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MAPK Core Architecture
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Function

e Responsible for transducing signals induced by
- ERK1/2 — mitogens (growth factors)
- JNK/p38 - heat shock, UV, osmotic
stress
- ERK 5 — responsible for cardiovascular
development



MAPK Cascade
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The Mechanism of Transduction

MAPKKK:
A-Raf, B-Raf, C-Raf

MAPKK:
MEK1/2

MAPK:
ERK1/2

(Transciptional regulation)

Summary of Map kinase pathway



Scaffolds in MAPK Signalling
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Key Dynamics |

1) Ultrasensitivity (‘non-linearity’):
graded input -> “digital response’
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2) Transient vs. sustained response (negative feedback)



Output/Effect Relationship
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ERK1/2 Cascade

MAPKKK — A-Raf, B-Raf, C-Raf
MAPKK — MEK1/2
MAPK — ERK1/2

Intensively investigated because of its
involvement in cancer




Invelvement in Human Disease

1) Involvement in Malignancies: RAS mutations in
15% of cancers, ERK upregulated in 30%

2) B-Raf Mutatations:
e melanoma (30-60%), thyroid cancer (30- 50%)
e colorectal cancer (5—20%) and

e ovarian cancer (~30%)
e others (1-3%)



Publication Statistics

1) RAS —40154/5734
2) RAF —8515/962

3) MEK — 7435/353
4) Erk —20087/927
5) KRS —153/7

6) IMP-51/7



RAF Regulation

1. N-terminal autoinhibitory domain
2. C-terminal catalytic domain

3. All Raf proteins require dimerization,
phosphorylation, and membrane recruitment

for full activation
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Differences between B-Raf and C-RAF

1. B-Raf Activation: requires only activation
segment phosphorylation (T598, S601)

2. C-Raf Activation: activation segment

(T491,5494), additionally S338 and T341
3. A-Raf follows a pattern similar to C-Raf



RAF Isoforms
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Dimerization in MAPK

RAS — dimerization at the membrane
RAF — promoted by RAS and KSR

MEK — one isoform represses the other
Erk — distinct signalling roles



Raf Dimers

1. Homodimers
- forced dimerization results in activation
- unclear mechanism — side-to-side dimerization

2. Heterodimer — far more active than
homodimers/monomers (50x-100x)

3. Play role in cancers / B-Raf Inhibitor Paradox



Raf Heterodimer

Induced by RAS activation
Negatively Regulated by Erk phosphorylation

n certain cancers, mutant B-Raf constitutively
oinds and activates C-Raf

Protomers in a dimer can transactivate each
other — not certain if it is due to
phosphorylation or conformation change



Raf Heterodimer Signalling




Raf Inhibitor Paradox

a Wild-typecells, b Mutant RAF, ¢ Mutant RAF, d Mutant RAS
no inhibitors no inhibitors RAF inhibitor
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KSR Dimerization

1. Inhibited by IMP
2. Upon Ras-Induced IMP1 Degradation dimerizes
3. KSR dimerization may promote Raf Dimerization




MEK1/2 Heterodimer

MEK1 MEK?2

Leuaiq  Fne3ti

ERK

Complex Predicted AG Predicted K
Mek1-Mek -15.0 1.2x 107"

Mek2—Mek?2 -11.6 37x107°
Mek1—Mek?2 —-15.1 11 %107

1. Mekl decreases the activity of Mek?2
2. Without Mek1, Mek?2 activation is slighlty elevated but prolonged
3. Erk phosphorylation of Thr292 is required for both Mek1 and Mek?2

attenuation
4. This mode of regulation is mediated via Mek1/2 heterodimerization



Erk Dimers

. Upon activation Erkl and Erk2 homodimerize
(Erk1/2 heterodimer is unstable)

. Dimers enter nucleus via active transport
while monomers enter passively

2. Monomers activate nuclear substrates

3. Dimers phosphorylate cytoplasmic targets

4. Perhaps dimers anchor Erk in the cytoplasm



Key Dynamics ||
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Modelling Efforts — Selected
Models
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Brightman & Fell 2000
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Schoeberl 2009
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Shin 2009
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Typical Parameter Values

Table 2. Parameters and Their Typical Values?

parameter description value units

cell density : cells/mL
initial ligand concentration M
initial number of free receptors nio./cell
total number of each adaptor protein nio.cell
total number of activating enzymes at stage i nio./cell
total number of deactivating enzymes at each stage § ¥ nio./cell
receptor—ligand association rate constant M1 min
receptor—ligand dissociation rate constant : min "’
rate constant for dimerization of ligand-bound receptors M1 min
rate constant for dissociation of dimers min !
rate constant for activation of dimerized receptor—ligand complexes rmin !
rate constant for deactivation of active receptor—ligand dimers min !

| A o AL AL association rate constants among adaptors X M~1 min

kellke, EAkeE, kAo ke, ket HkE equilibrium dissociation constant for adaptor interactions M

ki ko' ke K enzyme—substrate association rate constant : M~ min

kio, ko ke, ke enzyme—substrate dissociation rate constant min !

l"l|:I::Il ! -"Ili-:n.'-'.. -"Il'm:,r. -"Il'm: r min !




Vly: Miodel(s)

Primary goal: account for dimerization, better understand the role of KSR
2. Primary premise: scaffolds (i.e. KSR or RAS) serve as a platform to
Induce/stabilize dimerization
3. Assumptions: a) scaffold itself is dimeric
b) RAF dimers protect protomers from dephosphorylation
c) RAF monomers are rapidly dephosphorylated
4. Variations of the model:
a) RAS is the actual platform for RAF assembly
b) KSR dimers may serve to sustain dimer population
In the cytoplasm
c) various modification of association rules

=




BioNetGen

1. Rules:

2. Emphasis on Domain Structure and Interactions
3. Combinatorial Complexity
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