)C, A [EAB] - 6,B, + fr }}.ei

o Wlth (omitted details!)
_ [S /S [v(p).%} V(M) A Bl.n(M)dSpdSy

_ /S /S v(P).[qu(M)/\B]PN;;:;M)dSpdSM

N /S /S o PM v (P)[B.,][V (¢.m) 1] (M)dSpdSay

e In summary, one solely needs to calculate the surface quantities

q; ¢7 fl(L ) - O'E ) 1, ¢,m — 877 v(¢,m)n



Relevant boundary-integral equations

e One Fredholm boundary-integral equations of the second kind

146, PM.n(M)dS

27T[1 — 5n]q(M) + /Sq(P) Ve = —4n[E.n|(M), M on S,

6N Fredholm boundary-integral equations of the first kind

fén)’i.ej

ST

n),t . 5jk (PMe])(PMek)
i e (M) = = [ (5 + |

For 1 harmonic in €2
~ampan)+ [ o) - v s - [ FEE s

- For ¢ = ¢ this gives ¢ on S from V¢.n = E.n + d,q9/(1 — §,) on S,
- Provides ¢, on S and V¢.n
- For ¢ = ¢, one gets V(¢,,).non S

[(P)dS
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Numerical method and resultats

- P2 6-node triangular boundary elements
- Gaussian elimination (dense and non symmetric influence matrix)

e Numerical comparisons for a sphere with radius a

U = oa’c(6)(EAB)/pu

M 0=0 0=20.5 d=2 =5

74 -0.17447 -0.07025 0.08968 0.21399
242 -0.16756 -0.06704 0.08383 0.19169
1068 -0.16677 -0.06669 0.08335 0.19048
exact -0.16667 -0.06667 0.08333 0.19048

e Case of 2 spheres

) Q
rB = Be, n (o, 1)

- = P- & S,

E = Fe; m/

o ol ot
0'2:(520'

Cas (1) (Eeg, Beg), Cas (ll) (Eeg, Beg), Cas (lll) (Eel, Beg)

e Q) .
(n) \) — M j (n) \) — % j 0< )\ — ai as
u; (M) s2|E[B] () oo [E|B] = 0,0,

<1



Adopted meshes for 2 close spheres
A= 0.9, a9 = 2a; and M nodal points on each S,

Insulating spheres: 01 = 09 = 0

M 74 242 530 1058
W' 0.34687 -0.36356 -0.36519 -0.36560
wi 013461 0.13596 0.13574 0.13574
u'? 068519 -0.69862 -0.69927 -0.69962
w? -0.01657 -0.01652 -0.01634 -0.01633

Conducting spheres: 01 = 2 and 09 = 4

M T4 242 530 1058
WV 026310 0.25623  0.25508  0.25505
)

wi -0.12968 -0.12598 -0.12568 -0.12557
u'?0.70147  0.67336 0.67042  0.66994
)

wéQ 0.00326 0.00347 0.00339 0.00339




By superposition sufficient to deal with 5 different Cases
oCase (i): B.esg =0and EA ey =0

as. 5, (8C1 — 1)ai —
DT

3&2

U~ U+ {5

2
Lnu?,
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eCases (iv)-(v) with EA B = 0.
E.ey = 0 for (iv) and E A eg; = 0 for (v). Here UV = 0 and
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Translational velocities for 2 spheres (a9 = 2ay)
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Angular velocities for 2 spheres (a9 = 2a7)
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Example of strong sphere-sphere interactions

3 spheres with radius a
located at the vortices of an equilateral triangle

I

Sl

0.0, = 0103 = 0203 =d > 2a, A= 2a/d
09 =03 =0and o7 =2
UW has only one non-zero Cartesian component oa?|E||B|u;/u
if E and B are aligned wiht unit vectors ey,



Non-zero components u;(A) versus A
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Functions uq(o) for E = e and B = e3,
—uy(e) for E = e3 and B = ey,
—us(e) for E = e; and B = e3, us(o) for E = e3 and B = ey,
uz(*) for E = e; and B = ey, —ug(—) for E = e; and B = ¢



Conclusions
e Useless to determine the liquid flow and
disturbed electric field in the entire unbounded fluid domain ¢!
e Efficient boundary approach for arbitrary N —particule clusters

e The BEM is suitable: good accuracy at a resonable cpu time cost!
(Putting 242 nodal points on each sphere is quite sufficient even for rather close spheres)

e Particle-particle interactions may be either strong or weak and
deeply depend upon E, B and the particle nature (shape, location, conductivity)

Future investigations
e Bubbles and droplets!

e Solid boundaries: competition between wall-particle
and particle-particle interactions



