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Zusammenfassung

Kunststofflichtwellenleiter (POFs) stellen ein verhaltnismaRig neues Medium zur optische
Datenkommunikation Uber kurzen Strecken dar (bis zu einigen hundert Metern). Sie
arbeiten im sichtbaren Wellenlangenbereich des elektromagnetischen Spektrums und
werden auch fir Beleuchtung und fiir Sensor-Anwendungen verwendet.

Wahrend ihrer Einsatzdauer unterliegen POFs unterschiedlichen Arten von
Umweltbeanspruchungen, hauptsachlich durch hohe Temperatur, hohe Feuchtigkeit und
mechanischen Belastungen. Zahireiche experimentelle Forschungen beschaftigten sich mit
der standardisierten Priifung der Zuverlassigkeit von im Handel erhaltlichen Fasern. Jedoch
gab es bisher wenig Erfolg bei der Bemiihung, zwei grundlegende optische Erscheinungen,
Absorption und Streuung, die die Lichtausbreitung in Fasern stark beeinflussen, zu
verstehen und praktisch zu modellieren: Diese beiden Effekte beschreiben nicht nur die
Qualitdt neuer Fasern, sondern sie werden auch stark durch die Alterungsprozess
beeinflusst.

Der Hauptzweck dieser Doktorarbeit war es, ein praktisch verwendbares und theoretisch
gut fundiertes Modell der Lichtausbreitung in nicht gealterten und gealterten POFs zu
entwickeln und es durch optische Experimente zu verifizieren. Dabei wurden
anwendungsorientierte Aspekte mit theoretischer POF-Modellierung kombiniert.

Die Arbeit enthalt die erste bekannte Anwendung der Wellenanalyse zur Untersuchung der
winkelabhangigen Eigenschaften der Streuung. Die Resultate der numerischen Beispiele
stimmen mit den experimentell beobachteten Ergebnissen uberein. Der Gebrauch der
Wellenoptik war erforderlich, weil die vereinfachende Anwendung der geometrischen Optik
zu einer den experimentellen Ergebnissen widersprechenden Winkelabhangigkeit fihrt. Die
Resultate der Wellenanalyse wurden ausserdem dazu verwendet, ein generelles
POF-Modell zu entwickeln, das auf dem Strahlverfolgungsverfahren basiert.

Fir die praktischen Experimente wurden mehrere POF-Proben unterschiedlicher Hersteller
kiinstlich gealtert, indem sie bis 4500 Stunden bei 100 °C gelagert wurden (ohne
Feuchtekontrolle). Die Parameter der jeweiligen Simulationen wurden mittels einer
systematischen Optimierung an die gemessen optischen Eigenschaften der gealterten
Proben angeglichen. Die erreichte Ubereinstimmung ist besser als in bisher vorliegenden
Untersuchungen und bestatigt die Verwendbarkeit des Modells. Die Resultate deuten an,
dass der Ubertragungsverlust der gealterten Fasern in den ersten Tagen und Wochen der
Alterung am starksten durch eine wesentliche physikalische Verschlechterung der Kern-
Mantel-Grenzflache verursacht wird. Chemische Effekte des Alterungsprozesses scheinen
im Faserkernmaterial zuerst nach einigen Monaten aufzutreten. Als Nebeneffekt dieser
Arbeit wurde ein Kalibrierung- und Qualitédtseinschatzungsverfahren fir CCD-Kameras
entwickelt.



Abstract

This thesis discusses theoretical and practical aspects of modelling of light propagation in
non-aged and aged step-index polymer optical fibres (POFs). Special attention has been
paid in describing optical characteristics of non-ideal fibres, scattering and attenuation, and
in combining application-oriented and theoretical approaches. The precedence has been
given to practical issues, but much effort has been also spent on the theoretical analysis of
basic mechanisms governing light propagation in cylindrical waveguides.

As a result a practically usable general POF model based on the raytracing approach has
been developed and implemented. A systematic numerical optimisation of its parameters
has been performed to obtain the best fit between simulated and measured optical
characteristics of numerous non-aged and aged fibre samples. The model was verified by
providing good agreement, especially for the non-aged fibres. The relations found between
aging time and optimal values of model parameters contribute to a better understanding of
the aging mechanisms of POFs.
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List of important symbols

o illumination angle

Omax acceptance angle

Qout output angle

B relative wavenumber of a mode
dr,e,z) refractive index perturbation

y propagation angle

g Green’s function of an ideal cylindrical waveguide
Jm radial component of a modal field
k free-space wavenumber

A free-space wavelength

m azimuthal order number of a mode
n(r) unperturbed refractive index profile
ny(1,0,2) perturbed refractive index profile
no refractive index of fibre’s core

n; refractive index of fibre’s clad

NA numerical aperture

perturbation region

R fibre radius

Ry radius of the perturbation region

T transverse mode parameter

u scalar field propagating in a waveguide
Uine incident field

Uscat scattered field

V normalised frequency of a fibre

\ fibre modal parameter

Wo core modal parameter

W) clad modal parameter

Zp length of the perturbation region
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1 Introduction

1 Introduction

Polymer optical fibres (POFs) are a new emerging medium for short-range optical data
communication (up to a few hundred meters) in the visible region of the spectrum. POFs
are also widely used for lighting and for sensor applications.

As a safe, inexpensive and reliable data transmission medium POFs are foremost used by
the automotive industry, for home and office networks, and for in-device data transmission
and control [58, 59]. Although their relatively high attenuation (approx. 150 dB/km) does not
allow long-distance transmissions, they are in many other aspects (flexibility, low costs of
production and wiring, ease of handling) in short-range applications superior to silica fibres.

In course of use POFs are subjected to different types of environmental stresses, mainly
high temperature, humidity and mechanical stress. Great amount of experimental research
has already been done to standardise, experimentally test and assess the durability of
commercially available fibres [10, 26, 32, 48-56]. However, little effort has been directed
towards understanding and practical modelling of two main optical mechanisms not
occurring in idealised fibres but affecting light propagation in a real fibre: attenuation and
scattering. Both represent the non-ideality not only for new fibres, but are also strongly
involved in their aging process and thus critical for fibre’s optical properties. Respective
researches are important for developing more efficient fibre test methods and for assessing
fibre performance under stress.

There has been much theoretical research devoted to fibre optics and wave-analysis of
cylindrical waveguides [2, 28, 29, 30]. Nevertheless, it has been rarely rigorous in its
mathematical contents. The major flaw seems to be the lack of conditions guaranteeing
uniqueness of the solution to the scalar wave equation on a cylindrical fibre, a problem
solved for open-space and a spherical wave by Rellich [25, 9]. On the other hand, results
obtained in such theoretical investigations have been rarely systematically verified against
real fibre measurement data.

There has also been much theoretical [1, 2, 62-67] but very little application-oriented
analysis of scattering induced by small-size random irregularities of the refractive index,
which is always present in real fibres, especially those subjected to environmental stress
and aged. No basic analysis of angular characteristics of this scattering is known, an often
met problem in analysis of scattering in open-space geometry but hardly tractable in the
case of cylindrical waveguides with their not obvious relation between mode and its
illumination, propagation or radiation angles. Analysis based on geometric optics and
raytracing, although often referred to, cannot, contrary to expectations, explain some
experimentally observed angular characteristics of scattering, thus the use of a constant
[42-46, 60] or purely phenomenological relations [16, 41].

Therefore the primary task of this Ph.D. work is to develop a practically usable and
theoretically well-rooted model of light propagation in POFs, to investigate the influence of
aging effects on it, and to verify it by optical experiments. To achieve a more general
understanding of the POF aging process, parallel to this work a Ph.D. thesis of another
BAM employee, A. Appajaiah, is prepared, it investigates chemical aspects of aging on the
same and similar POF samples [17, 33-36].



1 Introduction

Now the outline of the following thesis will be given in respect to its essential parts:

In Part 2.1 of Chapter 2 the scalar wave equation is solved for the case of a cylindrical
waveguide. The uniqueness of the solution (i.e. the counterpart of Rellich’s radiation
condition [25, 9]) is stated without proof as a hypothesis. The representation theorem of
Alexandrov and Ciraolo [2] is stated and used to define the relations between illumination
angle, excited modes and output angle. Wave analysis of scattering processes in 2D slab
waveguides of Magnanini and Santosa [8] is expanded in Part2.1.4 to 3D cylindrical
waveguides. Convergence of a critical series of this part, the one representing the scattered
field, is stated as a hypothesis only. Appendix A4 contains considerations concerning a
possible proof.

Part 2.2 of Chapter 2 describes the geometric optics approach to fibre modelling and
introduces raytracing model with mechanisms mostly absent in the previous research:

e scattering mechanism (Part2.2.2) based on the results of the theoretical
investigations of Part2.1 and the numerical simulations of scattering intensity in
dependence on illumination angle (reported in Appendix A2);

e implemented Fresnel reflection law (Part 2.2.3) in the form of a random choice
between reflection and transmission for each ray incident on the core-clad interface.
This mechanism, although intuitively obvious, requires astonishingly much effort to
prove its validity.

Part 2.3 of Chapter 2 introduces two basic characteristics of an optical fibre: far-field profiles
and near-field profiles.

Chapter 3 describes the software developed to implement the raytracing model of Part 2.2.
It includes simulation software as well as the software allowing comparison of simulated
and measured far-field profiles and semi-automatic parameter optimisation.

Fibres used for practical investigations, their technical specifications, aging conditions and
preparation of the samples for further measurements are described in Chapter 4. Fibres
from three manufacturers have been used. The high temperature aging process
(100 °C/<<50 % RH (dry heat)) has been selected; the fibres used in further investigations
were subjected to six different aging times (ranging from no aging, i.e. 0 h, up to half a year,
i.e. approx. 4500 h in oven).

Chapter 5 discusses the setup used for far-field profile measurements. Part 5.3 describes
the developed procedure, necessary for quality assessment and calibration of CCD
cameras [14].

Chapter 6 discusses the measurement process and the procedure for far-field profile
extraction from obtained measurements. Part 6.4 presents sample measurement results:
far-field profiles of non-aged and aged fibres.

The results of the parameter optimisation by comparison of simulated and measured
far-fields are presented in Chapter 7. This systematic approach to model validation and
parameter fitting can be considered superior to earlier research, because here:

-10 - BAM-Dissertationsreihe



1 Introduction

¢ Both bulk and interface attenuation coefficients are used to trace separately aging of
the bulk material and physical degradation of the core-clad interface.

e Fibres of different lengths are measured and compared. The amount of the
scattering understandably depends on fibre length, thus using fibre samples of
different length allows for significantly more control over the scattering parameters
and ensures model validity for not only one fibre length.

e Semi-automatic numerical optimisation procedure is applied.

Appendix A2 contains the results of numerical wave analysis of two sample cylindrical
waveguides. It directly uses the notation and results of Part 2.2. For both cases it was found
that scattering intensity clearly decreases with increasing illumination angle, an explanation
for the relations experimentally observed before. This is a pure wave-effect and probably
cannot be satisfactorily explained on the basis of geometric optics and simple raytracing
model only, which suggest the opposite scattering — angle relation.

Appendix A3 shows several graphs comparing simulated and measured far-field profiles of
fibres used in this research.

-11 -



2 Modelling of light propagation in POF

2 Modelling of light propagation in POF

In this chapter two most important approaches used for analysis and modelling of optical
fibres will be discussed: the wave optics (Part 2.1) and the raytracing approach (Part 2.2).
We will concentrate mainly on the property of an optical fibre that is most aging-related,
i.e. scattering and, in the case of the raytracing approach, also attenuation (see also
Part 4.1). The fibre simulations (Chapter 7, Appendix A3) performed within this research are
made with self-implemented software (Chapter 3) using the raytracing model described
here. At the end of this chapter we will discuss basic measurable characteristics of an
optical fibre: near- and far-field profiles (Part 2.3).

For the analysis of light propagation in optical fibres both the Cartesian and the cylindrical
coordinate systems will be used (Fig. 2.7).

Fig. 2.1 The nomenclature for describing the optical fibre. The fibre axis lies along the z axis of both
Cartesian and cylindrical coordinate systems. The clad will be assumed to extend infinitely,
as in Eq. (2.16), or to end at some finite distance, as in Eq. (2.74), where air of refractive
index 1 begins.

2.1 Wave-optics model

Wave approach takes into account the wave nature of propagating light and requires
solving the vector wave equation or its simplified version, the scalar wave equation. As the
scalar wave equation is generally considered valid (so called weak guidance
approximation) and broadly used for optical fibres modelling due to small variations of a
refractive index in a typical fibre, in this analysis only the scalar description of propagating
fields will be used.

Within the wave-optics approach, light propagating in an optical waveguide is described in
terms of a set of discrete solutions of wave equations (vector or scalar), called guided
modes, and a set of continuous solutions, called radiating modes. Those modes (in the
scalar case considered here) are eigenvalue functions of the scalar wave equation and
each finite energy solution of this equation is a unique superposition of guided and radiating
modes, as the representation theorem of Alexandorv and Ciraolo [2] states (Part 2.1.3.1).

In this Part 2.1 we will solve the scalar wave equation (Part 2.1.2), cite the representation
theorem (Part 2.1.3.1), relate the inclination of an input beam to the excitation of particular
modes (Part 2.1.3.2) and finally discuss scattering of propagating light between modes

-12 - BAM-Dissertationsreihe



2 Modelling of light propagation in POF

caused mainly by perturbations of the refractive index of the waveguide (Part 2.1.4). The
obtained angle-dependence of the scattering intensity will then be used in the raytracing
approach (Part 2.2).

As it is common in the context of the wave analysis, mainly the term ‘waveguide’ instead of
‘fibre’ will be used in this part.

2.1.1 Maxwell’s, vector and scalar wave equations

Propagation of an electromagnetic field is exactly described by the set of Maxwell’s

equations [1, 4]. For the case of non-magnetic materials, which normally constitute an

optical waveguide, and assuming an implicit time dependence exp(-i®f), they are
expressible using MKS units in the following form [1]:

V-(n2E)=i

€o

1
2
wp::{ﬂj KH
(2.1) €o

V-H=0

2
VxH :J—i[g—oj kn*E
Ho

where E(x,y,z) and H(x,y,z) are the electric and magnetic field vectors, J is the current
density, o is the charge density, y and g, are respectively the permeability and permittivity
(dielectric constant) of free space and the free-space wavenumber £ is related to the
wavelength A of light in free space and to the angular frequency w by:
2r

k =—=—
(2.2) e
n in Eq. (2.1) is the refractive index of the medium, related to its permittivity ¢ and the
permittivity of free space ¢, by [1, 4]:

2
(2.3) E=n"¢gy

For the translationally invariant waveguides, i.e. for the waveguides with refractive index
profiles n = n(x,y) not varying with the distance z along the waveguide, both electric and
magnetic fields of the waveguide are according to [1] expressible as superpositions of fields
with the following separable forms:

E(x, y,z)=e(x, y)exp(ifs kz)
H(x, y,z)=h(x, y)exp(if kz)

(2.4)

where £ is the relative wavenumber and Sk is the propagation constant. After decomposing
the fields into their longitudinal and transverse components

-13 -



2 Modelling of light propagation in POF

E(x, y,z)=e (x, y)+2e. (x, y)|exp(if kz)
@9 H(x,y,2)=[h (x, y)+ 2h. (x, y)lexp(if3 k2)

where z is the unit vector parallel to the waveguide axis. Substituting those
representations into the source-free Maxwell’s equations (i.e. with J=0, 0=0) we can
relate other field components to the transverse electric field e [1]:

e, =%(Vet +e, -Vlnn2)7

1
(2.6) h, = o zlix ke, +iVe,),
t k t z

i
hz = z Vht .
Eliminating either electric or magnetic field from Eq. (2.1), the inhomogeneous vector wave
equations [1] can be obtained:

1
2 .
AE+n?k*E=-V(E-Vinn? )i 20 kJ+lV(V Jj
80 k }12

(2.7)
AH+ 12 k*H=(VxH-J)xVInn? -VxJ

With no sources present, both fields satisfy the homogenous vector wave equation,
obtained from Eq. (2.7) by setting J = 0:

AE+n?k*E =-V(E-Vinn?)

2.8 :
29) AH+n*k*H = (VxH)xVInn?,

Solving equations Eg. (2.8) even in the relatively simple case of the step-index waveguide
profile is difficult [1, 6] and only few other profiles are known to have exact solutions [1].
Pronounce simplification is possible, if variations of the waveguide refractive index An are
considered enough small (like in the case of POF with An = 6 % at the core-clad interface)
to neglect the right-hand-side of Eq. (2.8), i.e. assume

(2.9) Vinn? =0

Optical waveguides with An = 0 and consequently with n, = n; are called weakly guiding [5],
although, as Snyder and Love in [1, page 281] state, the terminology is somewhat
misleading since both strong guidance and total containment of light within the core are
possible. Both Cartesian coordinates of the transverse component e, of the electric field
propagating in such waveguide may be found by solving the scalar wave equation:

(2.10) Au+n’k*u=0

-14 - BAM-Dissertationsreihe



2 Modelling of light propagation in POF

where u denote one of the Cartesian coordinates of e,. The longitudinal components e, = 0
and h,=0 (i.e. all fields are TEM waves) due to the weak guidance approximation, the
transversal component h, of the magnetic field may be computed using the formulae
Eq. (2.6).

For a detailed discussion of the derivation of the weak guidance approximation and the
relations between solutions of Eq.(2.8) and Eq.(2.10) see Snyder and Love
[1, Chapter 32 and 33], and Gloge [5].

2.1.2 Modes

We will look for basic, simply expressible solutions of Eq. (2.10), called modes. As the
representation theorem of Alexandrov and Ciraolo [2] states, each finite energy field
propagating in a weakly guiding waveguide is a unique superposition of such modes.

Rewriting the equation Eq. (2.10) in cylindrical coordinates (r, ¢, z) we obtain:

2 2
(2.11) a—u+li( auj+ia—u+kznzu=0

y—
822 r al" E)z rz r2

We will look for solutions in separated variables only:
(2.12) u(r, ¢, z) = explip kz)- exp(ime)- j,, (r, B’ )

where j,: R—R is the radial component of the propagating mode depending on ,b’z,
p is the relative wavenumber of the mode (Sk is the mode propagation constant) and me Z
due to the conservation condition. After substituting Egq. (2.12) into Eq.(2.11) and
eliminating the variables ¢ and z we obtain:

1 22 2 :
213)  Jwt it k (” -p )_—2 =0

For notational clarity from now on 7 will be used for >
(2.14) =5

The form of the general solution to Eq.(2.13) depends on the relation between n’
and f=1:

il = €S (ke =2 b, 0 v, (P ) e

) a,, (T)‘r_‘m‘ +b,, (T)-r‘m‘ ,t=n%|m|>0
(2.15) Jm (r.7)=
a,(z)Inr ,t=n",m=0

jm(”’T)zam(T)‘[m(k’”m)‘i‘bm(i')l(m(krmj s
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2 Modelling of light propagation in POF

where J,, and Y,, are m-th order real Bessel functions of the first and second kind, /,, and K,
are m-th order real modified Bessel functions of the first and second kind and a,,(7), b,,(7)
are arbitrary but real coefficients.

In the case of the step-index waveguide two values of the refractive index must be
considered: n for the core and #n, for the infinitely extended clad:

ngy ,7€[0, R ]
216)  n(r)= {
n]<n0 ,FE(R,‘X’),

where R is the radius of the waveguide. Thus, the equation Eq. (2.13) has to be solved
separately for the core and separately for the clad. The general solution for the whole
waveguide, across its core and clad, has then to be expressed as:

ij(l”,T) ,I”E[O,R]
(2.17) jm(V,T)={ .
Un(rT) e (R, o),

where yj,, and ,j,, are the solutions of Eq. (2.13) in the core and in the clad, respectively.
Both have to satisfy the following conditions:

0Jn(R T (R T),
@18)  oJn(R7),(RT),
oJm and  j, are bounded.

First two of them are boundary conditions; the continuity of j,, and its first derivative across
the core-clad interface follows directly from Eq. (2.10) and Eq. (2.16). Third condition is an
obvious physical requirement. Functions building the solutions Eq. (2.15) are bounded or
unbounded on [0, R ] and (R, ) according to Table 2.1:

Table 2.1 Properties of the solutions to equation Eq. (2.13) in waveguide’s core and clad.

bounded unbounded
re[0,R) J, L Y, K, r " jm[>0
re[R, ) J K, Y, I 7" |m[>0

For notational clarity we introduce the following modal parameters:
wy =k ‘ng —T‘ ,
w, =k ‘n,z—z",

(2.19)

— 2_ 2
w=k ‘”0 —nj ‘ ,

V:=wR.
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2 Modelling of light propagation in POF

Note that V' is a mode-independent waveguide parameter (often called waveguide’'s
normalised frequency), for a typical POF V' = 4000. In the literature often not 7 but wg is
treated as an independent, mode-specific variable. This approach lacks a bit of the
conceptual clarity of the relative wavenumber f, but leads to simpler mode-angle relation
and occasionally will be used also here.

Taking into account the third requirement from Egq. (2.18), the data in Table 2.1, the
relations between ng, nlz, T =ﬁ'2 and combining separate solutions Eq. (2.15) for the core
and the clad, potential solutions to Eq. (2.13) may be written as:

J (W I’) re[0, R ]
2 . _ m\"o ’ ’
for 7<n; Jnr7) { a,,(2)-J,,(wr)+b, (7)Y, (mr) | re(R, ),
(wor) ,r€[0, R ]
for 7 =n Julr.7)= |
an(@)- " g re®, =)
o] re(0.R)
2.20 2ol eR
( ) for 7e (l/ll,n()) I"T {b (T)K er) ,}"G(R,N),
\m\
for 7=n? (r,7) { e
b,, wyr) ,r€(R, °0),
!
for 7>n] J rr:{ m(Wor) 1l R]
b K, (w,r) s TE(R, o),

where a,,(7), b,,(7) are arbitrary real coefficients.

All potential solutions Eq. (2.20) have to be checked against the first two requirements of
Eq. (2.18), the boundary conditions. It turns out, that:

e For 72 né : There are no propagating modes, i.e. the boundary conditions Eq. (2.18)

are satisfied by j,, (r,r) for none 7 = ng and none b,,(7).

e For 7e (nl ,no) For each meZ there is a discrete (maybe empty) set of solutions,
the solutions exist if and only if 7 and have the following form:

LR ’m

T (wor) ,re[0,R]
@21 Jm\r T )=
(k)'{iﬁ@ﬂK<wn -
K, GuR) e
where {rk |k 0.,1,. } is the set of the solutions of the following equation:
2.22) oR S (WOR): ] Ko (WlR)_
' o (WoR) K, (wR)

-17 -



2 Modelling of light propagation in POF

where wy and w; are defined in Eq. (2.19) and wiR* +wiR*> =V *. Note that all the
functions \/7~jm r, r,’f) are in L*(0,%°) and the powers carried by the corresponding
modes Eq. (2.12) may be computed as:

27[J.r-j31 (r,z‘,i” )dr =
(2.23) 0
R2
:277[[‘]ri(WOR)Km—l(WlR)KmH(WIR)_K?A(WIR)‘]m—l(WOR)JmH(WOR)]'
Km (WIR)

e For 7= nf : For each |m| > 0 the existence of the solution depends on the identity

(2.24) J}"III(LWR)) = m+|m|
The solution exists if and only if the identity holds, and then it has the form:
‘ , I (wr) ,7€[0, R ]
(2.25) Jm (r, n ): { R‘”"Jm (WR)- i , 7€ (R, ).

The function ﬁ]m(rnlz) belongs to L*(0, =) if and only if |m|>1 and then the
corresponding mode Eq. (2.12) carries finite power:

oo

(2.26) 27Z'J‘r-j,i(r,n12 r=R27rﬂJ,i(wR).
q Z

Note that in this case w, =w.

e For r<n}: For each meZ and for each 7e (—oo, nlz) there exists a solution to
Eqg. (2.13) with a form listed in Eq. (2.20):
I (wor) .re[0.R]
(2.27) Julr.7)= {
am(r)"]m(wlr)—i_bm(r)'Ym(wlr) s 7€ (R, o).

Using the identity Eq. (A1.1) we can obtain the formulae for «,, (r) and b, (7):
1
Ay (T) = E R”[WOJmH (WOR)Ym (WIR)_ WIJm (WOR)YmH (WIR)] ’

(2.28)
1
bm (T) = E R”[WlJm-%—l (WIR)Jm (WOR)_ Wo Jm (WIR)Jm+l (WOR)] .

Functions \/7~jm(r,n12) are not in L*(0, o).

The existence of the solutions to Eq. (2.13) in dependence on 7 can be schematically
summarised as on the Fig. 2.2.
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ta

T3

I >
[0 LT T, no solutions
O---0--®--0-- guided modes: discrete set of soultions (maybe empty)

—_— 0 radiating modes: continuous set of solutions

Fig. 2.2 Diagram of solutions to the radial component of a scalar field propagating in a waveguide,
equation Eq. (2.13).

According to the terminology used on Fig. 2.2, modes with the radial component j,, of the

form either Eq. (2.21) or Eq. (2.25) with |m| > 1, so propagating with 7€ [n{,n] ), are called

guided modes. They decay exponentially in the clad with the radius and carry finite power

(for examples see Fig. A2.4, Fig. A2.5 and Fig. A2.7). Alexandrov and Ciraolo have proved

in [2, Theorem 8.2] the following:

THEOREM 2.1. [2] The total number of guided modes (in all me Z) is finite. ||

Modes with the radial component j,, of the form Eq. (2.27), propagating with z'<n12 are

called radiating modes. Radiating modes extend oscillating with the radius into the clad
much farer than guided modes (no exponential decay, for examples see Fig. A2.6). As
\/7~jm(r,n12 )e L?(0,00), finite power propagating in the waveguide may be distributed
among radiating modes only continuously.

Note that Eq. (2.12) implies that both guided and radiating modes with positive 7 are
oscillating with distance z along the waveguide, while radiating modes with 7<0
exponentially decay or grow, depending on the direction of the propagation. Such
exponentially decaying or growing modes are called evanescent modes.

For given me Z let j.(r,7) and j;,.(r,7;) be two different solutions of Eq. (2.13), not both
radiating. It can be easily checked that the functions r'/zjo,,,(r,f) and r'/zjlm(r,f) are
orthogonal: Under the substitution v,(r,7%) = r'/zjo,,,(r,rg) and v (r,7) = r‘/zjh,,(r,r])
equation Eq. (2.13) gives the two following equations:

, > -0.25
Vom (r, 7 )+ Vom (r, 7 ){k2 (n2 -7, )_m—z:l =0
(2.29)

2
me (r’Tl )+vlm (I”, @ )|:k2(n2 -7 )_m_—zozs:l =0

Multiplying the first equation by v;,(r,7;), the second by vy, (7,7), subtracting the products
and integrating the result over [0,0) yields:

=

(2.30) —rl J.v()m r z’o “Vim (r,rl)dr =

(=]
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2 Modelling of light propagation in POF

=J‘[v0m (F’TO)'vrm (rﬂrl)_v(,)'m (F’TO)'vlm (I",T] )]dl" =
0

= lim [vOm (I", To ) v{m (I", 7 )_v(,)m (I", To ) Vim (7‘, 7 )] |":rw
1o—0

I, —

r=r,

=rlgl;lor' [jOm(r’TO)'jl,m(r’T])_j(,)m(r’TO)'jlm(r’Tl)]=0!
for the expression in the parenthesis converges to zero quicker than r7, if at least one of
Jom(r,T) @and j (v, 7;) is not radiating, see Eq. (A1.2).

Example computations and graphs of modal fields for two waveguides with normalised
frequency parameter V=8 and V' =20 may be found in Appendix A2.1.

2.1.3 Modal representation of an input field

In the previous part we have solved the scalar wave equation in separated variables for the
case of a step-index waveguide and obtained the set of basic configurations of the
propagating field, called modes. It turns out that each finite-power field propagating in such
a waveguide can be uniquely represented as a superposition of modal fields, as the
representation theorem of Alexandrov and Ciraolo [2] states. We now will cite the theorem
(Corollary 2.4) and use it to obtain the modal representation of the angle-dependent uniform
lighting of the fibre input face, in order to approximate the laser lighting used for the
measurements of far-field profiles in the experimental part of this work (Chapters 5 and 6).
We will also state the assumptions that will allow calculating fibre output far-field out of
modal fields.

2.1.3.1 Representation theorem

Alexandrov and Ciraolo, proving in [2] the two following theorems, have showed that the
radial components j,,, me Z, may be viewed as transform kernels, with the corresponding
sets of 7 as the transform variable.

THEOREM 2.2. [2] Let g:R,—C be such a function that +/r - g(r)e L?(0,). For each me Z
the following integral converge:

oo

(2.31) Gm(T)i=Ir'jnz(r»T)'g(r)dr

and there exists a non-decreasing function y,,:R—R such that:

e s)=L 006, 0z, ()
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2 Modelling of light propagation in POF

The Parseval identity holds:

ey 2x[rfelf ar=2[]G, ) dz, ().
g - u

THEOREM 2.3. [2] Let g:R.—C be such a function such that /r-g(r)e L2(0,) and let
xn:R—R be the non-decreasing function from Theorem 2.2. Then

i for 7€ (—°°,n12)

1.5
dy \t)=—k"m—"—"——
(2.34) Zm( ) > aﬁ,(r)+bi(r) _

For e [nf,ng) function y, is constant between the discontinuity points
{7 |k =0,1,.., P, }, where n} is the first discontinuity point if and only if the equation
Eqg. (2.24) holds and the rest 7' are the roots of the equation Eq.(2.22). In each
discontinuity point ;" function y,, has a jump " , where

-1

(2.35) =T ]:;“j,i (t, T,Z”)dr
0

For 7e [nf,ng ) function y,, is constant. Using Eq. (2.34) the formula Eq. (2.32) for the back
transform can be rewritten as:

", g
7)) i [ 22T Ol

2.36 r)=
S S P E .

N =

Both theorems directly imply the following corollary:

COROLLARY 2.4. Let u(r,p,z) be a finite-power solution of the scalar wave equation
Eq. (2.10), Eq. (2.11) with the refractive index n defined in Eq. (2.16), i.e. let for each z

27weo

(2.37) ZHIIF-|u(r, o, z]zdr dp <oo.
00

Let u,,(r, z) be the Fourier coefficients of u(r, ¢, z):

2r

1 —im
(238)  u,(rz)= ey Ie “u(r,g,z)dg.

Then u at each distance z along the waveguide is the superposition of guided and radiating
modes j,.(7,7), me Z with weights G,,(z, z):

ose)  ulr0.2)= L Y explimg)- [, (r:2)-6, .z, ),

meZ oo
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where dy,,(7) is defined in Eq. (2.34) and Eq. (2.35). The coefficients G,(t, z) contain all
z-dependence and are defined by:

oo

(2.40) an(r’z):zjr'jm(r’r)'um(r’z)dr
0

and satisfy
(2.41) G, (7,2)=G,,(1,0) exp(iB kz).
The Parseval identity holds, too:

o 21

(2.42) J.r- I|u(r, ¢),212d(p dr = ZZ T'G’" (T,zﬂzd,{m (T)

0 0 meZ _oo .
PROOF:

Eq. (2.37) and the standard Parseval identity for Fourier series imply that
Jrou, (r,z)e I2(0,00) with u,(r,z) defined in Eq.(2.38). Thus, u,(r,z) matches the
assumptions of both Theorem 2.2 and Theorem 2.3. According to Theorem 2.2, the integral
Eq. (2.40) defining G, (z, z) converges. Eq. (2.32) and the inverse Fourier transform imply
Eqg. (2.39). Eqg. (2.41) holds due to Eq. (2.12). The Parseval identity Eq. (2.42) holds due to
Eq. (2.33) and the standard Parseval identity for Fourier series. [ |

2.1.3.2 lllumination, modal fields and fibre output

For fibre lighting purposes in the experimental part of this work a red laser (Part 5.2)
illuminating the whole fibre input face was used. Using the approach from [1], we will
assume the following simplifications:

e The fibre input face is uniformly illuminated. This assumption is justified, as the beam
diameter (half width of a Gaussian energy distribution) of the laser used for
measurements is 3 mm to 4 mm, while the fibre diameter is 1 mm only.

¢ Fields at the input face are approximately those at the boundary between two semi-
infinite media of refractive indices 1 (air) and n, (core).

e Weak guidance assumption, i.e. An = 0.

¢ Modal fields in considered case of a semi-infinite waveguide are the same as in the
case of an infinite waveguide.

Those simplifications will allow finding relatively simple formulae for angle-dependent mode
excitation.

Let the input face of the fibre be lighted by a plane wave with the direction of propagation
contained in the x-z surface, uniformly polarized in y-axis direction and with incident angle a
with the fibre axis (Fig. 2.3).
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fibre axis =z
——

fibre core (no)

)

Fig. 2.3 Refraction of a beam at the input face of a weakly guiding fibre.

According to the second assumption, the field u at the input face can be computed from
standard formulae for plane-wave refraction at a dielectric interface [4]. Normalising, to
keep the total power illuminating the waveguide core constant, and using the Snell’s law
Eq. (2.79), we get the following expression for the field u at the input face z = 0 inside the
fibre:

r (0’ =AP lc()re [6Xp lk”ox sin 7/)]
=4 p(O() : lcore [exp(ikXSin a)] =4 p(a) ' lre [O,R)[exp(ikr cosg- sin a)]

where p(a) is the Fresnel transmission coefficient Eq. (2.96). Now, using the series
expansion Eq. (A1.3) and Eq. (A1.4) we obtain:

a4y ulr@.0)=1,[z {\/ Z " J,, (kr sin ) explim )

meZ

(2.43)

According to Eq. (2.38):

(2.45) Uy, (}" 0) (OY) "1 re(0,R) [Jm (kl" sin OY)]

Use the formula Eq. (A1.5) and Eq. (2.21), Eq. (2.25), Eq. (2.27) to compute the definite
integral Eq. (2.40) and obtain:

R

(Gy),, (a;7,0)=i" p(a)-Ier (wor)-J,, (krsina)dr =

0
(2.46)

mR,l
= kz ksma J, ( R)- J,,H(kRsina)—woJm(kRsina)~JnH(WOR)]-
sin? o0
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The Parseval identity Eq.(2.42) allows to write the following formula for the power
contained in a guided mode:

(2.47) p,(n)(a 7! ) 2" ‘(G0 ),, (a;r,’{”,of,

where 7" is defined in Eq. (2.35), Eq. (2.23) and Eq. (2.26). The total power in radiating
modes is given by:

(2.48)

meZ _ T)
where a,,(7) and b,,(7) are defined in Eq. (2.28). The total incident power equals:
(249) P =R

Sample computations and graphs for angle-dependent mode excitations of two waveguides
with parameter J'=8 and V=20 can be found in Appendix A2. In Part A2.2 we define,
basing on the simulations results, the optimal illumination angle for a guided mode, i.e. the
illumination angle maximising the power Eq. (2.47) entering the mode, and call it further the
external propagating angle of the mode (as relative to the outside environment, so a and
not y on Fig. 2.3).

Using Eq. (2.46) and the assumptions stated at the beginning of this part, modal fields
dependent on the illumination angle can be accurately found (as on Fig. A2.8). The
opposite construction, i.e. the precise build-up of fibre angular output characteristics from its
modal fields is not possible within the scalar wave equation approach as the scalar wave
equation does not retain the vector properties of propagating fields. However for
investigations of scattering and mode mixing the angular representation of modal fields is
necessary. Thus, we will adopt a simplified procedure and assume that each mode at the
fibre end produces the angular power output per solid radian (FFP, i.e. far-field profile, see
Part 2.3.1) of the same shape as its normalised excitation characteristics Eq. (2.47):
p,(,?)(aout;l',tn)

0.57
2z Ipf,?)(a; 174 )sinatd(x

0

output( sm, Ty ).—

out >

(2.50)

Therefore, if p,, (r,f’) equals the power contained in LP, mode at the fibre’s end, then fibre
output is assumed to be the { p,, \7}" | }-weighted superposition of curves Eq. (2.50), i.e. the
angular density of output energy per unit time is assumed to equal:

(2.51) output(et,,,,) Zzpm (Tk )OWPW( Ol s M TY, )

meZ k=0

where only guided modes were taken into account, as they carry most of the propagating
power, an assumption that will be justified on examples in Appendix A2.2 and henceforth
used. Note that Eq. (2.51) can be easily put down in vector notation as

-24 - BAM-Dissertationsreihe



2 Modelling of light propagation in POF

T
252)  ouput(e,, )= [pm (T s )] : [oufput(%m sm, Ty )] ,
where both vectors contain respective values computed for all modes in the same order.

2.1.4 Scattering and mode mixing

Even if the illuminating beam has a very small divergence (as it is the case with a laser
beam) and the angular input characteristic of the waveguide contains only one narrow peak
around the beam inclination angle, the angular characteristic of the output usually is much
more diffused. This process is referred to as scattering, mode mixing or mode coupling; its
most important reason are minute perturbations of the waveguide’s refractive index, which
are inevitable in a real waveguide and give rise to the continuous power flow between
propagating modes (Part 2.1.4.2). Another, often neglected reason, are the field transitions:
illuminating to modal and modal to output (Part 2.1.4.1). According to Eq. (2.46) even the
most parallel beam excites several guided modes, whose diffuse input/output
characteristics superposed in Eq. (2.52) build-up a diffuse output.

2.1.4.1 Scattering on input and end faces

Under the assumption of no power transfer between modes, due to Eq. (2.46) and
Eq. (2.52), the angular output power distribution can be expressed as:

(2.53) output(aom , a) = [p,(,? ) (a; T )]T . [output(aom sm, Ty )] ,

where a and a,,, are the input and output angles1, respectively. Fig. A2.14 in Appendix A2
shows sample angular output distributions for few inclinations of the input beam and for two
sample waveguides. Numerical analysis described there showed that this kind of scattering
(in investigated waveguides) practically does not depend on the illumination angle (see
Fig. A2.15).

2.1.4.2 Refractive index perturbations

In an ideal non-absorbing waveguide the refractive index profile as well as the power
distribution between modes are steady along the waveguide’s length. Slight refractive index
perturbations, inevitable in a real waveguide, give rise to the continuous power flow
between modes, usually referred to as the mode mixing or coupling. We will follow the
analysis of scattering of Magnanini and Santosa [8] and expand it to the three-dimensional
case of an optical fibre using the approach of Alexandrov and Ciraolo [2].

The refractive index # in Eq. (2.10) of an ideal waveguide depends only on the radius r. The
perturbed waveguide in our analysis will have a refractive index n,(7,¢,z), defined by the
perturbation function d(7,¢,z):

nlzj (r,(p,z)z nz(r)-i-d(r,q),z)

supp d(}",¢,Z): Q= [O’RO]X[Oazﬂ.)X[OazO]

(2.54)

" The angles between the waveguide’s axis and the direction of propagation.
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for some finite R, and z, Substituting Eq. (2.54) into Eq. (2.10) gives the Helmholtz
equation, discussed in the case of a 3-D waveguide in [2]:

(2.55) Au+n2(r)k2u :—kzd(r,(p,z)u_
the total field # can be decomposed to the sum of the incident and scattered fields:

(2.56) u(r,p,z)= Uine (r, (/”Z)Jr Usear (V,(P,Z)

Substituting Eq. (2.56) into Eq. (2.55) and using the homogenous scalar wave equation
Eq. (2.10) satisfied by u;,. we obtain a variant of the Helmholtz equation:

scat

(2.57) Aty + 17 (P 10y =—k7d(r,0,2)u

where the scattered field must obey some form of radiation conditions guaranteeing its
uniqueness. As the exact form of those conditions is not known, we will state as a
hypothesis the radiation conditions used by Alexandrov, Ciraolo [2] in solving a version of
Eq. (2.57), adapted from the open-space scattering problem [9, 25], modified to reflect the
waveguide geometry:

HypoTHESIS 1 [2] If the following conditions are satisfied for all me Z

eC'®),

u sca

d(r,q),z) is continuous and with compact support,

N 022 N ) ) 29 [ 2] 01 or )20

(2.58)

im [j (G (22 7)= B (G o), o fﬂ _o. for = £% >0 with dz,(r)#0
2| ool yd

lim (G, ), (z,7)=0, for 7= % <0,

|2

where (U4, is defined analogously to u,, (Eq. (2.38)):

2r

1 —im
259) (), (2= [ us rp.2)dp,
2 0

and (Gy..), analogously to G,, (Eq. (2.40)):

(2.60) (Gscat )m (T’ Z) = J.}" ! ]m (}", T)' (uscat )m (}", Z)dl” ’
0

and u;,., d, j., dy, are defined in Eq. (2.56), Eq. (2.54), Eq. (2.21), Eq. (2.25), Eq. (2.27)
and Eq. (2.34) then there exists at most one complex function u.,, on R’ satisfying the
equation Eq. (2.57). [ |
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2 Modelling of light propagation in POF

The meaning of the first two conditions of Eq. (2.58) is obvious; the third signifies a fast
decay of the field as radius » — oo, the last two mean that the energy going to |z| = o may
be divided into two parts: one oscillatory and one decaying.

The (assumed to be unique under Hypothesis 1) solution to Eq. (2.57) can be written as:
@61)  HUsea(r0.2)=—k? IQ d(p.1.Eulp,n,E)g(r, 0. z; p.1, E)AV

and rewritten in the form of an integral equation:

62 ulrp.z)=u,.(r.0.2)-k’ IQ d(p.1n,Eulp.n.E)g(r, 0.2 p.1,E)AV

where g(r,qo,z;p,n,f) is the Green’s function of a homogenous waveguide, found in [2]
(with the assumption that the conditions Eq. (2.58) hold) to be equal to:

im(p— T 1 ilz— . .
263  glre.zpné)=- >emle ”)IEE‘ () i (07 d, (7)

meZ

i
4r’k
Equation Eq. (2.62) is satisfied by the von Neumann series [13]:
(2.64) u(r,¢,z)=2u,(r,¢,z),

=0
where

“o(r,(ﬂs2)= uinc(r3¢’z)

(2.65)
u1+l(r’¢sz)= Tul(rs¢az)

and the operator T is defined as:
266)  Tulr.g,z)=—k’ jg d(p.1.Eulp,n.£)g(r, 0.2 p, 0, &)V .

The scattered field can be finally computed as:
@67) e (n0.2)= D u)(r0.2).
I=1

Appendix A4 contains considerations concerning a possible proof of the convergence of the
series Eq. (2.67) in the supremum norm. If brought to the end, they would prove the
existence and continuity of Eq.(2.67) and hence confirm that found u,., is (under
Hypothesis 1) the solution of Eq. (2.57) in the distribution space. Here the convergence will
be formulated as a hypothesis only:

HypOTHESIS 2 The series Eq. (2.64) converges in the supremum norm. ||
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2 Modelling of light propagation in POF

As Magnanini and Santosa did in [8], we will use in further computations the Born
approximation, i.e. we will use only the first term of the von Neumann series Eq. (2.64) in
the right hand side of Eq. (2.62) to get:

(2.68) Uscat (r, ¢,Z)z—k2IQ d(pa nag)’uinc (p,ﬂ,f)'g(i’, P,z p,ﬂ,f)dV :

Next, to investigate the waveguide’s mode mixing properties, we will use Eq. (2.39),
Eq. (2.40), Theorem 2.3, Eq. (2.30) and the orthogonality of { exp(im@}me Z } to obtain the
scattered field and excitations of guided modes after the perturbation, i.e. for z >z :

(Gscal )m (Z > T) =

- % exp(ifkz): I o, 0.1.8) wic(p,m.S)expl=imm)expl=ipks)- ji (p,7)aV

If assumed that the incident field consists of exactly one guided mode, i.e. that

(2.70) i (. 2) = expliBykz)explimy @) j,, (r,7, ),

where 7, = ,BOZ , then Eq. (2.69) can be rewritten for z >z, in the following form:
(Goear ) (2:7) =

k . ilmy—m i - . .
2.71) =;7ﬁexp(zﬂkz)-JQd(p,n,§)~e( o= gi(Bo=A ks I, (.70) jiu(p.7)dV =

= eiﬁ{(z_ZO) : (Gscat )m (ZO > T) .

This form, given the form of refractive index perturbations d(r, ¢,z), together with the
Parseval identity Eq. (2.33) and under the Born approximation may be used to compute the
power transfer coefficients between modes caused by the refractive index perturbations. If
Eqg. (2.70) is the incident field, then the relative scattered power in LPx mode equals:

rkmrkmo .
(2.72) rsp(my, kgsm, k)= 20 ‘(Gmt )., (ZO,T;(MX .

T

Eq. (2.53) describes the angular output power distribution of an ideal waveguide, depending
on the illumination angle. In a similar way we can write down the formula in the case of a
waveguide containing a perturbed fragment of length z,:

(2.73) outputMiner,,,ct) = [pf,?)(a; 7 )]T [rsp(mg, kg m, k))- [output(aom;m,r,f’ )]

where the middle term denotes the power coupling matrix obtained from Eq. (2.72), whose
rows represents ordered all incidence modes (indices my, ko of Eq. (2.72)) and columns all
ordered output modes (indices m, k). The mode order should be the same as in the cases
of both vectors representing mode excitations by the illuminating beam and the superposed
mode output characteristics.
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2 Modelling of light propagation in POF

Results of numerical computations for two waveguides and random perturbations of the
refractive index are presented in Appendix A2.3. Apparent relation between the scattered
field and the illuminating angle found there will be assumed to hold for all waveguides and
used in the raytracing model and the modelling software.

2.1.5 POF and transition to modal continuum

A huge number of guided modes (more than 10° for a standard 1 mm POF), increasingly
unique guided mode — propagation angle correspondence (Appendix A2.2) and the smooth
scattering characteristics of Appendix A2.3 suggest the transition to modal continuum and
to geometric optics, which is the topic of the following Part 2.2. Within this approach a
propagating mode is represented by a bunch of rays (i.e. local plane waves), see
[1, Chapter 36] for a discussion of local mode — ray correspondence.

2.2 Raytracing model

The raytracing model is based on geometric optics, and considered valid in the limiting case
of the wave optics, i.e. for /—0 compared to system dimensions (in typical POF
applications A = 653 nm, fibre diameter is 1 mm). It makes use of the concept of a ray,
refraction and total internal reflection [10]. The general ideas behind modelling and
raytracing through an ideal step-index fibre within the framework of geometric optics are as
follow:

e The fibre is considered to consist of a core and an infinite clad with the refractive
index n(r) defined by Eq. (2.16) or of a core and a finite clad immersed in air with the
refractive index of

no ,7€[0, Ry ] (core),
(2.74) n(r)= { n <ny ,re(R, R;]  (clad),
1< n , re (Rz, 00) (air).

e The angular power distribution of the light source is used as a probability distribution
to generate rays incident on the fibre input face.

e Each generated incident ray is traced (Fig. 2.4) through the fibre according to the
Snell’s law via successive total internal reflections on the core-clad and/or clad-air
(jacket) interface until it leaves the fibre end or is transmitted through the interfaces
and lost outside the fibre. According to the Fresnel law, each transmission of a ray
through an interface is accompanied by its non-total reflection, which is usually
neglected in the basic raytracing model (see Part 2.2.3).

o After a sufficient number of rays is traced, required average characteristics (such as
attenuation or near- and far-field profiles, see Part 2.3) are computed at the fibre
endface.
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2 Modelling of light propagation in POF

Fig. 2.4 An example of raytracing of six rays through a fragment of an ideal step-index fibre.

The Snell’s law, refraction and total internal reflection are illustrated on Fig. 2.5.

incidence

incident rays

Fig. 2.5 Snell’s law: ray transmission and total internal reflection on the interface between two media
of different refractive indices.

According to the Snell’'s law (neglecting absorption and partial reflection), the ray incident
on a flat interface between two media of different refractive indices is either totally
transmitted or totally reflected, depending on the values of the refractive indices of both
media and the incidence angle of the ray. The incidence and transmission angles of the
transmitted ray are governed by the following identity:

(2.75) n,sina, =n,sina, .
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2 Modelling of light propagation in POF

Dividing both sides by n, we get the condition for the angle a, of the incident ray:

. ny .
(2.76) smao, = —”sm oy .
n

a

And as sina, <1 we get the following relation

(2.77) sin, < —-.
na

From Eq. (2.77) follows that for n, >n,, so when the ray comes from the media with a
higher refractive index (like in the case of a ray incident from within the fibre core), not all
incident rays can be transmitted into the second medium. Thus, according to the Snell’'s
law, an incident ray is transmitted through the interface if and only if

(2.78) a, € [O, aT) , where o = arcsin(min(l,n—b)J < %
n

a

If the incidence angle a, exceeds ar, the total internal reflection occurs and the ray is
reflected back into the media it originates from. This simple, binary approach (ray is either
transmitted or reflected back) forms the basis for the simple raytracing model. In such a

model the fibre accepts incident meridional rays (i.e. the rays crossing its axis) only within
its acceptance angle.

Fig. 2.6 Light acceptance of a step-index optical fibre.

Applying the Snell’s law to the meridional ray confined to the core (the blue ray on Fig. 2.6),

inverting the inequality Eq. (2.77) (the ray has to be reflected back into the core) and
knowing that n, < n,, we can obtain:

sina =n,siny,

(2.79) . (,[ j n
sin 5—7 >—.

Ny
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2 Modelling of light propagation in POF

Taking into account
(T
(2.80) cosy = sm(z— j

we finally get the guidance condition for incident meridional rays

(2.81) sine < sin,, = w/ng —nl2 .

The maximum incidence angle a,,,, is called the acceptance angle of the fibre, while its sine
is called fibre’s numerical aperture NA:

. ny+n, ng—n
(2.82) NA =sint,,,, = 1/n02 —n,z =ny BAIEL/ LR, e nyv2A
Ny ny

where A is the relative index difference.

Rays traced exactly according to the Snell’'s law happens only in the ideal fibre case. To
enable modelling of fibre aging processes, two important imperfection-related phenomena
have to be introduced: attenuation and scattering. Moreover, as the total internal reflection,
according to the Snall’'s law, ceases to occur above the critical angle, the fibre abruptly
looses all of its guidance properties above its acceptance angle Eq. (2.72). But in reality,
the limit between total internal reflection and transmission of a ray is not abrupt and incident
rays are rather splitted on the core-clad interface than totally transmitted, as the Fresnel law
states. Although the simple binary approach is often used, it is only a rough approximation
of the reality. Due to the Fresnel reflection approx. 4 % of the power of an incident beam is
lost (reflected back) already at the input face of a fibre, while the Snell’s law predicts no
reflection there. Modelling of attenuation and scattering properties of an optical fibre within
the geometric optics approach and modelling the Fresnel reflection are discussed in
Part 2.2.1 to Part 2.2.3.

Raytracing model, besides its intuitive interpretation, has three main advantages that make
it particularly useful for simulating aging effects on light propagation:

e Aging-related characteristics (attenuation and scattering) are direct model
parameters.

¢ Total fibre attenuation and relatively easy-to-measure far- and near-field profiles can
be simply computed.

¢ Fibre geometry distortions (e.g. imperfections of a core-clad interface) can be easily
modelled.
2.2.1 Attenuation

The material causes of attenuation are briefly discussed in Part 4.1, devoted to fibre aging
processes. Here it will be considered only within the framework of fibre modelling and the
raytracing approach.

In an ideal raytracing system each ray carries a unit power and is not attenuated along its
way through fibre. But light transmitted in a real fibre is attenuated, i.e. the rays lose their
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power along the way. Within the raytracing approach this process can be modelled by
decreasing the power of each ray due to the fibre bulk material absorption (according to the
path length) or after each ray reflection/transmission on the core-clad or clad-air interface. A
ray is traced until it leaves the fibre or its power falls below a given cut-off level.

Table 2.2 Attenuation parameters.

bulk attenuation interface attenuation coefficients
core attenuation core-clad reflection
clad attenuation core-clad transmission

clad-air reflection

clad-air transmission

Therefore, two obvious groups of attenuation parameters will be used, as listed in
Table 2.2: the bulk attenuation of fibre core and clad and the interface attenuation
coefficients related to ray reflection and transmission on the interface:

e Bulk core attenuation parameter a,, and bulk clad attenuation a;,. Power P of each
ray is decreased due to the bulk material absorption and depends on the ray path
lengths [, and /; covered respectively within the fibre core and clad:

(2.83) P =Py exp(-ayly —ayl,),
where Py is the initial power of the ray.

¢ Interface attenuation parameters model ray attenuation on the core-clad and clad-air
interface (inter alia the Goos-Hanchen shift, i.e. the penetration of the reflecting ray
into the other medium, see [2]). After each ray reflection or transmission on one of
those interfaces the power of the ray is decreased:

(284) P after reflection or transmission — o P before reflection or transmission»
where a; is one of the four interface attenuation coefficients (Table 2.2).

In a fibre of length L, without scattering, a ray incident on the input face under the angle o
and propagated through fibre with the internal angle y (Eq. (2.70)) towards the fibre axis
covers a path of L/cosy length and undergoes at least L-tan /2R reflections (in the case
of a meridional ray). Both values depend on the incidence angle and thus the total
attenuation of a specific ray also depends on its incidence angle. Therefore, it may not be
equal to the general ‘attenuation’ parameter of the fibre, which is given in fibre’s technical
data and which characterises only fibre’'s average attenuating properties. The real
measured attenuation, especially of a short fibre, often depends very much on the
illumination conditions (see Fig. 6.5).

2.2.2 Scattering

The material causes of scattering are briefly discussed in Part 4.1, devoted to fibre aging
processes. Here it will be considered only within the framework of fibre modelling and the
raytracing approach. The wave optics approach to scattering was discussed in Part 2.1.4,
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here we will use only the results of the numerical experiments concerning the angle
dependence of the scattering intensity from Appendix A2.3.

In an ideal step-index fibre ray path between successive reflections is straight, Snell's (or
Fresnel, see Part 2.2.3) law and total reflection exactly governs ray reflections and define its
path. However, in a real fibre, there are several scattering effects distorting the ray path. As
showed in Table 2.3, all scattering parameters in principle may be categorised into three
groups: interface, bulk and endface scattering.

Table 2.3 Scattering parametersz.

bulk scattering interface scattering endface scattering

core-clad interface axial

core bulk scattering scale )
Scattering

endface scattering

core-clad interface

core bulk scattering slope azimuthal scattering

core bulk scattering slope clad-air interface axial

location Scattering
core bulk scattering axial core-air interface
dispersion azimuthal scattering

core bulk scattering
azimuthal dispersion

clad bulk scattering scale

clad bulk scattering slope

clad bulk scattering slope
location

clad bulk scattering axial
dispersion

clad bulk scattering
azimuthal dispersion

Endface scattering models imperfections of the fibre endfaces and the scattering effects of
the conversion between illuminating/output fields and the modal fields discussed in
Part A2.1 and Appendix A2.3.1. The examples investigated there suggest a constant
endface scattering coefficient, not dependent on the illumination angle. Thus a ray, when
transmitted through fibre input or endface, is randomly redirected and the redirection angle
is drawn each time from the centred Gaussian distribution with standard deviation equal to
the endface scattering coefficient.

Interface scattering models imperfections of the core-clad and clad-air interfaces. Their
axial and azimuthal imperfections are modelled as minute deformations of the ideal
cylindrical shape in both directions, along and across the fibre. The tilt of the tangent plane

2 The term dispersion in Table 2.3 and henceforth refers to the angular broadening of peaks in the
far-field profile and not to the time-related pulse broadening affecting the bandwidth of a fibre.
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in the point where a ray hits the interface is described by two parameters: the standard
deviations of axial and azimuthal tilt angles. The actual tilt at each reflection/transmission
point is found by drawing two random numbers from the corresponding normal distributions.
The mean number of undergone reflections is proportional to the tangent of the propagation
angle y and thus the total interface scattering increases with the incidence angle a and the
propagation angle y of a ray.

Bulk scattering models two main different scattering processes: one due to minute intrinsic
nonuniformities of the fibre refractive index® and the second caused by extrinsic impurities
and defects of the core and clad bulk material. The interface scattering occurs only on
interfaces encountered by the ray on its way, while the bulk scattering distorts the direction
of a ray in discrete points along its way in the bulk fibre material itself, due to abstract
scattering obstacles representing impurities, defects or local irregularities of the refractive
index. Two groups of parameters are required: one to decide when and the second to
decide how a ray should be scattered:

e Mean free path (fmp) length. Similarly to Arrue et al. [11], we will use the concept of
a mean free path length: each ray travels free within the fibre core or clad between
successive scattering points; the distance of its free path is determined using the free
mean path parameter. Arrue et al. [11] propose the deterministic model where the
free path of a ray is always of the same length (1 mm, i.e. the diameter of a typical
POF), not depending on the ray propagation angle. We will expand this model in two
important aspects:

I.  We will use a probabilistic model; the free mean path will be the mean of
each time randomly drawn free path distance. As the probability of
encountering a scattering obstacle by a ray is assumed to be constant per
unit length of ray path, the actual distance is modelled by the exponential
random distribution. Besides this simple rationale, the choice of the
exponential distribution has two other important advantages:

o The exponential distribution is the only continuous random
distribution that does not have memory, i.e. for an exponential
random variable X

(2.85) Plx >z]= P[X >x+zX > x]

This feature makes the bulk scattering process not dependent on
ray reflections/transmissions on the core-clad and clad-air
interfaces, so that they can occur in-between successive ray bulk
scatterings, without disturbing the exponential bulk scattering
process itself.

o Ray path lengths between successive redirection points form a
stochastic Poisson process with intensity being the reciprocal of
the mean free path. The overlay of a finite number of Poisson

% Often referred to as Rayleigh or Mie scattering, which are not quite precise descriptions here,
because the terms originally describe the scattering of a plane wave and not of modal waves.
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(2.86)

(2.87)

(2.88)

-36 -

processes is also a Poisson process, so should it in future be
necessary to differentiate between diverse causes of bulk
scattering, the joint scattering process due to all of the causes will
be also governed by the exponential random distribution with the
intensity being the sum of the intensities of all component
processes. This way the model stays open and easily expendable:
several additional defect-related scattering processes may be
separately added, removed and modelled, while the exponential
(Poisson) characteristic of the joint bulk scattering process remains
the same.

In Appendix A2.3.2 the total scattered power Eq. (A2.12) is on numerical
examples found to be decreasing with the illumination angle o (see
Fig. A2.17), and so also with the propagating angle y of the ray. Thus, to
include this scattering property in the raytracing model, the free mean path
has to be made angle-dependent, so that the average number of ray
redirections per fibre unit length has a similar shape to the curves from
Fig. A2.17. They have been fitted with the following formula

. K
exp| - sinor
{ [sin@j }

)

where the meaning of the parameters x and 6 could be intuitively explained
as follows: the slope of the curve depends on x, while & defines the slope’s
location. Formula Eq. (2.86) expresses scattering properties of a fibre in
terms of the angle-dependent scattered power per fibre unit length, as it is
the case with Eq. (A2.12) and Fig. A2.17. However, the average number of
undergone scatterings depends on the total path length of a ray, so not only
on the fibre length but also on the internal propagation angle y of a ray.
Thus, the formula Eq. (2.86) before implementing it in software as the
normalised average number of ray redirections per ray path unit length has
to be multplied by

-1 [ 2 .2
CoOsy=ng, 4/ny —sin”

and additionally divided by 27 sin  to account for the spherical geometry of
the system. Finally the following formula is obtained for its reciprocal,
i.e. the angle-dependent free mean path of a ray:

fnplar) = 274 sin & exp[( sin aj’(} |
o

\/né —sin? sin @

where A (bulk scattering scale parameter of Table 2.3) had to be added
because Eq. (2.86) describes only normalised total scattered power (as on
Fig. A2.17). Fig. 2.7 shows graphs from Fig. A2.17 (the blue dashed lines)
and curves of Eq. (2.86) for few values of the fitting parameters.
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Fig. 2.7 Total scattered power (or normalised number of ray redirections per fibre unit length) in
dependence on the illumination angle. Four curves numerically computed in Appendix A2.3
(Fig. A2.17) and few sample fitting curves of Eq. (2.86).

¢ At each scattering point the ray has to be redirected according to four bulk scattering
dispersion parameters (axial and azimuthal, for core and clad). On the analogy to the
interface scattering, the ray is redirected by changing its axial and azimuthal direction
angle. The actual redirection angle each time is drawn from the normal distributions
with the mean zero and the standard deviation being the respective scattering
dispersion parameter of the model.

2.2.3 Fresnel reflection

According strictly to the Snell’'s law, the meridional ray from Fig. 2.6 will be guided if and
only if it is incident within the cone defined by Eq. (2.81). However, more exact analysis
shows that the boundary of the cone is diffused and leads to the Fresnel formulae. Treating
rays as local plane waves, and because the fields’ components tangential to the interface
are continuous across the interface [4], the following two conditions can be written:

E,+E,, =E,,
(2.89)
H,+H, =H, ,

where E and H denote respectively the amplitudes of the electric and magnetic fields at the
interface, the subscripts i, » and ¢ denote incident, reflected and transmitted fields and L
denote the field component perpendicular to the plane of incidence, so tangential to the
interface. From Eq. (2.1) follows

£
(290) H, = En,/— ’
i
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and, using Eq. (2.3), equations Eq. (2.89) can be rewritten as

E,+E,, =E,,
(2.91) p n
Ey+E, = [-"E =—2E,,
ga na

where the subscript || denotes the field component parallel to the plane of incidence. As the
power incident on a unit area of the interface must equal the sum of the transmitted and
reflected powers, and using the fact that power is proportional to \/EE2 (and so to nE? ),
one can obtain:

(2.92) \/s_lE,z cosa, = \/s_lEf COS, +4/&, Et2 cosa,
and after simple transformation, using Eq. (2.3)

n, CoOS&
E}—E?=F} 2 "7b
n, coso,

(2.93)

what is valid for both perpendicular (L) and parallel ( || ) field components. From Eq. (2.91)
and Eq. (2.93) we easily get the following formulae for amplitudes of the transferred and
reflected fields:

n,6cos, —n, COS, 2n, cosa,
_ a a b b _ a 1
E, =E; ) E,=E;, )
20) n, cosd, +n, cosc, n, Cosd, +n, cosy,
’ E =g IbCOSQ —n,cosa, E —E 2n, cosa,
= il + ’ 4 = =il n '
ny, cose, +n, cosu,, ny, cosc, +n, cosqy,

as well as the following coefficients for the transferred power p, p; and the reflected power
q1, q) (related to the power incident on a unit area of the interface):

2
_ 1, CosQ, (Eu) _ 4dcosa, cosa,

PL — ,
n,cosay \ E; | (cosar, +d cosa, )2
q, =1-py,
(2.95) ,
= cosay | Ey | _ 4dcose, cosa,
! n,cosa, | £ (dcosar, +cosa, )
a=1-p
n
where d =2
n

a
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As geometric optics and the raytracing approach do not take into account light polarisation
effects, in the following the average of p, and p; will be used for the power transfer
coefficient p:

(2.96) P=%(PL+P|\)a- g=1-p

Fig. 2.8 shows graphs of the three average Fresnel power transmission coefficients p in
dependence on the incidence angle a, for a ray incident from both sides on the core-clad
interface and on the input face of a typical POF fibre (for the values of the refractive indices
see Eq. (A2.1)). The red line (‘air—core’) runs for lower incidence angles below the other
two, which illustrates the fact that the first loss occurs already on the input face of the fibre,
where approx. 4 % of the incident power is reflected back and does not even enter the fibre.
Note that rays incident on the core-clad interface from within the core under the angle
greater than the critical angle (approx. 70°) are totally reflected back into the core (the blue
line ‘core—clad’ and the blue ray on Fig. 2.6), exactly as it is stated by the Snell’s law.

100 | -
I, 80
M
{ LY
% 60 } \._\
o \
k] Y
) 3
i) '»1
B40 |
E
0
g — alr -> core
“ | ]
= 20 clad -> core
— core -> clad \
|
0 20 40 60 80

incidence angle [deg]
Fig. 2.8 Average Fresnel power transmission coefficients.

Raytracing through a fibre within the binary model bases on a simple procedure: a ray
incident on the core-clad interface is either transmitted into the fibre clad or reflected back
into the core. If the contribution of the partly reflected rays to the optical properties of POF
has to be considered, the Fresnel mechanism for ray reflection/transmission must be
implemented. Its exact implementation would however require splitting the ray at each
interface, unless it was incident under the critical angle or greater. But if rays were actually
splitted, the total number of rays to trace would increase exponentially and quickly become
computationally unmanageable. To avoid it, each traced ray can be on each encountered
interface not splitted but randomly either fully reflected or fully transmitted with probabilities
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equal to the relative powers Eq. (2.96) of the respective (reflected and transmitted) rays.
For example: let, according to Eq. (2.95) and Eq. (2.96), the reflected ray retain 15 % and
the transmitted 85 % of the incident power; such case will be modelled with one ray, either
reflected (with 15 % probability) or transmitted (with 85 % probability). Although this solution
is intuitively simple and obvious, the proof of its soundness astonishingly turns out not to be
as straightforward as it could be expected. Both raytracing processes (i.e. the exact one,
with splitting, and the other, modelling probabilistically the splitting) will be redefined as
stochastic processes with their values at each step corresponding to the power and
configurations (position, direction, etc.) of the traced ray(s) before successive Fresnel
reflections or at the fibre output. The proof of soundness of the probabilistic raytracing
model will be reduced to the proof of power equivalence of both stochastic processes, in
the meaning defined later.

First we need to define the space of all possible configurations (position, direction, tilt of the
splitting interface, arrival time) of the traced ray that are important, i.e. just before the
Fresnel reflection (@, in the definition below) or leaving the fibre (@\@, below).
DEFINITION 2.5. Let @, c O C R , where
9, ={(‘91s‘92»93a94"95s‘96"97a98s99"910a911)|
(6,.6,,65.0,)e ©,x{0,1},0 , cR>,(605,6,.,6;)e S* cR°,
(8.05,6,0)e O, 5> <R*, 0, R}

and ©\0, =1{6,.6,.,6,.6,.65,6,,6,,6;,6;,6/,.6,, )
6,6,,64,60,)c © , x[0,1,0 , CR>,(65,6,.6,)e S* < R*,(6;,65,6/,)e S> <R*,6,, € R},

be called the fibre space of a given step-index fibre if and only if:

e O, C R’ is the set of all points of all fibre interfaces (input face, endface, core-clad
and clad-air interface) and 6, € {0,1} codes one of the both sides of the interface.

o N =(65,65,0,)e S* cR® is a unit vector normal to the interface at the point
(61,6,,65) representing its tilt.

o (65.6,,6,)e 04 c §% c R’ is a unit vector describing the direction of a ray at the
point (6,,0,,05,04) of the interface with tilt (65,06,07). The set of possible directions ®,
depends on 6, and 1 = (65,6,6; ), and consists of only such directions, that the

Fresnel reflection (and not the total internal reflection) occurs, i.e. that
sin(£(m, (65,6,,6,,)) < d, , where d, is the ratio of the refractive index of the target
medium to the refractive index of the medium the ray originates from, where the
media are differentiated by 6,.

o (65,65,60/,)e ©, cS* cR*® is also a unit vector describing the direction of the ray
at the point (6,,60,,65,0,) of the outer fibre interface and pointing outside the fibre. The
set of possible directions ®, depends on (6,,0,,65,64): is not empty only for
(61,60,,65,0,) lying on the outside side of the fibre input or end face or clad-air
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2 Modelling of light propagation in POF

interface and consists of exactly all such directions that point outwards the fibre, i.e.
the point (6,,6,0,0,) and the direction (6,8 ,6;,) constitute a possible output point
and direction for the traced ray.

e 0;1€R is the time at which a traced ray reaches the location described by the
previous coordinates 6, to 6. [ |

The traced ray at each step of the raytracing procedure can be described as a point in the
set @x[0,1], i.e. by its configuration (position, direction, etc.) and its power.

DEFINITION 2.6. Let O be the fibre space of a given step-index fibre, defined in Definition 2.5.
The set @x[0,1], where the interval [0,1] stands for the power of a ray, will be called the ray
space of the fibre. |

The successive steps of the raytracing procedure can be described by finite (or
one-element, with probabilistic modelling of Fresnel reflections) subsets of @x[0,1]. Initial
illumination of the fibre can be then represented by a subset of @¢x[0,1], while the output of
the fibre by a subset of (@\@y)x [0,1]. Both raytracing processes are schematically
depicted on Fig. 2.9.

(a) O:_—\::’ -

,..JO—'—-——Q-@
— -—a——@

o)t
// O-'"'“““--L

(b)

© = » QO == @) > X

Fig. 2.9 Few steps of both raytracing procedures. The circles symbolise the points of the ray space.
The circles with dot mark the ray input point; the circles with x’ mark the ray output, i.e. the
elements of (0\0y)x/0,1].

(a) The exact raytracing procedure. At each point of Fresnel reflection the power of the incident
ray is splitted into the reflected (solid line) and the transmitted (dashed line) part. The input
ray falls on the fibre input face, so the first reflected ray goes back into free space and is
marked with X’.

(b) The probabilistic modelling of Fresnel reflections. Instead of tracing both reflected and
transmitted rays, only one of them is randomly chosen (with the probability proportional to the

power split coefficients in the process (a)) and further traced with full power of the incident
ray.
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2 Modelling of light propagation in POF
Before the processes can be formally defined, few auxiliary definitions and symbols should
be introduced:

DEFINITION 2.7. Let O be the fibre space and ®x[0,1] be the ray space of a given step-index
fibre.

e Let p,q:@—[0,1] be two deterministic functions on ® defined by:

Fresnel power transmission coefficient , e @,
PO~ { 1 e ©\O
(297) , ve 0>
q(0) = 1- p(0).

e Let X!, X":0—0 be two random mappings such that

o for each fe®, the random variables XS and X) are the Fresnel
reflection or output points reached by the respectively reflected and
transmitted rays in the successive steps of the raytracing procedure.

o For 0 (©\Qy) let XX = X[ =6 with probability 1.
. LetAR, AT:®—>[0,1] be two random mappings such that

o for each Oe @, the random variables 45 and 4. equal the relative power
remaining in the reflected and transmitted rays at the points X5 and X/,
respectively, not taking into account the Fresnel power transmission
coefficient p(f) and the power reflection coefficient ¢(6). A® and A"
represent the bulk and interface attenuation of the traced ray in-between
points #and X or X} .

o For 0 (©\Qy) let 4% =0 and 4, =1 with probability 1.

e Let Z20—{0,1} be a random mapping such that Z, is for each e ® a binary
random variable with the probability of success p(6), independent of Xélf , Xg, Aélf
and Ag for each 6,(e ©. Note that

(2.98) E[Zs] = p(0)

and that Z,= 1 with probability 1 for Oc (@\@,). B
NOTATIONAL CONVENTION As we will need deterministic rays as well as randomised rays, the
random variables in the following will be told from the deterministic values by an underline
or a capital letter, i.e. all random variables will be denoted with a capital letter (as in
Definition 2.7) or will be underlined. According to this notation a deterministic ray r = (0,5)

is an element of @x[0,1], while a random ray r = (8,€) is a random variable on @x[0,1],
which generally can but need not take a given value r with probability 1. ||

In the following, it will be assumed that each random ray is independent of X5, X7, 4%,
Ag and Z, , so that fibre illumination does not depend on the raytracing mechanism.
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2 Modelling of light propagation in POF

Both raytracing processes of Fig. 2.9 can be now formally defined using Definition 2.7:

DEFINITION 2.8. For each r=(6,£) (being a random variable in ©x[0,1]) let random
variables T(r), R(r) and S(r) be defined as follows:

@99)  R()=(xf.eq

where

Xo=ZpXg +(1-24)X 5,
2.100
(2100) Ay =ZgAg +(1-2Z,)A8.

For each starting ray r = (8,¢£) the exact raytracing process P,, ne N is defined by:
PO = {K}’
@100 B, = J{TC)LRE)}

rek,

And the probabilistic raytracing process Q,, ne N is defined as:

Qn+1 = S(Qn ) .

The random variables 7(r) and R(r) are represented on Fig. 2.9(a) by the dashed and the
solid arrows, respectively. The only kind of an arrow on Fig. 2.9(b) represents the variable
S(r). Now, when the processes are formally defined, its time to define what it does mean
that the probabilistic process soundly models the exact one. Intuitively, it is enough that
their measurable characteristics are the same. And this means mainly (see Part 2.3) the
equality of the mean output power per endface area or per spherical angle in the same
periods of time, which generalised leads to the mean output power per any borel subset
of @.

DEFINITION 2.9. Two finite sets of random rays {rk(l)‘rk(l) = (9,51),8,({1)),/( - 1,2,...,N(”}, le {12},

are called power equivalent if and only if for each ne N and each Me B(0®)

NO N
e el S 1)
k=1 k=1

where B(@) is the set of all borel subsets of @cR®. B

DEeFINITION 2.10. The exact and probabilistic processes P, and Q, (neN) are said to be
power equivalent if and only if for each starting ray » = (8,£) and for each neN the sets P,
and {Q,} are power equivalent. B
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2 Modelling of light propagation in POF

As the fibre space @ is defined (in Definition 2.5) in a simple and obvious way, all
necessary measurable optical characteristics of a fibre, so its far and near field profiles (for
the definitions see Part 2.3), may be defined via borel sets on @. What is left to be shown is
that both processes P, and Q, actually are power equivalent.

THEOREM 2.11. The exact and probabilistic raytracing processes P, and O, (n€ N) defined in
Definition 2.8 are power equivalent.

PROOF: The power equivalence of the processes P,, O, (n€N) will be shown inductively
with respect to n.

(a) P, and Q, are power equivalent: It is directly implied by the fact, that both
processes have the same starting ray.

(b) P, and Q, are power equivalent. Let the starting random ray be r = (8,€) and let
its probability density function* (pdf) be (6,) = fir). Then

B =) RE}={x] & p(0)4] | (x5 £ q0)45 ).
0, =S(r)

and the mean power of O, per any borel subset Me B(®) is (Eq. (2.103) with n=1):
Ele- 4y -1, (X, )=

- (245 +(1-2)af )1, (2035 +1-2, )05 )=

—_—

=F

Il Il
ST
B T
N

1D o

'

N

o

<

~

DN
e

T

N

1D

i =1

N

D xy

o

<

~

D
e

+2,(1-2,)4) 'lM(X§)+ZQ(1‘ZQ)A§ 'IM(XQT))J:
= Hle- (2345 1,0 (g )+ (-2, P af 1, (xg )=
= Ele-(zyah -1, (x5 )+ Ele- (1~ 2, ) -1, (x5 )=

- 1[Eg.ngg.1M(Xg]£:r:(e,g)lf(r)m
0x0,1]

+ 1[ Ele-(1-Zp)af -1, (8 ) = = @0 () =

0x0,1]

* Instead of a continuous distribution and its pdf, any probabilistic distribution could be taken. The proof
would stay the same; only the integrals would become notationally more complicated, as they would

have to be taken with respect to the induced measure on @x[0,1].
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2 Modelling of light propagation in POF

Because the random variables Z, are independent of X5, X1, 4% and 47:

_ 1[ Ele- p(o)ag 1, (x5 | = r = @.)|r ()i +

ox|0,1]

+ \[E e-q(0)45 1, (Xg ]5 =r=(8, g)]f(r)dr =

ox|0,1]
= Ele- pl6)- 45 -1, (x} )+ Ele - ql0)- 45 -1, (xF ).

which is the mean power of P; per any borel subset Me B(0©).

(c) Assumed that

p={oe =12 V= ffk =128}

are power equivalent:
N
(2.104) Y E [fo lM(%)] ZE[E_le(@_k)]'
MeB(©) k=1

we will prove that so are also

S P =

O, :S(”o)-

The following notational conventions will be used:
e Letfi(0,c) beforeach ke {0,1,2, ..., N} the pdf of r, = (Hk,gk).
o Let fy(6.¢) be for each O O the pdf of S((6,1)) = (Xp,40).

e Let Kj(0) be for each 6c® the mean power in MeB(®) of
S((0,1)) = (Xo,4p):

K, (0)=E[4, -lM(Xg)]:J-MJl-afg(w,s)dsda).

e Let 7(0) be for each ke {0, 1, 2, ..., N} the mean power of r, = (Hk,gk) in
point fe ©:

1

T,(6):= j e f,(0,€)de

0
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2 Modelling of light propagation in POF

- 46 -

Using the above notation Eq. (2.104) can be rewritten as follows:
> >

\v4 j 7,(6)d6 = j T, (6)d6 = j T,(6)d6
meB(@)" M oo M M3

M is here any borel subset of @, so the above implies:

0=370

with probability 1.

We will need also the following fact, directly implied by the definition of the power
equivalence of sets (Definition 2.9):

¢ The relation of the power equivalence of sets is fransitive, i.e. if (i) sets A
and B are power equivalent and (ii) sets B and C are power equivalent, then
(iii) sets A and C are also power equivalent.

Step (b) of the inductional proof directly implies that the sets {R(rk),T(rk) and

{S(rk )} are power equivalent. Thus, instead of considering P,+; and Q,, it is
enough to prove that {S(rk ]k =1,2,...,N} and {S(ro )} are power equivalent. For
each Me B(O):

Eleq - Ag, 14 |Xg, JI=
Because the random variables £ and A@’Xio are independent:
= Eleq - Eldg, 11 ¥, J|= Eleg K0 (00)|=

1

”g Ko (0) 4(6,€)de a6 = jKM ‘J.s‘fo(e,g)dg d6 =
(] 0
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2 Modelling of light propagation in POF

2.3 Basic measurable optical characteristics of a fibre

Both approaches to light propagation presented in the previous parts of this chapter
describe the mechanism and allow modelling of light transmission through an optical fibre.
Both depend on a number of imperfection-related parameters (perturbations of the
refractive index, roughness of the core-clad interface, mean free path length, scale of the
bulk scattering, etc.). As there is no known way to estimate the exact numerical values of
these parameters a priori, they must be found a posteriori, i.e. by comparison between
simulation results and measurements (see Part 3.2.3). The basis for comparison must be
such optical characteristic of a fibre that on one hand is relatively easy to measure and to
simulate but on the other hand diverse enough. As only static and not time-related
characteristics® of an optical fibre are considered here, there are two potential fibre
characteristics: far- and near-field profiles, discussed in the following parts. In the
implemented raytracing software (Chapter 3) only the far-field profile is used.

2.3.1 Far-field profile (FFP)

Far-field profile (FFP) of an optical fibre is the angular distribution of its output power per
solid angle. It is measured far away from the fibre endface, at a distance much larger than
the fibre’s diameter, so that the angular differences of rays leaving the fibre at different
points of the endface can be neglected.

Fig. 2.10 lllustration of the concept of the far-field profile (FFP) measurement.

FFP is expressed in units of average power radiated into a solid radian. Fig. 2.11 shows two
sample FFP measurements. Further examples can be found in Part 6.3.

As it can be concluded from literature [10], FFP strongly depends on the
e illumination angle,
e POF type,
e sample length (see Fig. 2.11).

® As for example the bandwidth or the impulse-response characteristic of a fibre.
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Fig. 2.11 Influence of POF sample length on the FFP at the illumination angle 15°.

Within the raytraced software discrete FFPs will be computed from rays leaving the endface
of the simulated fibre as a mean output power per solid radian. Let the discretisation step
equal Aa and let S(a,0+Aa) denote the total power of all rays leaving the fibre end face with
inclination angle towards the axis within the interval [a,a+Aa). Then

FFP(a,00+ A)) = Sle,a+Aa) ,
(2.105) (1 : 1
47 sin| EAO! sin a+EA0:

where the denominator equals the surface of a fragment of a sphere with radius 1 lying
between a and a+Aa angle.

2.3.2 Near-field profile (NFP)

Near-field profile (NFP) of an optical fibre is the local output power distribution of the light
just after leaving the fibre endface (Fig. 2.12).

— A

e e
—_——— —

Fig. 2.12 Few last steps of a raytracing procedure for several rays:The concept of the near-field profile
(NFP) measurement.
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2 Modelling of light propagation in POF

NFP is expressed in units of average density of output power on the endface surface.
Fig. 2.13 shows three sample simulated near-field profiles; the simulations were made with
the software described in Chapter 3. The illumination angle was equal to 15° (the same as
on Fig. 2.11), the input beam divergence was 0.35 mrad and the whole input face of a fibre
(core and clad) was lighted. The imperfection-related parameters were assumed to be
equal to those of the fitted non-aged Mitsubishi fibre (Table 7.1). The noise overlaid on the
NFP curves should be attributed to the statistic dispersion of the results and gets smaller
with the increasing number of traced rays. Note also that (if uniform ray distribution on
fibre’s endface assumed) the closer to the endface centre, the fewer rays are used for NFP
computations and hence the more noise.

2.5

output power [a.u./mm?]

-100 -75 S0 25 0 25 50 75 100

fibre endface radius [%]

Fig. 2.13 Three sample simulated near-field profiles of one POF type and different lengths.
For each curve approx. 1 000 000 rays were traced.

It has turned out that NFP is almost independent of fibre length and illumination angle.
Thus, NFP seems to be unsuitable for fibore comparison purposes and will not be used for
optimising and fitting the imperfection-related fibre parameters.
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3 Simulation software

3 Simulation software

3.1 Commercially available software

Commercially available, scientific raytracing software can be in general divided into two
groups: sequential and non-sequential raytracing software.

Sequential raytracing software is used for modelling and simulating the cases, in which the
rays are traced through a predefined sequence of distinct optical objects, e.g. starting with a
simulated light source generating several rays in approximately the same direction,
refracted by a given lens no. 1, reflected then by a mirror and finally refracted by a lens
no. 2. In this way traced rays may be collected on a projection screen and analysed in
respect to their local distribution, optical path length, etc. A typical and widely used software
form this group is the application package Optica, an extension tool to the well-known
Mathematica from Wolfram Research [21].

Software packages belonging to the other group model the raytracing problems, in which
the sequence of objects encountered by each traced ray is not or cannot be determined a
priori, before the actual simulation of the ray path takes place. So, for example, some rays
in the above-mentioned setup may miss the mirror but be nevertheless further traced
towards other objects lying behind it, while a sequential raytracing software would just
discard them as not matching the predefined sequence of encountered objects. This kind of
general raytracing requires usually more sophisticated, versatile and costly software then
simpler sequential systems. Similar raytracing procedures are also used by 3D lighting and
scene-building graphical applications. The most known examples are the systems CODE V
from Optical Research Associates [22] and ASAP from Breault Research Organization [23].

Implementing the raytracing procedure described in Part 2.2 would be potentially possible
using both described kinds of commercial software, because the system consists of the light
source and only one optical element, the modelled fibre. However, none of the available
systems offers enough detailed control over the raytracing mechanism (angle-dependent
intensity of the random scattering, reflection attenuation coefficients, etc.) to allow direct
implementation of the developed model. Reprogramming would be possible in the case of
Optica, but it would require deep intervention in the basic code of the package and the
resulting software (as partly interpreted, not compiled) would be too slow to trace millions of
rays in a reasonable amount of time. Thus, new specific software for fibre raytracing had to
be developed.

3.2 Developed software

Developed software consists of three parts:

e Raytracing software library containing all the type definitions and the functions
necessary for performing actual simulations.

¢ Graphical user interface, which allows entering values of the simulation parameters,
passes them to the library and presents obtained simulation results (FFP, NFP,
attenuation, etc.).
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¢ Optimisation functions and their user interface, which allows entering the simulation
parameters and measured FFPs, and communicates with the library for performing
simulations to use the results in the optimisation process.

All three parts of the software were developed in Delphi environment from Borland Software
Corporation [24], as it offers both code compilation (so high speed of its execution) and
easy creation and management of the graphical user interface.

3.2.1 Raytracing software library

The raytracing library performs the simulation exactly as described in Part 2.2, according to
the values of three groups of parameters: setup, material and software.

3.2.1.1 Setup parameters

Several setup parameters are required to define the physical properties of the simulation
setup, i.e. of the simulated fibre and the light source. Their values, as describing the
physical setup itself and not the optical properties of the fibre, are assumed to be given a
priori, independent of the aging time, and are not optimised to get the best fit between
simulated and measured FFPs (Part 3.2.3.1). Most important of the setup parameters are
listed in Table 3.1.

Table 3.1 Most important setup parameters.

parameter type remarks
fibre length real
core diameter real
fibre diameter real
(&)
5 . . Should rays be traced also
(&)
q(%;_ use clad tracing logical in the clad?
[ .
£ | model Fresnel reflection logical ShOUId. Fresnel reflection
modelling be used?
A ray is traced only until it
ray cut-off power level real leaves the fibre or its power
falls below the cut-off level.
illumination angle real
light divergence real
L
S Should uniform illumination
:Ji uniform illumination logical (and not a Gaussian beam)
c be used?
0
_g beam horizontal diameter real
IS
3 | beam vertical diameter real
beam rotation real
beam centre location (real, real)
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3.2.1.2 Material parameters

The material parameters of the simulation describe the optical properties6 of the simulated
fibore and thus their values are optimised to get the best fit between simulated and
measured FFPs (Part 3.2.3.2). Besides the parameters listed in Table 2.2 (describing fibre
attenuation) and Table 2.3 (describing fibre scattering) they include also the refractive
indices of fibre’s core and clad, hence a total of 23. As an exact optimisation of all 23
independent parameters would be too time-consuming and thus practically impossible, the
material parameters have been subjected to additional constraints, see Part 3.2.3.1.

3.2.1.3 Software parameters

The software parameters influence only the control of the simulation process and the
display of its results, not the way the simulation is performed. The most important software
parameters are:

e Memory save, a logical parameter. If true, the data of rays leaving fibre’s endface
(output point, power, direction) are stored only in an aggregate form. If false, all the
output data of each ray (six 4-byte reals, i.e. 24 bytes for each ray) is stored. One
million traced rays would produce then approx. 24 MB of output data for further
processing.

e Refresh step, an integer. As refreshing the cumulative FFP/NFP graphs on the
screen takes usually much more time than tracing a single ray through a typical fibre,
it is reasonable to refresh the graphs only after several rays have been traced. This
parameter defines the number of rays to trace before the simulation is temporary
interrupted for displaying its updated results.

e Rescale FFP, a logical parameter. If true, the simulated FFP is rescaled to fit a given
FFP and the fit quality is computed.

3.2.1.4 Simulation results

In each simulation step a total of refresh step (a software parameter, see Part 3.2.1.3) rays
is traced. Then the library functions return the simulation results listed in Table 3.2.

Table 3.2 Simulation results returned after each simulation step.

parameter type remarks
FFP array of reals simulated discrete FFP
NFP array of reals simulated discrete NFP
transmitted rays array of array a'rray of output rays’ data
of reals (if save memory == false)
no of traced rays integer no of rays traced in this step
no of transmitted rays integer no of rays leaving fibre’s endface
backscattered power real
transmitted power real

® With the exception the endface scattering parameter of Table 2.3, which describes rather the quality
of fibre endface polishing than the aging-affected material properties.
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3 Simulation software

Fig. 3.1 shows the user interface allowing for a direct use of the raytracing library. The
upper part of the window contains controls used for manual parameter input; the lower part
shows basic simulation results (transmitted and backscattered power, number of traced
rays, average simulation speed in rays per second, etc.) and either simulated FFP/NFP or
their simple smoothness measure based on the variation of the curves. The simulated FFP
can be rescaled to match a reference FFP and the fit quality can be computed. During the
execution the shown results are regularly refreshed, the FFP/NFP graph can be saved for

future reference.

For the FFP simulation presented in Fig. 3.1 as sample parameter values a fibre length
of 3.2m and an illumination angle of 15° were used; over a million of rays have been
traced. Fig. 3.2 shows the simulated NFP obtained during the same simulation.
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Fig. 3.1 Graphical user interface of the raytracing library for the FFP simulation. Besides other
parameters, 3.2 m fibre length, 15 °illumination angle and over a million of traced rays have

been used.
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Fig. 3.2 Simulated NFP corresponding to Fig. 3.1.

3.2.3 Optimisation software

The graphical interface described in the previous part, although it allows to compute the
(best-square-)fit quality of the simulated and reference FFPs, cannot be used for
optimisation of the material parameters with the measured FFPs (Chapter 6) due to two
following reasons:

e |t allows for only manual and thus rough and non-systematic optimisation.

e |t allows simulating and comparing with the reference of only one FFP at a time. For
better optimisation results, several FFPs of each investigated fibre type, differing only
in the length of the measured sample and its illumination angle (see Chapter 6), have
been measured.

Thus, another software had to be developed for performing the semi-automatic optimisation
of fibre’s material parameters (Part 3.2.1.2), capable of using several measured FFPs
simultaneously.

3.2.3.1 Setup parameters

The setup parameters mentioned in Part 3.2.1.1 and listed in Table 3.1 have been divided
into two groups: those common to all measured fibre samples and those specific to each
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FFP measurement. Assumed to be common to all measured samples and thus constant are
the following:

¢ Fibre core diameter: a value of 0.98 mm, as typical for POFs, has been used.
¢ Fibre diameter: a value of 1 mm, as typical for POFs, has been used.
o Use clad tracing: true. Rays in all simulations were traced also in fibre’s clad.

¢ Model Fresnel reflection: true. The Fresnel reflection was modelled according to the
mechanism described in Part 2.2.3.

¢ Ray cut-off power level: 10™. Each ray was traced until it left the fibre or its power fell
below 0.01 % of the initial level.

The rest of the setup parameters describe the conditions of each measurement and thus
have to be given separately for each FFP measurement, even if some of them happen to
be the same for all samples:

¢ Fibre length: approx. 0.8 m, 3.2 m or 10 m, see Parts 6.1 and 6.2.
¢ lllumination angle: 6°, 15° or 24°, see Part 6.2.
¢ Light divergence: 0.35 mrad, see Part 5.2.

o Uniform illumination: true. As the diameter of the laser beam used was 3 mm to
4 mm (Part 5.2), it was assumed that the illumination intensity over 1 mm POF input
face is sufficiently uniform. Thus, the setup parameters related to the illuminating
beam do not apply.

Fig. 3.3 shows the part of the user interface of the optimisation software used for the input
of setup parameters and corresponding measured FFPs.
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Fig. 3.3 Optimising software. Input of setup parameters and corresponding measured FFPs.
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3.2.3.2 Constraints on optimised material parameters

Altogether there are 23 material parameters that describe optical properties of a fibre
(Part 3.2.1.2). To get the best fit between the measured and simulated FFPs the values of
all of them should be optimised. However, optimising the fit-quality function (see
Part 3.2.3.3) in 23 independent variables would be too time-consuming to make the
procedure practical. Thus, several constraints had to be enforced on the possible values of
the parameters, leading to the total of six independent optimisation variables listed in
Table 3.3.

Table 3.3 Optimisation variables used and their relation to the material parameters.

va:zble variable name relation to fibre’s material parameters
varl endface scattering = endface scattering
var2 core bulk attenuation = core bulk attenuation

= core-clad reflection attenuation

= core-clad transmission attenuation
= clad-air reflection attenuation

= clad-air transmission attenuation

var3 interface attenuation

= core bulk scattering scale
var4 Scattering scale = clad bulk scattering scale
(‘A’ parameter in Eq. (2.87))

= core bulk scattering slope
var) scattering slope = clad bulk scattering slope
(‘c’ parameter in Eq. (2.87))

= core bulk scattering slope location
var6 scattering slope location = clad bulk scattering slope location
(‘0 parameter in Eq. (2.87))

The six optimisation variables defined in this way describe 12 of 23 material parameters.
The 11 parameters left were assumed to be constant and their values were not optimised
for the following reasons:

e clad bulk attenuation = 10 000 dB/km

The most of the transmitted rays cover almost all the way to the endface of the fibre
within its core, guided through a chain of successive total internal reflection on the
core-clad interface. Thus, the main medium for light transmission is the core, not the
clad, and the exact value of clad bulk attenuation does not seem to be decisive. The
value of 10 000 dB/km is mentioned in Daum et al. [10].

e core-clad interface axial scattering = core-clad interface azimuthal scattering
= clad-air interface axial scattering = core-air interface azimuthal scattering
=0.

As stated in Part 2.2.2, the intensities of both interface and bulk scattering processes
are dependent on the propagation angle of a ray. The formula Eq. (2.86) for the
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angle-dependent intensity of the bulk scattering allows for a relatively free choice of
its shape. Therefore, it will be assumed that its shape accounts also for the influence
of the interface scattering and thus the only parameters needed for modelling of the
scattering remain the parameters 4, k and 0 of Eq. (2.86) (var4, var5 and var6).

e core bulk scattering axial dispersion =
= core bulk scattering azimuthal dispersion =
= clad bulk scattering axial dispersion =
= clad bulk scattering azimuthal dispersion =
=0.2°

In general, the (optimised) scale parameter of the bulk scattering (i.e. 4 in Eq. (2.87))
defines how many times a ray is scattered on its way through fibre, while the four
angular dispersion parameters here define by which angle it is each time scattered.
Thus, as in practice each ray is scattered numerous times, both groups of
parameters define the angular dispersion of the scattered power, which depends
linearly on angular dispersion parameters and is proportional to the square root of
the mean number of ray redirections (the reciprocal of the mean free path,
depending on the scale parameter). Hence, scale and angular dispersion parameters
are substitutive and it is sufficient to optimise the value of only one of them, which
was also experimentally confirmed in a simpler raytracing model [15]. The value of
0.2° was experimentally found to correspond to a reasonable optimised value of the
parameter 4.

e The refractive index of fibre’s core was assumed to be 1.492, a typical value
for PMMA.

¢ The refractive index of fibre’s clad was each time computed using Eq. (2.82) and the
value of fibre’s numerical aperture NA (Table 4.2) given by the manufacturer. As a
result, the following values were used: 1.402 for Mitsubishi’s fibres, 1.411 for Asahi’'s
fibres and 1.406 for Toray’s fibres.

3.2.3.3 Optimisation procedure

A semiautomatic optimisation procedure based on the Powell’s Direction Set Method [6]
has been implemented and used to optimise the values of the six variables varl to var6
(Part 3.2.3.2) to obtain the best fit between the computed and measured FFPs.

In each step of the optimisation procedure FFPs have been simulated for the actual values
of varl to var6 using the same setup parameters (Part 3.2.3.1) as that of the measured
fibre samples. The target function d(vari,...,var6) to be minimised was the sum of the
normalised square differences between the measured and simulated two-dimensional
FFPs’, rescaled to get the best fit between the two:

7 Obtained from their one-dimensional representation, thus constant on the rings of Aa = 0.2° width.
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where Q is the fragment of a unit sphere with its origin in the middle of the fibre output face
and extending up to 45° (i.e. the detectable angular range of the FFP optics) out of the fibre
axis. For the meaning of the weighting coefficients in the second term see Eq. (2.105). The
non-indexed sum in Eq. (3.1) denotes the sum over all different measured and simulated
samples for the current fibre and the scaling factor ¢ has the value that minimises the
target function, i.e.:

(32) U= arggelliin d(varl,...,var6).

Rescaling of the simulated FFPs with the factor ¢ was necessary because the measured
FFPs are expressed in a.u./srad and those arbitrary units cannot be related to the
unknown total power incident on the fibre’s input face, as it is the case with the simulated
FFPs. Nonetheless the attenuation parameters can be optimised thanks to the use of
different fibre lengths.

Note that the target function Eq. (3.1) compares two-dimensional FFPs and thus puts more
weight on the tails of the corresponding one-dimensional curves, which can be generally
observed on measured and fitted graphs in Appendix A3: the higher is the output angle, the
better the fit of both curves.

Simulated FFPs are in fact obtained from a Monte Carlo procedure and thus each
computed value of the target function d contains some amount of noise disturbing its
minimisation process. The more rays traced, the less gets the noise and the more exact is
the optimisation procedure but also the longer time it demands. Thus, the
best-fitting values of the variables varl to var6, describing the optical properties of an
investigated fibre, are always loaded with some amount of uncertainty (Table 7.4), which
represents the trade-off between the optimisation time and its accuracy.
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4 Aging process and POF samples

In this chapter we give a short overview of the material loss mechanisms in POFs and of
fibre aging (Part 4.1), discuss their influence on the raytracing model (Part 4.2), specify the
fibres used (Part4.3), describe the applied aging conditions and show sample online
measurements of relative fibre transmission under long-term environmental stress
(Part 4.4).

4.1 Loss mechanisms in POF and fibre aging

POF during its service time is often subjected to different types of environmental stresses,
which result in changes of its chemical and physical properties. This is called aging. Most
important in respect to the deterioration of optical properties are long-term influences of
high temperature, high humidity, freezing, radiation, and mechanical or chemical stress.

See Daum et al. [10, Chapter 8] for a general discussion of the reliability of POFs, for
measurement methods to trace the influence of environmental stresses, for reports on
several reliability investigations made under various stress conditions, for a description of
standardisation efforts and for numerous references.

Loss factors of optical transmission in a commercially available POF can be divided into
those specific to the material itself (intrinsic) and those related to fibre imperfections or
impurities (extrinsic). They are further categorised as shown in Table 4.1.

Table 4.1 Loss factors in POFs [10, 17].

e high harmonics of the C-H bondings

Absorption "
e ¢lectron transitions
Intrinsic loss
factors
Scattering |e  Rayleigh scattering
e organic contaminants
Absorption | e  water absorption
factors

e microcracks
Scattering |e fluctuations of the core diameter
e core-clad interface imperfections

The influence of the aging process on the loss factors will not be discussed in detail in this
research. It is treated parallel to this work, in another thesis at the Federal Institute for
Materials Research and Testing (BAM) by A. Appajaiah. He investigates the material
aspects of high temperature and high humidity aging [see 33-36]. Further literature is given
in [17], too.
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4.2 Aging influence on raytracing model

In a real fibre as well as in a modelled one that imitates it, passing light encounters two
main imperfection-related processes: attenuation and scattering. Both processes can be
described in two ways:

I. Using the terms belonging to the geometric or wave optics, as in Chapter 2 and
Appendix A2, so that the overall influence of attenuation and scattering on fibre
optical properties and light propagation could be computed or simulated, which is
one of the goals of this work.

Il. But they can also be described using rather chemical than optical terms, as in
Table 4.1 and in the above-mentioned thesis of A. Appajaiah [see 33-36]. This
approach allows better understanding of the environmental influence on fibre
material itself but it is harder to relate its terminology and findings to fibre’s optical
properties.

In this work we deal mainly with simulation of light propagation, so the terminology of the
first approach will be used. Because it is reasonable to assume that the raytracing
mechanism itself does not change under environmental influences, its parameters have to
change. The raytracing parameters listed and explained in Part 2.2 will be (as it is described
in the beginning of Part 2.3) found for each investigated fibre separately, by comparison of
the measured and simulated FFPs (Chapter 7). Thus, by tracing changes of the values of
the model parameters between initially the same fibres but subjected to different
environmental conditions or different aging times, the following aging-related alteration can
be found:

e Aging of the fibre bulk material, traced via its modelled
o scattering (the left column of the Table 2.3) and
o attenuation properties (the left column of the Table 2.2).

e Degradation of the core-clad interface, traced via the modelled
o interface scattering (the middle column of the Table 2.3) and
o interface attenuation coefficients (the right column of the Table 2.2).

For the results and discussion see Chapter 7.

4.3 POF samples

For the experimental part of the work commercially available PMMA-based POFs of 1 mm
diameter from three leading manufacturers were bought and used:

¢ Mitsubishi Rayon Co., fibre ESKA CK-40,

e Asahi Chemicals Inc., fibre LUMINOUS TB-1000,

e Toray Industries Inc., fibre PGU-FB 1000.

All three fibres were bought bare (core and clad only, no jacket) to trace the pure influence
of the environmental conditions during the aging tests, not disturbed by the presence of the
protective layer of jacket. The nominal basic technical data of all three fibres are very similar
and listed as given by the manufacturers in Table 4.2, together with the measured
attenuation value at 650 nm for comparison. For its measurement a broad-spectrum light
source was used and a Sentronic S2000 miniature spectrometer [37]. The light was
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launched into measured samples using a 0.8 mm diameter, high NA silica fibre directly
illuminating the POF input face.

Table 4.2 Basic technical data of the fibres used in investigations.

ESKA LUMINOUS PGU-FB

CK-40 TB-1000 1000
%) 1 mm 1 mm 1 mm
core material PMMA PMMA PMMA
clad material fluoropolymer fluoropolymer fluoropolymer
numerical aperture NA 0.51 0.485+0.05 0.50
acceptance angle a,,, 30.7° 29.0° 30.0°
nominal attenuation at 650 nm 0.20 dB/m 0.16 dB/m 0.15 dB/m
measured attenuation at 650 nm 0.14 dB/m 0.14 dB/m 0.16 dB/m

Mitsubishi’s fibre’s numerical aperture value of 0.51 corresponds to the typical combination
of PMMA-core refractive index of 1.492 and clad refractive index of 1.402. Those typical
values are used in all numerical investigations of Appendix A2, as stated in Eq. (A2.1).
Fig. 4.1 shows the spectral attenuations of all three non-aged fibres measured using 10 m

polished-end samples with a Sentronic S2000 miniature spectrometer [37].

10000 4
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L cctscdesdecameaskresbestnnsdeadeasiansiznakas
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Fig. 4.1 Measured spectral attenuations of 10 m non-aged fibres.
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4.4 Aging conditions

Five samples of all three fibre types were subjected to accelerated aging using specialised
climatic chambers, ovens and the following conditions:
o total fibre length 13 m, aged fibre length 10 m;
e dry heat conditions (80 °C, 90 °C, 95 °C and 100 °C), i.e. high temperature without
humidity control (<<50 % RH) or
¢ high temperature combined with high humidity (92 °C /95 % RH, 92 °C / 50 % RH).

All tests went on for 3000 h to 4500 h. During the whole aging processes online
transmission measurements of the hot fibres were automatically performed with the help of
the multiplexer measurement system [19]:
¢ in 10 min steps,
e using three LEDs with spectra centred at: 525 nm (green), 590 nm (yellow) and
650 nm (red) wavelengths.

Fig. 4.2 to Fig. 4.6 show sample results of obtained measurements. Note that the
transmission measurements were done online, during exposureg, and thus they differ from
the values that are obtained from the fibres cooled down to the room conditions®, for the
comparison of both see Fig. 4.20.
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Fig. 4.2 Relative online transmission of 10 m hot samples (i.e. during exposure) of investigated fibres
at 650 nm wavelength and under 100 °C / <<50 % RH.

The transmission of the fibres subjected to the 80 °C/<<50 % RH stress has stayed
practically constant or dropped only very slightly during the whole test (Fig. 4.3). The
temperature of 92 °C combined with 95 % relative humidity (Fig. 4.5) has caused the
transmission of all fibres to drop completely within the first hours of the test, while keeping

® Fibres during exposure will be henceforth referred to as the ‘hot’ fibres.
® Henceforth referred to as the ‘cold’ fibres.
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the temperature at 92 °C but decreasing the relative humidity to 50 % has allowed the
transmission (at least in the commonly used 650 nm region) to stay relatively high through
the whole test time, see Fig. 4.5 and Fig. 4.6.
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Fig. 4.3 Relative online transmission of the 10 m Asahi’s (left) and Mitsubishi’s (right) fibres at
650 nm wavelength in dry heat conditions, i.e. 80 °C, 90 °C, 95 °C and 100 °C without
humidity control (<<560 % RH).
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Fig. 4.4 Relative online transmission of the 10 m Asahi’s (left) and Mitsubishi’s (right) fibres at three
wavelengths under 100 °C / <<50 % RH.
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Fig. 4.5 Relative online transmission of the 10 m Asahi’s (left) and Mitsubishi’s (right) fibres at
650 nm wavelength under 90 °C to 95 °C, without humidity control (dry heat, i.e. <<60 % RH)
and with high relative humidity (50 % RH, 95 % RH).
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Fig. 4.6 Relative online transmission of the 10 m Asahi’s (left) and Mitsubishi’s (right) fibres at three
wavelengths under 92 °C and with 50 % relative humidity.

4.4.1 Sample preparation

Because the main purpose of this research was to develop and to validate the model for
light propagation in POFs, capable of describing the aging-related changes, as typical
examples, besides the non-aged fibres, only the samples obtained during the
100 °C / <<50 % RH aging were used for further investigations (Chapters 6 and 7).
Table 4.3 lists the respective aging times. At each time given in the table, a set of three fibre
samples, one for each manufacturer, has been taken out of the oven and kept for
attenuation and FFP measurements, resulting in a total of 18 fibre samples.

Table 4.3 Aging times of POF samples used for further optical investigations.

Aging time (100 °C / <<50 % RH)
of the sample sets used for investigations

sample set 0: 0 h (fresh, non-aged fibre)
sample set 1: 2 h

sample set 2: 258 h

sample set 3: 677 h

sample set 4. 1393 h

sample set 5. 4467 h

After cooling down to room temperature (about 25 °C) each of those 18 fibre samples had
been cut into three pieces of the length of approx. 0.8 m, 3.2 m and 10 m. The endfaces of
the pieces were polished using several abrasive papers with a grade down to 0.1 um. As a
result 54 fibre samples with fine-polished endfaces were prepared for FFP measurements
(Chapter 6). The 10m-pieces were used for measuring the spectral attenuations with a
Sentronic S2000 miniature spectrometer [27], too. The results of the latter are given in
Fig. 4.7 to Fig. 4.9.

Note that the attenuation of the cooled down fibres in the usable wavelength ranges seems
to stay approximately constant or even decrease (Asahi’s fibre, Fig. 4.7 and Fig. 4.9) with
the aging time (between set2 and set4). This astonishing behaviour is confirmed with the
total transmission measurements obtained in Chapter 6 (Fig. 6.11 to Fig. 6.16).
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Fig. 4.10 to Fig. 4.12 compare the relative transmission of the hot fibre samples (Fig. 4.2)
with the relative transmission of the cooled down samples.
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Fig. 4.7 Attenuation of the 10 m sample of Asahi’s fibre at different aging times (Table 4.3) in the
100 °C / <<50 % RH conditions.
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Fig. 4.8 Attenuation of the 10 m sample of Mitsubishi’s’s fibre at different aging times (Table 4.3) in
the 100 °C / <<50 % RH conditions.
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Fig. 4.9 Attenuation of the 10 m sample of Toray’s fibre at different aging times (Table 4.3) in the

100 °C / <<50 % RH conditions.
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Fig. 4.10 Relative transmission of the hot (online) and the cold (cooled down) 10 m sample of Asahi’s

fibre at 650 nm wavelength and under 100 °C / <<50 % RH.
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Fig. 4.11 Relative transmission of the hot (online) and the cold (cooled down) 10 m sample of
Mitsubishi’s fibres at 650 nm wavelength and under 100 °C / <<50 % RH.
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Fig. 4.12 Relative transmission of the hot (online) and the cold (cooled down) 10 m sample of Toray’s
fibres at 650 nm wavelength and under 100 °C / <<50 % RH.
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5 Experimental instrumentation for FFP measurements

In Part 2.3 the near- and far-field profiles of an optical fibre were discussed and the far-field
profile (FFP) was chosen as the enough general and diverse fibre characteristic to be used
for the comparison of simulated and real POFs, as in [11, 15, 16]. The simulation software
described in Chapter 3 uses the formula Eq. (2.105) for computing the FFP of a simulated
fibre. The FFP of a real fibre must however be measured. In this chapter the measurement
setup, the necessary instrumentation, its reliability and calibration is discussed.

5.1 General measurement setup

To get enough complete characteristics of a POF, either aged or non-aged, its far-field
profile has to be measured in dependence on

¢ incidence angle of an illuminating beam,

e fibre length.

Fig. 5.1 schematically depicts the setup used for FFP measurements [see 38-40]. A red
laser is used for POF illumination; a specialised far-field optics translates the angular
characteristic of fibre output power to spatial coordinates, needed for illumination of the flat
CCD sensor of the CCD camera. The CCD camera output is then processed to obtain the
FFP using the procedure described in Part 6.3.

measured fibre

9 FFP optics

Fig. 5.1 Principle of the measurement setup.

The measurement setup outlined on Fig. 5.1 has resolved basic contradiction between time
efficiency and accuracy of other possible techniques for far-field measurement, but has also
created new problems:

e |t is time-effective. Due to the huge number of measurements (several combinations
of illumination angle, fibre length, fibre type/manufacturer and aging time) the
traditional scanning (goniophotometric) measurements turned out to be too time-
consuming. Therefore, it was decided to use a CCD camera with 1024x1024 cells
(meaning a simultaneous measurement of >10° points of FFP), as it allows taking
measurement with a limited number of short single snaps.

e |t is accurate in respect to the illumination. The CCD camera’s reliability had to be
investigated. As there is no obvious literature on calibration and reliability of CCD
cameras, a procedure for their quality assessment and calibration had to be
developed (Part 5.3). A common measurement problem of standard CCD cameras,
i.e. too small dynamic range, may be overcome by combining several measurements
taken with different exposure times, as described in Part 5.3.4.

e |t is accurate in respect to the angular resolution. Using a bare CCD sensor with a
direct illumination provides first at the distance to the fibre endface of approx. 12 mm
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the sufficient angular part of the FFP (xa,,,. = 30°) but already too small angular
resolution (approx. 4.7° for the fibre of 1 mm diameter). A specialised FFP optics
with much higher angular accuracy (at least 0.5°) became available recently.
However, optics’ reliability, i.e. its angular distortion and stability of resolution, had to
be investigated, too (Part 5.4).

5.2 Laser

As a light source for POF illumination a laser diode DLS 15 from LINUS was used with the
following optical properties:

e Wavelength: 653 nm at 20 °C.

e Beam divergence: 0.3 mrad to 0.4 mrad (0.017° to 0.023°).

e Beam diameter: 3 mm to 4 mm.

The beam diameter safely surpassing that of the measured POFs (1 mm) guarantees
almost uniform illumination of fibre input face. The stability of the output power was tested
together with the stability of the CCD camera’s response after exposure time change, for
the results see Fig. 5.9.

5.3 CCD camera calibration

On one hand scientific CCD cameras are fast and robust instruments for optical
measurements. On the other hand, most of reasonably priced scientific CCD cameras are
constructed to give rather qualitative than quantitative results. Nevertheless, they can be
used for scientific purposes and POF measurements, although with a calibrating procedure.
In this part we describe the measurement setup used to obtain calibration measurements
(Part 5.3.1), discuss common inaccuracies of CCD cameras (Part5.3.2), propose a
calibration procedure for measurements (Part5.3.3) and address the often-occurring
problem of too small dynamic range (Part 5.3.4).

5.3.1 Setup for calibration measurements

The general idea of the setup is to get several snaps (raw responses of the camera’s CCD
sensor) under direct uniform illumination of the sensor with the wavelength approximately
the same as that of the used laser. Fig. 5.2 shows the setup.

bare CCD sensor

\ red filter \direct ilumination

Fig. 5.2 Principle of the calibration setup.
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The distance between the integrating sphere and the bare CCD sensor was approx. 0.5 m.
The uniformity of the sensor relative illumination intensity was better than 0.5 %, measured
with a linear photodiode. An example is shown in Fig. 5.3. The sensor of dimensions
14.34 mm x 14.34 mm was positioned for measurements with its centre at the ‘0 mm point’
of the horizontal axis on Fig. 5.3. As the CCD camera a ‘BFi OPTIiLAS Eurocam CCD-1020°
with the following characteristics was used:

e 1024 x 1024 pixel resolution,

o Bit depth of 12 bpp (bit per pixel), i.e. 4096 distinct grey levels [GL],

¢ Adjustable exposure time > 1 ms.

The same camera was used for all further FFP measurements (Chapter 6).

100.0%

99.9%

99.8%

99.7%

99.6%

illumination intensity

99.5%

99.4%

Fig. 5.3 Typical measurement of the illumination uniformity of the CCD sensor (measured radial from
the centre and plotted as normalised intensity).

For each of the considered exposure times (1 ms, 2 ms, 4 ms, 8 ms, 16 ms and 32 ms) the
following four measurement series were made, each one of 16 measurements, to obtain the
calibration data:

e A series X, of 16 measurements taken with zero illumination, i.e. under completely
dark conditions. The absolute illumination intensity m, = 0.

e Three series X, i€ {1, 2, 3} of 16 measurements, each taken under uniform lighting
conditions generated by the distant integrating sphere of Fig. 5.2 and (by using
different voltage) generating approx. 25 %, 50 % and 75 % of the maximal CCD
Sensor response (1012 GL = 4096 GL, grey levels). The absolute (actual) illumination
intensity m;, ie {1,2,3} was measured for each series separately with a linear
photodiode.

5.3.2 Unreliability factors and calibration data

The reliability of a single uncalibrated CCD camera measurement may be strongly
influenced by several factors; below the most important are mentioned.
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5.3.2.1 Dark profile

The dark profile is the camera’s output under zero illumination, thus it is the constant bias of
all measurements taken with the camera. For each exposure time it is computed as the
average of all 16 measurements of the X, series taken under completely dark conditions.
As the dark profile is strongly temperature-dependent and the used camera is not cooled,
all measurements should be taken after the temperature of the CCD sensor stabilises.
Fig. 5.4 shows the dark profile of the used camera at the typical 32 ms exposure time.
Besides the slope, a finer wave-like pattern may be noticed, it is probably related to the row
arrangement of the CCD cells within the sensor.

A\S\
— n

AN

Fig. 5.4 The camera’s dark profile at 32 ms exposure time. For presentation clarity and to reduce the
effect of unreliable cells and noise the figure shows averages over 8x8 squares.

5.3.2.2 Random noise

Sensor random noise is the cause of inevitable differences between successive
measurements taken under exactly the same conditions. Random noise of a single CCD
cell may be modelled with a centred Gaussian random distribution. For each of six
exposure times and for each CCD cell the sample standard deviation s;, i€ {0, 1, 2, 3} of
each of four measurement series was computed.

The average sample standard deviation of the dark profile (under null illumination) at the
most-used 32 ms exposure time was found to be approx. 1.5 GL (grey levels). For the non-
zero illumination, it turned out that s; increases with the illumination intensity. Thus, the
random noise of each cell was characterised by taking the maximum value of three relative
sample standard deviations'®. The average value at 32 ms exposure time was found to be
approx. 0.6 %, which corresponds to approx. 24 GL at the full illumination (4095 GL).

10 Sample standard deviation divided by the respective average illumination level.
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5.3.2.3 Non-linear response function

Response function of an ideal CCD cell should have a linear relationship between input and
output. However, response function of a real CCD cell may not be ideally linear, as it was
the case with the earlier investigated ‘DALSA CA-D4’ camera [14] with the average relative
non-linearity of 7 %. Nevertheless, the camera used here showed the average non-linearity
of approx. 0.3 % only (at 32 ms exposure time).

For each exposure time the response function of each cell is modelled in the following way:
The average response x; of each cell in the measurement series X; and the corresponding
measured absolute lighting intensities m; form a series of four points (m;,x;), i€ {0, 1, 2, 3}
lying on the actual response function of the cell. The points have to be fitted with a
cell-specific function x = f(m) (linear, quadratic, exponential, etc.). The inverse function
m :fl(x) will be further used to translate cell’s response x to the real illumination intensity
m and where appropriate to correct cell’s nonlinear characteristics, too. The average non-
linearity of the sensor can be computed by averaging relative deviations of the best linear fit
from the measured points.

As the camera used here had almost linear characteristic, the response functions of its
CCD cells were fitted with the linear function:

(5.1) x =f(m) :=xy + am.

5.3.2.4 Non-uniform sensitivity

Differences between response functions of CCD cells make the sensitivity profile of a CCD
sensor non-uniform. As the CCD camera used here had almost linear response, its
sensitivity profile can be assumed to stay constant over all illumination levels and be directly
defined by the inclinations a of individual cells’ response functions Eq. (5.1). Fig. 5.5 shows
the relative sensitivity profiles of the used camera at 1 ms and 32 ms exposure time (the
average value was rescaled to 100 %).

Fig. 5.5 Relative sensitivity profiles of the camera at 1 ms (left) and 32 ms (right) exposure time. For
presentation clarity and to reduce the influence of unreliable cells and noise the figures show
averages over 8x8 squares.
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5.3.2.5 Damaged CCD cells

In a real CCD sensor some cells are usually damaged or dead as well as there may be dust
and scratches present on the CCD sensor’'s surface generating a remarkable local
sensitivity change. Such cells will be called irregular. Measurements of such cells are
unreliable and should be approximated basing on measurements of neighbouring cells.
Fig. 5.6 presents sample defect of the sensor surface of the investigated CCD camera that
has been identified via the sensitivity profile analysis.

As an irregularity criterion the following can be used: The cell is marked irregular if and only
if it satisfies at least one of the following conditions:

e The random noise of the cell is too high (e.g. more than a given r-percentile of the
noise values of all investigated cells).

e The fit quality (average square fit error) of cell’s fitted response function f'is too bad
(e.g. the error exceeds a given r-percentile of the square fit errors of all investigated
cells).

¢ The fitted response function f of the cell differs too much from the average fitted
response function (e.g. the mean square difference exceeds a given r-percentile of
the mean square differences of all investigated cells).

For further investigations the 3o level (i.e.»=99.7 %) was used. The total number of
irregular cells of the camera was found to be about 2.4 % (approx. 25 000 of the total cell
number ~1 050 000). Fig. 5.7 shows the distribution of the irregular cells on the sensor
surface at 32 ms exposure time. Note the horizontal blue strip in the upper part of the figure,
consisting entirely of unusable irregular cells.

CCD columns

CCD rows

Fig. 5.6 Fragment of the sensitivity profile of Fig. 5.7 Irregular cells (blue dots) foundt 32 ms
the camera at 32 ms exposure time. exposure time
The magnification clearly shows a
defect of the CCD sensor surface.
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5.3.2.6 Temperature dependence

Many characteristics of a CCD camera are strongly temperature-dependent. As the CCD
camera used here was not cooled, all measurements (calibration as well as FFP
measurements) had to be taken after the CCD sensor temperature stabilises. Fig. 5.8
shows the camera’s response in dependence on the heat-up time (the camera was
switched on at the time 0, after overnight cooling down to the room temperature). As a
result, the heat-up time of at least 2 hours before all measurements was always used.

The temperature distribution on the sensor could be different for different exposure times,
which (if true) would require some accommodation time after any change of the exposure
time. Fig. 5.9 shows the response of the already heated-up camera after the exposure time
change at the time 0 from 32 ms to 1 ms. As the variations found are rather minute, it was
assumed that there is no need for such accommodation time. Small variations of the
camera’s response prove also good output power stability of the laser used for the
measurements.

1 1 101%
100% -

95% 1
100% -

90%

85% * T T T T 99%
0 10 20 30 40 50 60 [min] 0
Fig. 5.8 The camera’s typical response (an Fig. 5.9 Response of the already heated-up
average over 10x10 cells square) in camera after a change of the exposure
dependence on the heat-up time at the time from 32 ms to 1 ms.

exposure time of 32 ms.

5.3.3 Calibration procedure for measurements

The factors mentioned in the previous section strongly influence the reliability of
measurements taken with a CCD camera. Nevertheless, using the calibration data collected
and processed as described in Part 5.3.1 and Part 5.3.2, each raw measurement can be
calibrated in the following way to exclude or minimise effects of the most of the mentioned
unreliability factors:

1) Let the camera heat-up at least 2 hours after switching it on.

2) Take a series of N subsequent raw measurements and compute their average.
The random noise should be reduced by the factor of N”.

3) Correct the sensor's dark noise and non-uniform sensitivity by applying to the
measurement of each CCD cell its inverse fitted response function m = /' (x).

4) For each irregular cell approximate its measurement value using the calibrated
measurement values of its neighbouring regular cells.
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As the unreliability characteristics of the camera can be wavelength-dependent, the
calibration measurements should be made with a light source of approximately the same
spectrum as used for final measurements.

5.3.4 Expanding the dynamic range

Another practical problem concerning the most of the low-end scientific cameras is their
restriction to the bit depth of 8 bpp or 12 bpp only and thus to the dynamic range of 1:256 or
1:4096 at the very best. This dynamic range, relatively small for many applications, can be
further considerably reduced by the above-mentioned unreliability factors. It was found that
this limitation might be overcome by combining several calibrated measurements taken with
different exposure times, according to the following procedure:

1) Make several calibrated measurements using different exposure times.

2) Upscale those made at shorter exposure times to match the longest exposure time
measurement. As the exposure time rate only roughly determine the scaling factor,
find it beforehand by comparing the response functions fitted at different exposure
times.

3) Merge the scaled measurements into the final measurement.

Note that for each of the calibrated measurements obtained in 1) a separate calibration
procedure should be performed and a separate set of calibration data (Part 5.3.1) should be
used. Note also that at long exposure times in highly excited areas overexposure (blooming
effect) should be avoided.

5.4 Quality verification of the far-field optics

As the far-field optics in the setup outlined on Fig. 5.1 a specialised FFP optics A3267-12
from HAMAMATSU with the following optical specifications was used:

o Detectable angular range: +45°.
e Angular resolution: 0.2°.
e Wavelength range: 630 nm — 1650 nm.

Accuracy of measurements taken with the setup strongly depends on the optics’ reliability.
Thus, three crucial FFP optics’ characteristics have been investigated:

e Linearity of the 6-f (angle—space) transformation.
o Distortion level of the 6-ftransformation.
¢ Real angular resolution and its stability across the angular input range.

The results of the tests described below showed that the real angular resolution of 0.5°
(with the used CCD camera) is worse than the nominal value of 0.2°. Nevertheless, the
tests clearly confirm high quality of the optics and show that there is no need for any FFP
optics calibration procedure.
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5.4.1 Test setup and measurements

For test purposes the red laser diode described in Part 5.2 was used to directly illuminate
(with adjustable illumination angle) the input lens of the FFP optics under various angles
with the help of a goniometer. The full field of the FFP optics (approx. 90° in diameter) was
tested in approx. 5° steps with the resolution of +5° (= £0.083°), all input beams were
contained in one plane which included also the optics’ axis. The resulting spots were
registered with the CCD camera and calibrated according to the procedure described in
Part 5.3.3. Fig. 5.10 shows a typical example of a calibrated spot.

A

aation s

ALLCON

A\

Fig. 5.10 Sample calibrated spot measured by the CCD camera (clip from the complete CCD array).
One CCD cell row/column corresponds to the angular distance of approx. 0.2°

5.4.2 Linearity of angle to space transformation

As the angular differences between all successive input beams were equal to 5°, the
distance between respective peaks (the maxima) of successive measured spots on the
CCD sensor should be identical, up to one pixel. Because the plane in which the
illumination angle changes is parallel neither to the rows nor to the columns, both are
influenced by the angular changes. Table 5.1 lists the coordinates of all spot peaks, i.e. of

the CCD cells with maximum illumination, and the distance between the current and the
previous spot.
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Table 5.1 Coordinates of the spot peaks on the CCD sensor.

illumination X y illumination X y
angle (rows) | (columns) d angle (rows) | (columns) d
-45° 410 717 - 5° 536 507 24.7
-40° 423 696 24.7 10° 548 486 24.2
-35° 436 675 24.7 15° 561 465 24.7
-30° 448 654 24.2 20° 573 444 24.2
-25° 460 633 24.2 25° 585 423 24.2
-20° 473 612 24.7 30° 598 402 24.7
-15° 485 591 24.2 35° 610 381 24.2
-10° 498 570 24.7 40° 623 360 24.7
-5° 510 549 24.2 45° 635 339 24.2
0° 523 528 24.7

The linearity of the FFP optics has turned out to be constant across the full detectable
angular range of 90° (up to one pixel). One row or column of CCD cells corresponds to the
illumination angular difference of approx. 0.2°. The results confirm that there is no need for
any linearity corrections.

5.4.3 Distortion of angle to space transformation

As all input beams were contained in one plane, the peaks (i.e. the maxima) of all
measured spots should be also placed in one line across the CCD sensor, up to
one-pixel resolution. Using the coordinates of the spots maxima from Table 5.1 the linear
best fit can be computed to be y =-1.68066x+1406.81074 . The average non-linearity of
the spots, i.e. the square average distance between the spots and the linear best fit was
found to equal approx. 0.06°, i.e. much less then 0.2° corresponding to one cell distance.
Thus, there is no need for any distortion corrections.

5.4.4 Angular resolution

Fig. 5.8 shows how much an illuminating beam of approx. 0.02° divergence (see Part 5.2) is
broadened by the FFP optics. Although the maximum of its energy distribution can be
located within the distance of one cell (as in Part 5.4.2), the nearest distance in which two
similar distributions can be distinguished from each other depends on the dispersion of the
distribution. It is common sense to use the width at half height as a measure, i.e. the
diameter in degrees of each spot at 50 % of its height, see Fig. 5.71. Additionally the
corresponding 25 % values are given to be on the save side. The resolution measured at
half height (50 % level) was not worse than 0.5°, which will be assumed to be the real
angular resolution of the setup.
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Fig. 5.11 FFP optics resolution test: spot diameter at 25 % and 50 % spot height.
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6 Far-field profile measurements

6.1 Samples preparation

As stated in Part4.4.1, the non-aged and aged up to 4467 hours (approx. half a year)
samples (at 100 °C / <<50 % RH) have been used for further investigations. Table 4.3 lists
the aging times of the six sets of the fibre samples used, each consisting of three fibres
from three manufacturers and finally cut into three pieces of approx. 0.8 m, 3.2 m and 10 m
length. Then, after fine polishing of the endfaces, 54 fibre samples were prepared for FFP
measurements.

6.2 Measurement procedure

The measuring setup is outlined in Fig. 5.7 and used with three illumination angles (6°, 15°
and 24°) to investigate the angle-dependent optical properties of the fibre. The fibre bend
radius during all the measurements was kept not less than 20 cm to avoid the influence of
bending [20, 68, 69].

Thus, each measured fibre sample is identified by three parameters:

o manufacturer (M: Mitsubishi Rayon, A: Asahi Chemicals, T: Toray Industries),
e aging by set no. (seto, ..., seth: see Table 4.3)
e sample length (7: ~0.8 m, 2: ~3.2 m, 3: ~10 m),

while each FFP measurement can be uniquely identified by the additional fourth parameter:
e illumination angle (6°, 15° and 24°).

Thus, for clarity from now on each fibre sample will be uniquely identified by the first three
parameters (e.g. M-set3-2 will mean: Mitsubishi’s fibre, aged 667 h, 3.2 m sample length),
while each measured FFP will be identified by all four parameters (e.g. M-set3-2-15 will
mean the FFP of the M-set3-2 fibre sample measured at 15° illumination angle).

For each calibrated FFP measurement six raw snaps with up to six applicable exposure
times were used, meaning a maximum of 36 snaps for each of 3 illumination angles and
54 fibre samples. These raw snaps were calibrated, related to the corresponding exposure
times and merged together according to the procedure described in Parts 5.3.3 and
Part 5.3.4. In total more than 1000 raw snaps had to be processed.

Taking into account the three illumination angles, 54 fibre pieces need a total number of
162 measured FFPs. However, for the shortest fibres (0.8 m) many measurements had to
be discarded, as they were apparently strongly dependent on the momentary run of the
fibre, as observed on the monitor of the online measurement system. Due to an accidental
damage to the sample, one measurement of the 3.2 m fibre piece (M-set1-2-24) had to be
discarded, too. Table 6.1 lists the illumination angles used for the measurements of the
18 shortest fibre pieces.
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Table 6.1 lllumination angles used for the FFP measurements with the shortest (0.8 m) fibre pieces. All
three illumination angles have been used with all 36 longer fibre pieces (except M-set1-2-24).

ESKA LUMINOUS PGU-FB

CK-40 TB-1000 1000
set0 24° - 24°
set1 24° 159 24° -
set2 24° 159 24° 24°
set3 159 24° 24° 159 24°
set4 24° - 159 24°
setb 24° 159 24° 15°

6.3 FFP extraction

The calibrated measurements, obtained as described in the previous part, have the form of
two-dimensional functions (or 1024x1024 matrices) characterising the two-dimensional
angular power distribution of the light leaving the fibre endface. The distance from the
matrix centre depends linearly (Part 5.4.2) on the axial angle a of an outgoing ray, while its
azimuthal angle ¢ equals the azimuth of the corresponding point on the matrix'". A clip of
the M-set3-2-24 two-dimensional FFP has been linearly downscaled to the 256-level grey
scale (the brightest point has grey level 255) and inverted shown on Fig. 6.1.

The discrete one-dimensional FFP(a,a+Aa) will be computed out of the two-dimensional
measurement matrix M using the formula Eq. (2.105) with the discretisation step Ao = 0.2°.
The total power S(a,a+Aa) radiated into the axial angle interval [a,0+Aa) can be computed
by taking:

2r o+Aa
61  Slea+sa)=| I¢~M(x0 +d;'0cosp, v, +d; Osing)do dp,

0 o

where (xo, 1) are the coordinates of the FFP ring centre, d, = 0.2° is the angular difference
corresponding to one-pixel distance on the matrix (see Part 5.4.2). The value of the
measurement matrix M(x,y) for real x and y is computed by linear interpolation of the
neighbouring integer points:

M(x,y)=(x]=xN(yT-yM (x Ly )+ =Ly DM (LT D)
+(e=[x )y - (L D+ G =Ly I (L D).

The resulting discrete one-dimensional FFP has to be rescaled by dividing it by the cosine
of the respective illumination angle (6°, 15° or 24°) to account for the decrease in the power
entering the fibre.

(6.2)

" For angle notational conventions see Fig. 2.1 and Fig. 2.3.
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Note that the total transmitted power can be computed using Eq. (6.1) as S(0°,45°), due
to the fact that the FFP optics’ detectable angular range of +45° (Part 5.4) exceeds the
acceptance angle a,,,, of all measured fibres (approx. 30°, Table 4.2).

40° T

30° F

20°

10° F

o° F

-10°

a'sin g [deg]

-20°

-30°

-40° :

-40° -30

°  =-Z0° -10°

o* 10°

a'cos ¢ [degl]

20° 30° 40°

Fig. 6.1 Sample calibrated two-dimensional FFP measurement M-set3-2-24 (i.e. ESKA CK-40 fibre,
aged 677 hours at 100 C / <<50 % RH, 3.2 m length, illumination angle 24 9).

6.4 Sample results
6.4.1 Non-aged 10 m fibre

Fig. 6.2 to Fig. 6.4 show the influence of the illumination

non-aged samples of fibre from all three manufacturers.
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Fig. 6.3 Influence of the illumination angle (6° 155

249 on the FFP of 10 m non-aged
Mitsubishi’s fibre.
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Fig. 6.5 shows the transmission loss due to the change of the illumination angle. Besides
the generally higher attenuation of the Mitsubishi’s fibre, a decreasing relation between the
total transmission and the illumination angle can be observed. It is in perfect agreement
with the raytracing model, as the rays travelling through fibre with higher propagating angle:
1) cover longer path and 2) undergo more reflections on the core-clad interface than the
rays parallel to the fibre’s axis. The pronounced transmission drop of the Toray’s fibre at the
24 illumination angle, in relation to other fibres, suggests higher ray reflection losses on the
core-clad interface, see Table 7.1 to Table 7.3.
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output angle [deg] + illumination angle [deg]
Fig. 6.4 Influence of the illumination angle  Fig. 6.5 Influence of the illumination angle
(69 159 249 on the FFP of 10 m (69 159 249 on the total output
non-aged Toray’s fibre. power of 10 m non-aged fibres.

Fig. 6.6 to Fig. 6.8 compare the FFPs of 10 m samples of the fibre from different
manufacturers. The shapes of the curves clearly suggest that the most scattering occurs in
the Toray'’s fibre (red curve is on all figures wider than the other two). The relative scattering
intensity in both other fibre types turns out to be dependent on the illumination angle:

-40 -20 0 20 40
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e for higher order modes (24°
illumination angle, Fig. 6.8)
higher in the Asahi’s fibre
(black curve).

o for lower order modes (6° ﬁeuoo — —| —— A-sElO-06
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5

Fig. 6.6 The FFPs of 10 m non-aged fibres from three
manufacturers illuminated under 6 °angle.

The above observations are confirmed by the fitted values of angle-dependent scattering
intensity, see Part 7.5, Fig. 7.10.
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6 Far-field profile measurements
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Fig. 6.7 The FFPs of 10 m non-aged fibres  Fig. 6.8 The FFPs of 10 m non-aged fibres from
from three manufacturers three manufacturers illuminated under
illuminated under 15°angle. 24°angle.

6.4.2 Influence of sample length

Fig. 6.9 and Fig. 6.10 illustrate the influence of the POF sample length on its FFP for the
illumination angles 15° and 24°:

¢ The attenuation is in general proportional to fibre length, thus the FFPs of the longer
samples (green and blue curves) runs mainly below the FFPs of the shorter samples
(red curve).

e The scattering is also proportional to fibre length, thus the FFPs of the longer
samples are more diffused.
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Fig. 6.9 Influence of POF sample length Fig. 6.10 Influence of POF sample length (0.8 m,
(3.2 m and 10 m) on the FFP of 3.2 m and 10 m) on the FFP of non-
non-aged Toray’s fibre at 15° aged Toray'’s fibre at 24 °illumination
illumination angle. angle.

6.4.3 Influence of aging time
6.4.3.1 Attenuation

Fig. 6.11 to Fig. 6.13 show the total transmitted power (i.e. S(0°,45°) of Eq. (6.1)) through
a 3.2 m sample in dependence on the aging time. The logarithmic scale for the (horizontal)
time axis has been used to clearly show the transmission change between set0 (0 h), set1
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6 Far-field profile measurements

(2 h) and set2 (258 h). Note that the logarithmic scale could be used only after adding 1 h to
all aging times listed in Table 4.3 (to move the beginning of the aging from time 0 h to 1 h).

The total transmitted power of Fig. 6.71 to Fig. 6.13, measured in arbitrary but absolute
units, can be easily recalculated to obtain the relative transmission loss of the sample in
dependence on the aging time (i.e. relative to the transmission of the non-aged sample at
the respective illumination angle). Fig. 6.14 to Fig. 6.16 compare it with the relative
transmission loss calculated from the attenuation measured with a spectrometer (black
lines, calculated from the attenuation data Fig. 4.7 to Fig. 4.8). The curves corresponding to
the spectrometer measurements combine mainly the behaviour of the curves corresponding
to the 15° and 24° illumination angle. This is caused by the high N4 of the large-diameter
silica fibre directly illuminating the fibre input face in the spectrometer setup, thus strongly
exciting higher-order modes.
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Fig. 6.11 Aging time influence on the total Fig. 6.12 Aging time influence on the total
output power of 3.2 m cold Asahi’s output power of 3.2 m cold
fibre at three illumination angles (6° Mitsubishi’s fibre at three
15°and 249). illumination angles (6, 15°and 249).
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Fig. 6.13 Aging time influence on the total Fig. 6.14 Relative transmission of 3.2 m cold
output power of 3.2 m cold Toray’s Asahi’s fibre computed from the FFPs
fibre at three illumination angles (6° and measured with a spectrometer.

159 249).
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Fig. 6.15 Relative transmission of 3.2 m cold
Mitsubishi’s fibre computed from the
FFPs and measured with a
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6.4.3.2 Far-field profile

6 Far-field profile measurements
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Fig. 6.16 Relative transmission of 3.2 m cold

Toray’s fibre computed from the FFPs
and measured with a spectrometer.

Fig. 6.17 - 6.22 show the FFPs of the 3.2 m samples in dependence on the aging time..
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Fig. 6.19 Influence of POF aging time on the FFP
of 3.2 m Mitsubishi’s fibre at 6°
illumination angle.

Fig. 6.20 Influence of POF aging time on the FFP
of 3.2 m Mitsubishi’s fibre at 15°
illumination angle
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Fig. 6.21 Influence of POF aging time on the FFP  Fig. 6.22 Influence of POF aging time on the FFP

of 3.2 m Toray’s fibre at 15 °illumination
angle.

A general increase in attenuation (each successive curve runs generally below the
preceding one) and in scattering intensity (successive curves are more diffused) with aging
time can be observed. The inverse run of the first two curves of the Toray'’s fibre (Fig. 6.21
and Fig. 6.22) can be attributed to the measured slight increase in the transmission of
lower-order modes after the first 2 hours of aging, see Fig. 6.13 and Fig. 6.16. It suggests a
slight decrease in scattering intensity, too
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7 Aging influence on model parameters

The first part of this chapter (Part 7.1) discuss the optimised values of the raytracing
parameters, sample lengths of their uncertainty intervals, and shows graphs of the
dependence of the optimised target function™ on two sample parameters. Part7.2
compares the overall attenuation of the simulated fibres with the measured attenuation of
the real fibres. Part 7.3, Part 7.4 and Part 7.5 discuss the influence of the aging process on
the optimised model parameters except for the endface scattering (the quality of the core-
clad interface, attenuation of the bulk core material, angle-dependent scattering). It was
found that the measured profound transmission drop during the first hours and days of
aging is caused mainly by physical deterioration of the core-clad interface while the slower
drop at the end of the aging process (first after few thousands of hours) can be attributed to
the beginning then chemical deterioration of the fibre material.

7.1 Raytracing parameters

The optimum values of six raytracing parameters were found separately for all of the
18 investigated POF types (3 fibre manufacturers, 6 aging times each), using the
optimisation procedure described in Part 3.2.3. As stated in Part 6.2, a total of as many as
128 simulated and measured FFPs had to be matched. An average of 1500 rays were used
to compute each FFP; finding the best fit along a given direction required approx. 12
computations of the target function Eq. (3.1). To find the global minimum the optimisation
along all the directions had to be repeated at least 4 times. As a result approx. 10 million
rays had to be traced.

Table 7.1 to Table 7.3 list for all three manufacturers the optimum values of the respective
fibres’ raytracing parameters found during the optimisation process. The numeration of the
parameters was introduced and explained in Part 3.2.3.2, Table 3.3. Fibre ‘sets’ represent
aging times (set0 = non-aged; setb = strongly aged), for the explanation see Table 4.3 in
Part4.4.1 and Part 6.2. Appendix A3 compares sample graphs of FFPs measured and
simulated using the corresponding optimum parameter values from Table 7.1 to Table 7.3.

Table 7.1 Optimum values of the raytracing parameters of the non-aged and aged Mitsubishi’s fibre
(ESKA CK-40). See Table 4.2 for the aging times and Table 3.3 for the parameter

description.
M-set0 M-set1 M-set2 M-set3 M-set4 M-setb

varl [deg] 34 3.0 3.2 32 3.5 3.8
var2 [dB/km] 113 113 120 120 125 145
var3 [mdB] 0.10 0.25 1.20 1.15 1.20 1.55
vard [mm] 34.0 13.5 8.0 9.75 10.0 5.80
var [a.u.] 2 0.75 1 1 1 8

var6 [deg] 14 14 15 15 25 45

"2 Target function Eq. (3.1) represents the fit quality between measured and simulated FFPs.
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7 Aging influence on model parameters

Table 7.2 Optimum values of the raytracing parameters of the non-aged and aged Asahi’s fibre
(LUMINOUS TB-1000). See Table 4.2 for the aging times and Table 3.3 for the parameter

description.

A-set0 A-set1 A-set2 A-set3 A-set4 A-setb
varl [deg] 4.5 3.9 3.9 2.9 2.5 5.5
var2 [dB/km] 115 125 120 120 120 160
var3 [mdB] 0.20 0.30 1.20 1.15 1.45 2.40
vard [mm] 107 11.5 6.8 2 2.75 1.175
var) [a.u.] 8.0 1.1 1.1 0 0.45 0
var6 [deg] 45 30 90 - 20 -

Table 7.3 Optimum values of the raytracing parameters of the non-aged and aged Toray'’s fibre (PGU
FB-1000). See Table 4.2 for the aging times and Table 3.3 for the parameter description.

T-set0 T-set1 T-set2 T-set3 T-set4 T-setb
varl [deg] 3.75 4.0 4.0 4.4 4.156 5.4
var2 [dB/km] 117 125 120 135 130 155
var3 [mdB] 0.4 0.6 1.20 1.30 1.30 1.75
vard [mm] 17.7 22.0 10.7 7.75 8.50 3.30
var5 [a.u.] 2.0 1.2 0.8 0.7 0.66 0.3
var6 [deg] 25 21 40 60 40 90

Note that, as stated in Part 3.2.3.3, due to the random nature of the raytracing process and
FFP simulation, the optimum values given in Table 7.1 to Table 7.3 cannot be understood
as exact values, but rather as the middles of respective uncertainty intervals. Table 7.4 lists
sample uncertainties of the exact values on the example of the non-aged and strongly aged
Mitsubishi’s fibre (M-set0 and M-set5).

Table 7.4 Uncertainties of the optimum values of the raytracing parameters of the non-aged and
strongly aged Mitsubishi’s fibre (M-set0 and M-set5).

M-set0 M-set5
varl #0.3 deg +1.5deg
var2 +25 dB/km +50 dB/km
var3 +0.04 mdB +0.06 mdB
var4 +12.5% +25%
vars #0.6 [-4.0, +0)
varb #+3.56deg [-10, +45) deg

The uncertainties of optimum values of the raytracing parameters were found to be
generally much lower for the non-aged than for the aged fibres and to increase with the
aging time. This increasing parameters’ uncertainties together with the worsening fit quality
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7 Aging influence on model parameters

(illustrated in Appendix A3, which compares the measured and simulated FFPs) suggest
that the developed model allows faithful modelling of non-aged or short-term aged fibres,
but in course of a long-term high temperature aging additional attenuation and/or scattering
mechanisms occur that are not enough well implemented in the model or not enough well
covered by the scattering angle-dependence of the form Eq. (2.86).

Note that the particularly high uncertainty of the optimised value of var2 (bulk core
attenuation) can be attributed to the small length difference (approx. 10 m) between the
shortest and the longest investigated sample. The attenuation uncertainty of + 25 dB/km
corresponds to + 0.25 dB (+ 6 % transmission) uncertainty on the measured 10 m distance.
Measuring and simulating much longer fibres would increase the quality of the fit, but would
require much longer simulation and optimisation time. On the other hand high uncertainties
of var5 and varé6 for long-aged fibre are related rather to their specific optimum values
(making the scattering intensity almost constant for all illumination angles within the
acceptance angle, i.e. up to 30°, see Part 7.5) than to the optimisation inaccuracies.

As examples in Fig. 7.1 the target function dependence on two sample parameters is
shown (var3 and var4, i.e. interface attenuation and bulk scattering scale). The fibre M-set2
and the optimum parameter values from Table 7.1 were used. Each of the seven FFPs
(M-set2-1-24 to M-set2-3-06) used for computing the target function (see Eq. (3.1)) was
simulated with 4000 rays. The minima correspond to the optimum values of both
parameters.

= M W = D

target function [a.u.]

=]

o
-
[ S%]
w -

interface attenuation [mdB] bulk scattering scale [mm]

Fig. 7.1 Target function dependence on interface attenuation (var3, left) and bulk scattering scale
(var4, right). The fibre M-set2 and the optimum parameter values from Table 7.1 were used.
Each FFP used for computing the target function was simulated with 4000 rays.

7.2 Overall attenuation

Table 7.1 to Table 7.3 show, between others, the dependence of the attenuation
parameters var2 and var3 on the aging time. However, the actual overall attenuation of the
simulated fibre depends not only on the two attenuation parameters but also on the
scattering parameters and on the illumination conditions; it can be obtained only by
performing a simulation. Fig. 7.2 to Fig. 7.4 compare two measured relative transmissions
of aged to a different degree 10 m fibre samples (i.e. the online transmission measured on
the hot fibre and the transmission of the same-time aged cold fibre, see Fig. 4.10 to
Fig. 4.11) with the relative transmission of 10 m simulated fibre. The curves illustrate the
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aging process at 100 °C/<<50 % RH (as Fig. 7.2 to Fig. 7.4 and data in Table 7.1 to
Table 7.3 do). The illumination angle of 0° has been used; the high numerical apertures of
the LED used in the online measurement system (Part 4.4) and of the illuminating silica
fibre in the spectrometer setup (Part4.3) were simulated by a high divergence of the
illuminating beam (15° = 0.26 rad).
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Fig. 7.2 Relative transmission of the hot (online), the cold (cooled down) and the simulated 10 m
samples of Mitsubishi’s fibre in dependence on the aging time (650 nm wavelength,
100 C/<<50 % RH).

LUMINOUS TB-1000

___________ — B — cold LUMINOUS TB-1000
hot LUMINOUS TB-1000
—#— simlated LUMINOUS TB-1000

=]

o o~
o o o O
R R R R

T 3| P

w
]
=

200 f-nemmnees
10% f---=-mnnn--

0% T
a0 1000 2000 3000 4000 5000
aging time [hours]

relative transmission
n

'
'
a
1,
1|
g
'
'
T
'
'
A
'
'
'
I

Hecameeyned

Fig. 7.3 Relative transmission of the hot (online), the cold (cooled down) and the simulated 10 m
samples of Asahi’s fibre in dependence on the aging time (650 nm wavelength,
100 °C/ <<50 % RH).
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Fig. 7.4 Relative transmission of the hot (online), the cold (cooled down) and the simulated 10 m
samples of Toray’s fibre in dependence on the aging time (650 nm wavelength,
100 C/<<50 % RH).

Comparison between the simulation (green) and the measurement is to be made for the
cold fibre (blue), because only the FFPs of the cold samples were measured (Chapter 6)
and used for the parameter fitting. Note the good match in the case of the Toray’s fibres
(Fig. 7.4). The simulated Asahi’'s fibres (Fig. 7.3) have provided the worst match,
nevertheless the overall transmission of the simulated and measured fibre A-set3 (both
fourth points in Fig. 7.3) match exactly.

As mentioned above, several parameters influence the overall attenuation. In the next parts
of this chapter changes of separate parameters with the aging time are discussed.

7.3 Core-clad interface attenuation

Fig. 7.5 shows the interface attenuation coefficient (var3) in dependence on the aging time
for the fibres from all three manufacturers. Note that the aging time axis is shown in
logarithmic scale.

The clear sharp increase in the fitted interface attenuation during the first hours and days of
aging can be attributed to a rapid physical deterioration of the core-clad interface,
presumably caused by the temperature shock.
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Fig. 7.5 Fitted interface attenuation coefficient (var3) in dependence on the aging time.

7.4 Bulk core attenuation

Fig. 7.6 shows the core bulk attenuation (var2) in dependence on the aging time for the
fibres from all three manufacturers. As on Fig. 7.5, the aging time axis is shown in
logarithmic scale.
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Fig. 7.6 Fitted bulk core material attenuation (var2) in dependence on the aging time.
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The fitted bulk core material attenuation remains almost constant during most of the aging
process (in contrast to var3 of the previous part). A noticeable increase happens at the end
of the exposure, first after 4000 h, compared to the immediate increase of the interface
attenuation in Fig. 7.5. It suggests that the chemical deterioration of the fibre material
(represented by var2) progresses much slower than the deterioration of the fibre’s physical
structure (var3). The bulk core attenuations of all three fibres show similar dependence on
the aging time, as expected from the fact that the core material in all three cases is the
same (PMMA, Table 4.2).

7.5 Scattering

Fig. 7.7 to Fig. 7.9 show the fitted angle-dependent simulated scattering intensity in
dependence on the aging time (computed with Eq. (2.86) and divided by var4 to get rid of
the normalisation present there). On all three figures it is given in the same arbitrary units
per millimetre. As almost all rays propagate within fibre’s acceptance angle and thus almost
only those rays were used in optimisation of the parameters, the scattering intensity is
plotted only for the illumination angles between 0° and 30°. Note the difference in the
scaling of the vertical axes between the figures. The label order in the legend box
corresponds to the curve order at 0° illumination angle.

As expected from the theoretical investigations of the Chapter 2 and Appendix A2, the
scattering intensity decreases with the increasing illumination angle and tends to increase
with the increasing aging time. Higher attenuation of the aged Asahi’s fibres compared to
the fibres from the other two manufacturers (Fig. 4.2) seems to be caused primarily by the
much quicker increase of the scattering intensity with the aging time.

0.20

B T LT T T

scattering intensity [a.u./mm]

illumination angle [deg]

Fig. 7.7 Fitted angle-dependent scattering intensity of Mitsubishi’s fibre for all six aging times.
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Fig. 7.8 Fitted angle-dependent scattering intensity of Asahi’s fibre for all six aging times.
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Fig. 7.9 Fitted angle-dependent scattering intensity of Toray’s fibre for all six aging times.

Fig. 7.10 compares the fitted scattering intensities of all three investigated non-aged fibres
(M/A/T-set0 from Fig. 7.7 to Fig. 7.9). It confirms the assumptions stated already in
Part 6.4.1 and based on the measured FFPs’ shapes (Fig. 6.6 to Fig. 6.8): the non-aged
Toray’s fibre (red) shows the highest scattering; for small illumination angles the scattering
of the non-aged Mitsubishi’s fibre (blue) is higher than that of the non-aged Asahi’s fibre
(black), for greater illumination angles the relation is opposite.
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Fig. 7.10 Fitted angle-dependent scattering intensity of non-aged fibres from all three manufacturers.
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8 Conclusions

The present Ph.D. work has combined an application-oriented as well as a theoretical
approach to POF modelling. The precedence has been given to the practical issues and
model verification, while at the same time much effort has been also spent on the
mathematical analysis of the basic mechanisms governing light propagation in cylindrical
waveguides, a prerequisite for reliable POF models and simulation.

In course of this work a practically usable general POF model has been developed; it
implements the theoretically investigated mechanisms of scattering and Fresnel reflection.
The first known systematic numerical optimisation of model parameters has been
performed to get the best fit between simulated and measured optical characteristics of
fibre samples. In extension to previous researches samples of different length and several
illumination angles have been used. The results have been compared for fibres from three
different manufacturers and subjected to six different aging times. The model was verified
by providing a good agreement between simulated and measured FFPs, especially for
non-aged fibres.

The important aspects of the work can be more detailed summarised as follows:

e Theoretical investigations of this work contain the first known attempt to use the
wave-optics approach in the analysis of angular properties of scattering in cylindrical
waveguides. Computed numerical examples have confirmed the experimentally
observed decreasing scattering intensity with increasing illumination angle, an
important practical result, as the geometric optics analysis suggests the opposite
relation.

¢ To investigate the aging influence on fibre optical properties was one of the main
tasks of this work. The optimised values of the attenuation coefficients for aged fibres
suggest that most of the profound transmission loss in the first days, weeks and even
months of investigated high temperature aging (100 °C / <<50 % RH) is caused by a
significant physical deterioration of the core-clad interface. Chemical aging-related
effects in bulk fibre material affecting its attenuation occur first after several months
of aging. This observation seems to be also confirmed by the results of chemical
experiments of a parallel running Ph.D. work of A. Appajaiah.

e The investigations showed also a general strong increase in the scattering intensity
during the course of the aging. At present, the implemented scattering mechanism
cannot differentiate between the scattering effects related to core-clad interface and
bulk material. Thus, it cannot be told, if the observed scattering increase originates
from physical deterioration of the core-clad interface or chemical changes of fibre
bulk material.

e The agreement between measurement and simulation for the non-aged fibres is
substantially better than reported in previous researches [16]. On the other hand, the
general decrease of the fit quality with fibre aging time suggests that in course of the
high temperature aging additional attenuation and/or scattering mechanisms occur,
which are not implemented in the proposed model or not enough well covered by the
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used form of the scattering-angle dependence. Thus, the model itself can be in
future research refined and improved.

e The fit quality between the simulated and measured far-fields (especially at low
illumination angles and for the above-mentioned long, strongly aged fibres), can be
further improved even with the current model by refining the optimisation process to
obtain better numerical values of the parameters, mainly at the expense of the
simulation time. Using longer fibre samples and more illumination angles, tracing
more rays or dropping some of the constraints forced on the parameters could be
useful for this purpose.

¢ In course of the work fibres subjected to only one aging condition were investigated
(100 °C / <<50 % RH). The influence of other aging conditions on the optical
parameters of the model (i.e. of other temperatures possibly combined with high
humidity) could also be investigated and compared. The results of detailed analysis
could lead to development of more efficient methods for prediction of optical
transmission through POFs under long-term environmental stress.

¢ As a side effect of this work, a calibration and quality assessment procedure for CCD
cameras has been developed. It was necessary to guarantee the reliability of far-field
profile measurements, because camera manufacturers, in general, deliver neither
such procedures nor reliability data.

Therefore, progress has been made concerning the modelling and simulation of light
propagation in non-aged and aged POFs. Nevertheless, additional further improvements by
future research are possible.

The theoretical part of the work leaves its mathematical problems open, too. Primarily, there
is no rigorous analysis of radiation conditions that would guarantee the uniqueness of the
discussed solution to the scalar wave equation on a cylindrical waveguide. The presumed
conditions, formulated analogically to those holding for the open-space problem [25] and
necessary to solve the corresponding Helmholtz equation [2], were stated here as a
hypothesis only. Furthermore, the (decreasing) relation between the illumination angle and
the scattering intensity was found on numerical examples only for two waveguide radii and
two specific forms of the refractive index perturbation. A more universal estimation, based
on general formulae, would be welcome, as well as a general estimation of the angle-
dependence of the relative guided power, presumably stepwise for large-diameter fibres (as
numerical computations have shown). Last but not least, the proof of the convergence of
the von Neumann series representing the scattered field should be brought to the end.
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Appendices

A1 Basic identities
Wronskians of Bessel functions [1, 3, 12]:

Yo (W s ()= (W () ==
(A1.1)
T @Mt (0)= 1, (M (2) =

Asymptotic expansions of Bessel functions for large argument (z — <) [1, 3]:
1
2 )2 1 1
Jm(z)z ) COS| z——mMIT——T |,
Tz 2 4
1
2 )2 . 1 1
Ym(z)z I Sin| z——max——7 |
Tz 2 4

Series of Bessel functions [1, 3]:

nry  explEcosg)= D" (e)eos(mp)= i, (2)exp(mp).

meZ meZ

(A1.2)

where the second equality follows from [1, 3, 12]:

J—m (Z)= (_l)m Jm (Z) , formeZ,
A1.4
e Y—m(z):(—l)mYm(z),formeZ.
Integral of Bessel functions [1, 3]:

z

PERY (6, (az)J -, (bz)~aJ , (b2)J ,,_; (az)]

(A1.5) J-sz (az)Jm (bz)dz =

Upper bounds of Bessel functions [3, 12]:
|Jm (z] <1, formeZ,

(A1.6) If |7, (z) =1 and meZ thenm=z=0and J, (0)=1,
[/, (2) <1/N2 |, for meZ, im|>0

Recurrence relations for Bessel functions [1, 3, 12]

1= 25 )06,
(A1.7)
I (z) = i [Jm_l (z)+ I (Z)] , for m=0.
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Infinite summations of Bessel functions [3, 12]

2
(A18) Z'jm (Z)_

meZ

Power series expansion of Yy,(z) at z=0 [3, 12]:

Y() ln___zm k- 1()2/{,”
i wlk+1 +y/(k+m+1)]( j2k+,,,
2

kl(m+k)

(A1.9)

, formeN,
7=

where /(z) is the digamma function w(z)=I""(z)/T'(z).

Eq. (A1.9) implicates the following limiting forms of Y,,(z) for small argument z—0:

(A1.10)

Y, (z)=- (m 1) (E) , for meN,.

z

Power series expansion of J,,(z) at z=0 and its limiting forms for small argument z—0 [1, 3]:

- 2k
[ ) Z (j , formeN,;
m+k
2
+

(A1.11) Jo(z)=1—( 0(z*)=1+0(z*)=1, as z0;

J, (2)= l(zjm +0(z"?)=0(c") as 250 for meN,.

m!

Derivatives of Bessel functions with respect to the argument [1, 3, 12]:

d_ m(Z)=ﬂJm(Z) Jm+1( )

(A1.12) dZ z
d_Ym (Z)=ﬂym (Z)_Ym+l (Z) .

Z z

Summations of Bessel function [3, 12]:

(A1.13) V(-2 Z ik (210 (22)  for |z, <[z, -

meZ
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Debye asymptotic formulae for large order (|z| <m-m'? , m>>0)[1, 3]

(m2 —22)7 exp —mcoshﬂ+(m2 —zz);},

R o
2

(A1.14)

z

Y, (z)=- (m2 —zz)_% exp[mcoshﬂ—(mz—zz);].

Eq. (A1.13) implicates that for enough large order m and constant argument z:

J,.(z) monotonically decreases to zero as m—»eo,

(A1.15)
Y,,(z) monotonically decreases to -co as m—soo.

A2 Sample modal analysis

In this appendix modal characteristics of sample waveguides (mainly of two waveguides
with normalised frequency parameters V=8 and V' =20) are numerically computed and
investigated. The results illustrate the theoretical discussion of Chapter 2, Part 2.1.

Some numerically computed properties of waveguides investigated in this part were used,
due to the lack of exact formulas, as the basis for two general assumptions needed for
modelling the scattering within the raytracing approach in Part 2.2:

e Numerically computed results concerning the mode mixing (aroused due to four
tested random forms of the refractive index perturbations, Part A2.3) form the basis
for the general formula approximating the angle-dependent scattering intensity
(Part 2.2.3, Eq. (2.87)).

e Based on the results concerning excitation of guided modes for both investigated
waveguides (Part A2.2, Fig. A2.10) it is assumed that for the illumination angles lying
within the acceptance angle the overwhelming part of the input power enters guided
modes. Therefore, taking also into account the quick attenuation of radiating modes
in a real fibre, mode mixing analysis can be limited to the power flow between the
guided modes only (Part A2.3).

All fibres investigated in this part differ only in their normalised frequency (and so in their
diameters), all other parameters are assumed to be equal those of a typical POF, the
wavelength equals 653 nm, so that of the laser used in the experiments (Part 5.2).

ny=1.492,

n;=1.402,

A =653 nm (red laser used in experiments),
k =27/}~ 9.622 x 10°.

(A2.1)

According to Eq. (2.19), normalised frequency V of 8 and 20 corresponds to the fibre
diameters of 3.26 yum and 8.14 um, respectively.
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A2.1 Modes

All guided modes of waveguides with =8 and V=20 were computed by numerically
solving equation Eq. (2.22). Equation Eq. (2.24) in both cases has no guided-mode
solutions (i.e. for |m|>1). The waveguide with V=8 supports 17 guided modes (for
me {-5,-4, ..., 4,5}), while the other waveguide (¥ =20) supports a total of 105 guided
modes (me {-16, -15, ..., 15, 16}). All the guided modes of both waveguides together with
the corresponding relative wavenumber f are listed in Table A2.1 and Table A2.2. Note that
Eq. (2.22) has the same solutions for +m and —m modes, i.e. the corresponding modes in
both cases have the same relative wavenumber f, the same radial component j,(7,7) and
differ only in the oscillating term exp(img) (see Eq. (2.12)). Table A2.1 and Table A2.2
present (numerically obtained) all solutions to Eq. (2.22) for different values of the integer
parameter m. They correspond to the zeros of Eq. (A2.2) and each of them represents one
guided mode of form Eq. (2.21).

Table A2.1 Numerical characteristics of guided modes for the V = 20 waveguide.

m relative mode wavenumber
0 1.404 1.427 1.448 1.464 1.477 1.486 1.491
+1 1.416 1.438 1.457 1.471 1.482 1.489
+2 1.405 1.428 1.448 1.465 1.478 1.487
+3 1.417 1.440 1.458 1.473 1.484
+4 1.406 1.430 1.451 1.468 1.481
+5 1.420 1.443 1.462 1.477
6 1.410 1.434 1.455 1.472
+7 1.425 1.448 1.468
+8 1.416 1.441 1.462
+9 1.406 1.433 1.456
+10 1.424 1.450
+11 1.415 1.443
+12 1.405 1.436
+13 1.428
+14 1.420
+15 1.411
+16 1.402
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Table A2.2 Numerical characteristics of guided modes for the V = 8 waveguide.

m 0 +1 +2 +3 +4 5

1.414 1.440 1.418 1.448 1.430 1.410
1.459 1.476 1.464
1.486

relative mode
wavenumber

Fig. A2.1 shows for the V= 20 waveguide sample graphs of the function

o T 00R) | Ko (1 R)
ez SRy R )

for m=0 and m=16, whose (numerically found) zeros correspond to the respective guided
modes, see Eq. (2.22). Values of wyR and w;R are bound to £ by Eq. (2.19) and to each
other by the identity 400 =12 = (w,R)* +(w,R)*.

100

— m=0

—m=16

50 r

. ‘\\ |

=100 L A .
1.40 1.42 1.44 1.46 1.48

relative wavenumber B

Fig. A2.1 Function f() of Eq. (A2.2) with V=20 for m=0 (red) and m=16 (blue). The zeros (to be found
numerically) correspond to the respective guided modes.

Guided modes are usually described with LP,, symbol, where m corresponds to the rows in
Table A2.1 (columns in Table A2.2) and ke Z is assigned (starting with 0) upwards columns
of Table A2.1 (right to left in Table A2.2), i.e. corresponding to the increasing values of
parameter wyR or decreasing values of . Fig. A2.2 shows descriptions of all the guided
modes of the V= 8 waveguide in the (w,R, |m|) coordinate system.
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Fig. A2.2 Descriptions of all guided modes of the V' = 8 waveguide in the (wyR, |m|) coordinate system.

Fig. A2.3 compares guided modes of both waveguides in the same coordinate system.

| m| : . —————
15 1 -
: - ]
X & V=220 = -]
F - -
1|:|_— - [ ] -
L = ] -
- | -
L n - = p
| | | |
5 Lt n n n ]
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L [ - - = I-
L - am ] ] - ]
| . = - . = m - = WOR
] ] 10 15 20

Fig. A2.3 Guided modes of the V' = 8 (red) and the V = 20 (blue) waveguide in the (woR, |m|)
coordinate system.

The real parts of four sample guided modes Eq. (2.21) over the V=8 waveguide’s cross-
section are shown in Fig. A2.4, while Fig. A2.5 shows real parts of two sample guided
modes Eq. (2.21) of the V=20 waveguide. Their squared value is proportional to the local
energy distribution of the respective mode.
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Fig. A2.4 Real parts of four guided modes on the cross-section of the V = 8 waveguide. The
waveguides’ radii were scaled to unity (horizontal axes).

LP1s LP16,1

Fig. A2.5 Real parts of two guided modes on the cross-section of the V' = 20 waveguide. The
waveguides’ radii were scaled to unity (horizontal axes).
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As showed in Chapter 2, Part 2.1.2, for each 7< nl2 and each me Z exists a corresponding
radiating mode. Fig. A2.6 shows real parts of two sample radiating modes Egq. (2.27) of both

waveguides.

V=8, m=17, p=1 V=8, m=17, p=23i(evanescent)

-1 -0.5 0 0.5 1

V=20, m=1, f=14=mn V=20, m=7, f=14=mn

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Fig. A2.6 Top view on the real parts of four sample radiating modes on the cross-sections of two
waveguides. The waveguides’ radii were scaled to unity. The white (black) colour
corresponds to the maximum (minimum) value.

The basic guided mode (LPo1) was also found for two other waveguides with the normalised
frequency parameter V equal to 100 and 500. Fig. A2.7 compares in logarithmic scale its

radial components j, |7, 1'10 for all four waveguides. /t shows that the field of LPy1 mode

extending into the clad decays exponentially with waveguide’s radius and that the decay
rate increases with waveguide’s radius (or its normalised frequency).
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2R =

3.3mm
2R=16.3mm
2R=40.7mm

2R= 204pm

=1.5 =1 -0.5 0 0.5 1 15
normalised wavegude’s radius x/R

Fig. A2.7 Radial component of LPy1 mode for four different waveguides’ radii (logarithmic scale).

A2.2 lllumination and mode-angle relation

Using formula Eq. (2.46) we can compute the excitation of each guided mode of a
waveguide with a uniformly illuminated input face. Summing Eq. (2.47) over all guided
modes gives the total guided power. In this part we will use p(a) =1 in Eq. (2.46), thus we
will neglect the effects of slightly increasing with angle Fresnel reflection coefficient and
assume that all power incident on the waveguide’s input face actually enters it and excites
its modes.

Fig. A2.8 shows relative excitations (the ratio of the power entering the mode to the total
incident power) of all guided modes of the V=8 waveguide in dependence on the
illumination angle. Power in both LP:m, modes were added, whenever |m|>0

g -
g — LPag)|
p LP;,

% 0.8 \ LP4y| ]
H \ LPg2
I'é' a6k ‘\\ LP 3z, ]
a \\ LP,,
E \ e,
T 0.4} X — LP3j A
P \

5. '\ — LPp3
§ \

0.2 E
5
®
~ 0 | == . 1
Q
H 0 10 20 30 40

illumination angle [deg]

Fig. A2.8 Relative excitation (the ratio of the power entering the mode to the total incident power) of all
guided LP.», modes of the V' = 8 waveguide in dependence on the illumination angle a.
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Fig. A2.9 shows for both V=8 and V=20 waveguides the dependence on the illumination
angle of the excitation of LPy1 mode and of two other modes with the excitation maxima
around 0°, 15° and 30°, respectively. The maxima of all graphs were normalised to 100 %
to ease comparison of their shapes.

[
o

o
®

o
[4)]

o
'S

normalised mode excitation
[=}
S}

0 10 20 30 40
illumination angle [deg]

Fig. A2.9 Dependence on the illumination angle of the normalised excitation of three sample modes
with the optimum inclination about 0°, 15° and 30° for both V' = 8 and V = 20 waveguides.

Fig. A2.10 shows the angle-dependence of the relative total guided power for both
waveguides (ratio of the power contained in all guided modes to the total incident power).

1.0

relative total guided power

oL . . . n
0 10 20 30 40

illumination angle [deg]

Fig. A2.10 Relative total guided power in dependence on illumination angle for both V = 8 and
V = 20 waveguides.

Fig. A2.10 clearly suggests that with increasing waveguide’s radius R (or its normalised
frequency ¥) almost all power incident within the acceptance angle enters guided modes
and so the limiting graph is step-like, see [1, Chapter 20]. For each investigated mode there
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is the optimum input illumination angle, which maximises the power entering the mode (the
maximum of the plots on Fig. A2.8 and Fig. A2.9). Based on the Fig. A2.9, it may be
assumed that for each guided mode of any waveguide (i.e. waveguide of any parameter V)
there exists a similar peak of the excitation graph and that its dispersion tends to decrease
with the increasing waveguide parameter V' (and the waveguide’s radius R), as on Fig. 2.10,
so that for a highly multimode waveguide each guided mode may be practically uniquely
related to its optimum illumination angle, called its external propagation angle (as related to
the outside environment, so a and not y on Fig. 2.3). Fig. A2.11 shows the relation between
the modal parameter wyR of the mode and its optimum illumination angle, see
[1, Chapter 20] for discussion and references.

30 o]

LY

25 » .!

20 . =

15 . .

10 o 4
- « V=8

s ¢ V=20

optimum illumination angle [deq]

L 1

0 5 10 15 20
modal parameter wR

Fig. A2.11 Optimum input illumination angle in dependence on the modal parameter wyR for the
V = 8 (left) and V = 20 (right) waveguide.

According to the formulae Eq. (2.33), Eq. (2.34) and Eq. (2.46) propagating power is
distributed continuously with respect to T among radiating modes. The distribution function
p(7) is given by:

(A2.3) =k Jz'z

meZ a T)

|G 7,0)

To get the total power contained in all radiating modes the formula Eq. (A2.3) for p(7) has to

be integrated with respect to t within the limits (-oo, n1 ), as Eq. (2.48) states. Fig. A2.12
shows the relative power distribution p /n’R see Eq. (2.49), of the V= 8 waveguide for
four different illumination angles, while Fig. A2.13 compares p(T)/ﬂ'R2 of both V=28 and
V=20 waveguides for 15° illumination angle. Summing over me Z in both cases was made
only over me {-20, ...,20} or me {-80,...,80} for the V=8 or V=20 waveguide,
respectively. Both figures are shown in logarithmic scale.
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Fig. A2.12 Relative power distribution among radiating modes of the V' = 8 waveguide for four
illumination angles.
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Fig. A2.13 Relative power distribution among radiating modes of both V = 8 and V = 20 waveguides
at 15° illumination angle.

Fig. A2.13 clearly shows that the excitation of radiating modes in the V=20 waveguide is
considerably lower that in the V= 8 waveguide and in the former more power is transported
via guided modes, as Fig. A2.10 shows. From both figures it may be seen and assumed
that the more multimode is the waveguide, the less power enters its radiating modes (for
illumination angles within the acceptance angle).

A2.3 Scattering and mode mixing
A2.3.1 On input and end faces

Formula Eq. (2.53) allows calculating distribution of the output power per solid angle,
depending on the illumination angle and under assumption of no power transfer between
modes. Fig. A2.14 shows sample graphs of angular distribution of the total output power for
both investigated waveguides and several different illumination angles o.
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o laf v v v ™ g s
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Fig. A2.14 Angular distributions of the total output power for both waveguides; plots for different

illumination angles a. No power transfer between modes assumed.

Both figures confirm that the conversions between the illuminating/output fields and the
modal fields on endfaces diffuse the angular input characteristics. To compute the scale of
the diffusion, i.e. the angle-dependent dispersion of the output power, the graphs of
Fig. A2.14 were numerically square-best-fitted with respect to the dispersion parameter s

with the (reflected at 0) Gaussian dispersion characteristics:
(A2.4) V(@3 05) = W (@ 0 5)F W0 (- O 55),

where a is the illumination angle, a,,, the output angle and

(A2.5) 74 (0( o S) = 4 exp| — (aout _a)Z
. 0 out >“> Sﬂ S2

Amplitudes A for each illumination angle o. were kept constant and equal to the integral of

the respective curve. The fitted values of dispersions s are shown in Fig. A2.15.
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Fig. A2.15 The dispersions s of the curves Eq. (A2.4), which best fit the angular distribution of the

total output power (Fig. A2.14).
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The parameter s characterising the angle-dependent dispersion of the scattered power
turned out to be almost constant across all illumination angles and for both investigated
waveguides. Therefore, it will be henceforth assumed (and used in the raytracing software)
that the scattering on fibre’s endfaces is constant and does not depend on the illumination
angle.

A2.3.2 Refractive index perturbations

Given the refractive index perturbation function d (defined in Eq. (2.54)), the formulae
Eqg. (2.71) to Eq. (2.73) can be used to investigate the angular dependence of the total
power and the dispersion of the scattered field. In the numerical computations for the
perturbation function a finite sum of simple single perturbations will be used:

ZA exp| - & P81 1 6)

A2.6 N/89
(A2.6) d(p 52

H

where the point (p,, 7, &) is the centre of a single perturbation, 4, is its amplitude and S,
defines its ¢! radius. The best candidate for the distance function d would be the Euclidean
metric

52(/’0,770,50;%,771,51):
(A2.7) =(& =& ) +(pg cosny = py cosy )* +(pg sin gy — py sinygy )* =

= (930 =& )2 +p§ +P12 =200 C05(770 -1 )’

but this form would make integral Eq. (2.71) symbolically not integrable and considerably
increase its computation time. So the following function was used instead, a modified
version of Eq. (A2.7):

52(P0’770»‘fo;/)1=771’§1):

2
(A2.8) =(&—&) +ps +pi —2p0p1|:1—;|7]0 —771@ =

4
= (& -&) +(po -p) +;P0P1|770 _771|’

where for (770 /i )e (—7z,7z] the cos(770 —771) was approximated with the saw function
1—2|770 -1 |/7r which equals the effect of keeping the Euclidean metric Eq. (A2.7) but
modifying slightly the perturbation function Eq. (A2.6).

Substituting Eq. (A2.6) and Eq. (A2.8) into Eq. (2.71) and changing the order of integration
over Q yield:

(A29) (Gscal )m (Z’ T) =

ik . - Z0 . §-¢&
B A, exp[z(/f ~Pké - [ H aé
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S

Ry — 2 m+r 4
'J.o exp{_[pp,] }P'jm(P,T)J'mU(PaTo)'J. ”exp[i(mo—’")ﬂ—wzPplﬂ_ﬂl}dﬂdp'
1

The first and third integrals can be computed analytically:

L
(Cua o) = A5 cxlitc) 3 5, x| ~ 7575, B +1(8,- ps |

L =

- 1 1
WSz s gy PV L - ) ol - )
(A2.10)
) l—exp{ p’fl m'(m+m0)}
Re 5 . . PP Si
N p?Jn(2 7, (0,7) - exp| - : —=dp
° Si 4pp
[7’751(’"0 m)]z_{ 5 l}
!

where ®(a,b) is the error function:

2 0 _p
A2.11 (D(a,b):—_[ e dt.
( ) [z Ja

The remaining one-dimensional integral over [0, R,) has to be computed numerically.

Using Eq. (A2.10) it is easy to compute numerically the scattered field Eq. (2.73) for a given
illumination angle a. As it turned out to be highly dependent on the location and size of the
waveguide’s perturbations, the results had to be averaged for several randomly drawn
perturbations. For the numerical computations the following perturbation properties were
assumed:

¢ Only the waveguide’s core is perturbed, so Ry = R in Eq. (A2.10).

e The perturbation centre (p;, #;, &) is uniformly distributed within the core.

e The perturbation amplitude A,~ N(0, A) (was modelled with a Gaussian random
variable with mean 0 and standard deviation 4). As Eq. (A2.10) depends linearly on
the perturbation amplitude, its exact value does not matter, and all numerical
computations were made with the constant value 4 = 0.01.

e The perturbation size (i.e.its e’ radius) S~ Sy1 (was modelled with a random
variable of chi-square distribution with one degree of freedom and mean §').

The perturbed fragment of the waveguide was assumed to have the length z,= 10 R. The
computations were made for the following combinations of parameters:
e The V=8 waveguide:
o L=1,5=0.05R,
o L=1,5=0.25R,
e The V=20 waveguide:
o L=1,5=0.05R,
o L=1,5=0.25R.
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A2 Sample modal analysis

In each case 800 (for the V= 8 waveguide) or 400 (for the J = 20 waveguide) computations
were made and averaged to obtain the average scattering matrix [rsp(mo,ko;m,k)] (see
Eq. (2.72) and Eq. (2.73)). Fig. A2.16 shows in the logarithmical scale the angular
distributions of the scattered power per solid angle for both waveguides, the scattering
matrices obtained for the parameters L=1, §=0.25R and the same input angles as on

Fig. A2.14.
H -/ H =3[ T - - -
8 % =8 |% \ =20 [—a=0°
0= o
&g -t aT -at :
i 32 ¥
H~ u
0 -4t 95
-] bt
oo RO
2 :
w TS5 nz
o
I o2
as «=0" o=6 q=12" a=18" a=24" a=20" \\ 2
b "B — — — L )
5 G 3
0 10 20 40 10 20 20
output angle [deg] output angle [deg]

Fig. A2.16 Angular distribution of the output power of the scattered field in both waveguides, (number
of perturbations L=1, mean size of the perturbation S=0.25R).

Using the obtained scattering matrices and Eq. (2.46), Eq. (2.47) the tfotal scattered power
in dependence on the illumination angle a for both waveguides and all investigated
perturbation types can be easily computed:

(a212)  tspla z ZP,,, (a,mo, 7 )Z ZFSP mo, kosm, k)

myeZ ky=0 meZ k=0

and after normalisation to 1 at the illumination angle 0° plotted as Fig. A2.17:

1

normalised total scattered power

0 5 10 15 20 25 30
illumination angle [deqg]

Fig. A2.17 Normalised total scattered power in dependence on the illumination angle.
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A3 Sample measured and simulated FFP graphs

Fig. A2.17 shows an evident negative correlation between the illumination angle and the
total scattered power and is used in Part2.2.2 to construct the formulae for the angle-
dependent scattering model within the raytracing approach.

A3 Sample measured and simulated FFP graphs

In this appendix the sample graphs of the measured and simulated (optimised) FFPs of
set0 (non-aged fibres) and set5 (the most aged fibres: 4467 h at 100 °C / <<50 % RH) are
shown for comparison. Note the difference of the fit quality between the non-aged (set0)
and highly aged (set5) samples. According to the target function Eq. (3.1), the optimisation
procedure described in Part 3.2.3.3 matches two-dimensional FFPs and thus it weights the
one-dimensional FFPs with the sine of the illumination angle a. Therefore, in the following
graphs, the higher a, the better the fit quality. The FFP notation is explained in Part 6.2.

A3.1 ESKA CK-40 fibre

Fig. A3.1 Measured and simulated M-set0-1-24.

Fig. A3.3 Measured and simulated M-set0-2-15.
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Fig. A3.2 Measured and simulated M-set0-2-06.
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Fig. A3.4 Measured and simulated M-set0-2-24.
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A3 Sample measured and simulated FFP graphs
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A3 Sample measured and simulated FFP graphs
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A3 Sample measured and simulated FFP graphs
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A3 Sample measured and simulated FFP graphs
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Fig. A3.27 Measured and simulated T-set5-3-15.
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A3 Sample measured and simulated FFP graphs

A3.3 LUMINOUS TB-1000 fibre
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A3 Sample measured and simulated FFP graphs
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A4 Convergence of the von Neumann series
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Fig. A3.41 Measured and simulated A-set5-3-15. Fig. A3.42 Measured and simulated A-set5-3-24.

A4 Convergence of the von Neumann series

This appendix contains some considerations concerning the convergence of the von
Neumann series Eq. (2.64) in the supremum norm. If brought to the end, the existence and
continuity the series would be proved and the scattered field u.,, Eq. (2.64) would be under
Hypothesis 1 the solution of the Helmholtz equation Eq. (2.57).

Due to Eq. (2.66)

7(r,0,z) <k’D,, U

g(r.@.z: p.0.8) dV(p.n.&)

max
Q

(A4.1)

where

Dmax = Sup d(r7 ¢7 Z)’

U e = supu(r, go,z).

To prove the convergence of Eq. (2.64) in the supremum norm it would be enough to prove
that ||7]] is bounded (by a constant independent of 7, ¢, z), because then the perturbation

size D,,,. could be always chosen small enough to make Eq. (A4.1) less than 1 and hence
Eqg. (2.64) converge.

(A4.2)

Using Eq. (2.63)
[le(r.o.z: pm.8) v (p,m.8) <
Q

(A4.3)
==¢|kf

4;; A’k 1o, (r7)j, (p.7) dy,, () dp dip dé -

meZ () (0 (0 —oco

where due to the representation of dy,,(7) of Theorem 2.3 and Eq. (A1.6) the most inner
integral can be majorised as follows:
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A4 Convergence of the von Neumann series

1 ilz—
oil=-4lis

Iig

"P']'m (r,7)j, (p, z’] dy, (r)=

By
Sk
k=0

i ‘z—f‘kﬁ‘.p. i (r,rL"Hjm (/’T/T}

(A4.4)
i‘z—nﬂkﬂ" . ‘jm (V’T)‘"jm (p’TX <

2E)E)

V(7 +inlo7)

a,(z)+b,(z )

Applying Eq. (A4.4) to Eq. (A4.3) and splitting the range of the integration with respect to t:

Ilgr o) av(pn) < LA ZZ

2
T [ L
+27zk J“ﬂ‘ e

Fm
pi
k=0

m
A

==¢[kB | |

IN

dr:

47[ k meZ k= O‘ﬂk‘
zo27R 11 1‘ f‘kﬂ| |]m ,T +|]m X
167r Z (0)+ 2 ) drdpdndé <
z9 Ry
1 ZORO Vk l 7‘2 f‘k‘ﬁ‘
471' k Zi;; m| 8 HJ‘M [C(r.7)+ Clp.7)ldzdp dg +
ROn|2
(A4.5) +lZOk J'p [C(r T)+C(p, )]dep:
8" 11lA
1 z,R; Zooe-\z-ﬂk\ﬁ\
= — ——C(r,7)drdé+
ATk mezékz\ﬂk\ 16" “ B
o Ry 0 -J==£lklAl
” Clp,7)drdp dé+
00 = |A
R, }1,Z
+—z kRI d7+f kJ.pJ. drdp
] \ﬂ\
where
]m
mo =Ty

First summand in Eq. (A4.5) is finite, because there are only finitely many guided modes
(Theorem 2.1). Therefore, T would be bounded and Eq. (2.64) would converge, if the other
summands in Eq. (A4.5) were finite and bounded by constants independent of » and z. Thus
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if the function C(r,r) was not increasing too strong as 7 — nl2 and was decreasing
enough quick as 7 — —oo, so that both integrals

f e 8
dr ———C(r,7)drdé,
15 iy

could not only converge, but also be bounded by a constant independent of » and z (note
that the same would hold then for the other two integrals of Eq. (A4.5), too). The following
parts of this appendix contain considerations potentially helpful in proving it. First, two
auxiliary facts have to be formulated:

Ifz#0and J,(z) =0,
then Jr’n (Z) = Jmfl (Z) = _‘]m+1 (Z) * 0

(A4.7)

(A4.8)
and J,o(2) £ 0, Jy1(2) £ 0, Sy (2) # 0 and Jya(2) # 0.
If J,(wR)=0and 7 < nf , then
5 R)= R (R)+ O )= =R R+ Ot )= Of?)
(A4.9) " wy+w " wy+w "

as T—)nl2 (which implies wy =->w>0 and w; —0), where wy, and w; are
defined in Eq. (2.19) and depend on 7 and w.

Eq. (A4.8) follows directly from Eq. (A1.6), Eq. (A1.7), Eq. (A1.8), the recurrence relation
Eq. (A1.7) and Eq. (A1.12). If noted that due to Eq. (2.19)

2 2 2
WO —-Ww _ Wl

WO_W= = .
W0+W W0+W

then the expansion of J,, in power series around the point wR yields Eq. (A4.9):

7,1 (wR) = 7, (wR)+ R(wy —w), (wR)+ O(wo — w)? )=

2 2
- w]zvilw It (WR)+ O(Wf)z _%Jw (wR)+ O(Wf)z O(W2 )

A4.1 Coefficient a,,(7)
Coefficient a,,(7) is defined in Eq. (2.28) as:

1
(A4.10)  a,(7)= EER[WoJmH (woR)Y,, (W R)—wiJ,,, (WoR)Y,, . (W R)).

Functions w, wy and w, are defined in Eq. (2.19).

LEMMA A4.1
1) a_(t)=a,(r).

(2) ForeachmeZ a, (7)—1as 7— —oo.
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(3) As 7 —n?
(c) (m=0)If J(wR)=0, then ay(z) — Jo(wR)# 0 else a,(z)— oo.
(@) (Im|=I) If JywR)=0, then q,(z)=0(w, Inw,) >0, else a(z) — *oo.
(€) (Im|=2)If J(wR)=0, then a,(z)—> 2J,(wR)= 0, else a,(z) —>eo.

For all other |m|e Z\{0,1,2} a, (7) — oo,

PROOF:

Proof of (1)

Follows by direct substitution of Eq. (A1.4), Eq. (A1.7) in the definition Eq. (A4.10) of a,(7).
Thus while proving (2) and (3) it is enough to consider me N only.

Proof of (2)
Eqg. (A1.2) implies that

lim ¥, (z)=0-

According to Eq. (2.19) 7 — —oo implies w,,w, — oo, thus

2 2 2
. . Wy =W .
lim (w, —w, )= lim —~—X = lim =0
e oW, T W W
0 1 0 1
and
Wy Wy —W
lim —*=lim —*——+1=1.
e A w

1
Using asymptotic expansions Eq. (A1.2):
RwyJ,, (WOR)[Yn (WIR)_ Y, (WOR)] =

1 1 1
2 Ruy (w,R)'S cos(w,R—22, )[(WIR)G sin(, R — 9. )= (w,R) > cos(ow, R— 3 )} -
T

=%cos(w0R—z9m) (WOJ sin(w,R —,)—sin(w,R-90,) | =
T

1

= gcos(wUR -9,) (Woj ’ [sin(w,R —2,)—sin(w,R— 83, )]+
V3 w

1

2
+ (WOJ —1sin(w,R-2,)| =

W
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2
= 3cos(wOR -9, ) (WOJ 2005[1; (wy +w, )=, )sin(lz2 (w, = w, )) +
V4

W

+ (W‘)) " _1|sin(w,R-3)| = 0

w, 7o
where m,ne N and, for notational clarity, #, =—%kﬂ'—%n. Finally, using Eq. (A1.1):
()= =S 7R (00 RV, (31 R) =31, (R (o R+

=R (R, (0 R) =T O3 )Y ()] =

- %”R[RWOJmH (WOR)[Ym (WIR) =Y, (WOR)] +

+ (Wo -wW )Jm (WOR)Ym+1 (WlR)+

+1 (WOR)]] — 0.

T——c0

— RwyJ,, (woR)Y,,., (W R)-Y,

m

Proof of (3):

The Bessel functions Y,,(wiR) and Y, (wR) in the definition Eq. (A4.10) of a,(7) will be
expanded to their power series Eq. (A1.9). Note that T%nlz implies wy, - w>0 and
w; — 0. Thus the positive powers of z (i.e. of wiR here) in Eq. (A1.9) can be substituted
with O(z) as 7 — n12 . Therefore, the following forms will be used here:

Y,(2)= i[]o(z)ln;—y/(l)+0(z)]

Ym(z):2{ 2)in E_ljz: m—k—1)! (zjﬂc—m +O(z):| for [m[>0.

T

Two cases have to be considered:

e For m=0:

a (7) = [RW0J1 (WOR)JO (WIR)_ Rw,J, (WOR)Jl (WIR)]

+0(w, )[RW()JI (WoR)_ RwJ, (WOR)]+ Jy (WOR)_ W(I)RWOJl (WoR)'
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There are two possible subcases:

o JiwR)#0. Then g (z)=C, In(w,R/2)+C, =+ as 7—ni for certain
constants C; # 0 and C,.

o Ji(wR)=0. Then, according to Lemma A4.1,
Jy(woR)=0(wi) as 7 —n?.
Thus, using Eq. (A1.11),
a, (T) = [RWOJO (WIR) -J, (WOR)]IHWITR O(le )+ O(le )+
+ 0(W12 )+ Jo (W()R)+ O(WIZ)_) Jo (W()R)?& 0as7— nlz

and (3a) has been proved.

e For m>0, using the limiting forms of Eq. (A1.11):

a,(r)= [RWOJ

m m+l (WOR)Jm (WIR)_ RWI"]m (WOR)"] (WIR)

m+1

+ O(Wl )[RW()Jm+1 (W()R) - Rw,J (W()R)] +

m

1 m (m— k) wRY
+5Rlem(w0R)AZ:(; a EZJ +

1 e (m—k—1)wR o =
—ZRW()JmH(WOR)k_Ok!( 2 )

wR

= [Jm+1 (WOR)O(W{” )_ o (WOR)O(WI”HZ )]ln -t

+ O(Wl )[RWO']mH (W()R) RW] Jm( R)] + i] Jm (W()R>( leRj +
m:

PSR i ()= R )

~  q 2

as 7 n,2 . Estimating further and using the recurrence relation Eq. (A1.7) one can
obtain

D)= 1 030R)= 7, o RIO007 Jin 22 0o+

(A4.11) + O(Wl )[RWOJm+1 (WOR) —RwJ, (WOR)] +J, (WOR)O(Wlm )+

e ] k 1 2k-m 1
+ Z m (j |:2 RWOJm—l (WOR)_ k‘]m (WOR):l

k=0 2
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as 7 — n{ . Consider even m and odd m separately:

o (odd m) Let m:=2n+1, ne N (n=0). Substituting the positive powers of w;R
with O(w) in the series Eq. (A4.11):

Dan+1 (T) = [J2n+2 (WOR) —Jonn (WoR)O(le )]ln WITR 0(W12”Jrl )+

+ O(Wl )[RWOJszrz (WOR)_ RwJ . (WOR)] + 50 (WOR)O(lenﬂ )+

n _ 2k—-2n-1
+Y (an' k) !( wlzR} B RwyJ,, (WyR)=kJ,,., (wOR)} +0(w,)
k=0 .

as 7 — n?. Assume that there exists a finite limit of a,,.,(7) as 7 — n?.
Then all coefficients in the square brackets of the power series, as
corresponding to the negative powers of w;, have to be O(Wl_ 2’”2”“) as
T nl2 , which implies they have to equal zero for 7= nf (wo =w), i.e.:

RwJ,,(wR)=0 (for k=0) and
RwJ 5,(WR)—2kJ 5, (WR)=0 (fork=1,...,nand n>1).

The first condition can hold only if J;,(WwR) = 0. For all n > 1 the second
condition would have to hold, too. But then it would imply
Joni1i(WR) = Jp,(WR) = 0, a contradiction to Eq. (A4.8). Thus, if n > 1, then
ay1(t) > teoas 7 — n12 . Therefore, a finite limit of a,,/(7) as 7 — n]2 is
potentially possible only for n =0, i.e. m = 1 and J,,(WR) = Jy(wR) = 0. In
this case, due to Eq. (A4.9),

Jy, (wR)=J,(w,R)=0(w?) as 7— n?.
Substituting it into the formula for a,,+1(7) = a1(7):
s (7) = 0y (£) = [ 0w R) 5, o IO Jlin 25 00, )+
+0(w, [RwyJ, (wyR) = Rw,J, (wyR)]+ J, (w, R)O(w, )+ O(w,)
as 7 — n{ . Due to Eq. (A4.8) JJ(WR) # 0. Hence, if Jy(WR) = 0, then
a,(z)=0(w,Inw,) >0 as 7 —n}.
2

In all other cases a,,,(r) — *eo @s 7 —n; and (3b) has been proved.

o (even m) Let m:=2n, ne N, (n=1). Substituting the positive powers of w;R
with O(w) in the series Eq. (A4.11):

a,,(7)= [J2n+l (woR)—=J>, (WOR)O(le )]1n WITR 0(W12n )+

+ O(Wl )[RW0J2n+l (W()R ) —RwJ,, (Wo R)] +J,, (Wo R)O(len )+
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n-1 2n_k—1 ! wR 2k-2n 1
O S L)

1
+ Z RwyJ,, (WOR) -J,, (WOR) + 0(W12 )

as T—)nlz. Assume again that there exists a finite limit of a,,(z) as
T— nl2 Then, as in the previous case of odd m, all coefficients in the
square brackets of the power series, as corresponding to the negative
powers of w;, have to be O(wf“*z") as 7 — n}, which implies that they

all have to be equal to zero for 7= n,2 (wo =w), i.e.:
RwJ 5, ,(WR)=0 (for k= 0) and
RwJ 5, ((WR)=2kJ,,(WR)=0 (fork=1,...,n-1and n>1).

The first condition can hold only if J,,.;(wR) = 0. For all n> 1 the second
condition would have to hold, too. But then it would imply
Ja1(WR) = J,,(WR) = 0, a contradiction to Eq. (A4.8). Thus, if n> 1, then
a2,(t) > Foo as z'—>n12. Therefore, a finite limit of a,,(r) as z'—>n12 is
potentially possible only for n =1, m=2 and Jy,.;(WwR) =J;(wR) =0. In
this case, due to Eq. (A4.9),

Rwl2

w+w,

Jona(WoR) = J; (woR) = — Jz(WR)*'O(Wl“):O(le)

as 7 — n; . Substituting it into the formula for a,,(7) = ax(7):

a2, (0)= (6 = 1,00 R) = (g R)Oo? Jin L5 0 )+

+ O(Wl )[RW0J3 (WOR)_ RwJ, (WOR)]+J2 (WOR)O(WIZ )+

) 5
+(W'2Rj ;Rw{— R JZ(WR)+0(W?):|+

w+w,

+ O(Wl2 )_ J, (WOR)+ O(WI2 )

as 7—ni. Due to Eq.(A4.8) Jo(wR)=-Jy(wR)#0 and J;(wR) #0.
Hence, if J;(wR) = 0, then

az(r):_wszv Ty (wR)=J, (wR)+ O(w,) = —2, (wR) = 2, (wR)

as 7—n?. In all other cases a, (7)— oo as 7—n? and (3c) has

been proved.

Combining the results for even and odd m proves (3d). [ |
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A4.2 Coefficient b,,(7)
Coefficient b,,(7) is defined in Eq. (2.28) as:

1
(A412) bm (T) = E R”[WI Jm+l (Wl R)Jm (WOR) - WOJm (Wl R)Jm-H (W()R)] )

Functions w, wy and w, are defined in Eq. (2.19).
LEMMA A4.2.
(1) b, (z)=b,(7)-
(2) ForeachmeZ b (1) —0 as 7 — —oo.
(3) As —n?
(c) (m=0)1f J,(wR)=0, then b (r)=0(w?)— 0 else by(z)——mwRJ,(WR)/2.
(@ (m1>0) 11y (wR)=0, then b, (z)= O(w"*) 0,
() else b, (z)=0(w")—0.
(4) Foreach e (—oo,nf] b,(7) >0 as |m| — .

PROOF:
Proof of (1

Follows by direct substitution of Eq. (A1.4), Eq. (A1.7) in the definition Eq. (A4.12) of b,,(7).
Thus while proving (2), (3) and (4) it is enough to consider me N only.

Proof of (2)

m+l (WIR)J (WOR) —woJ,, (W]R)JmH (WOR)] =

m m

b (r)z%Rﬂ'[w]J

1
= ERm’Vl [‘]mH (WIR)Jm (WOR)_Jm (WlR)Jm+1 (WOR)]+

# S Rl =, (3R (5, R)

The second term clearly converges to zero as 7 — —oo (see Eq. (A1.2) and the proof of
Lemma A4.1(2)). Thus considering the limiting value the second term can be dropped.
Further estimating and using asymptotic expansions Eq. (A1.2):

1
bm (T) = ERMI [‘]m-H

1
2
=M cos(wlR—Mﬂ—”)cos(woR—mﬂ—”)+
Wo 2 4 2 4
1
—Cos wlR—ﬂﬂ'—g cos WOR—ﬂﬂ'—E =
2 4 2 4

(WIR)Jm (WOR)_ S (WIR)Jm-H (WOR)] =
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1
2
=& sin(wlR—mﬂ'—”)cos[woR—mﬂ'—”j+
w, 2 4 2 4
—cos W]R—ﬂﬂ'—z sin WOR—ﬂﬂ'—z =
2 4 2 4

- l(wl];{sin[(wo )R —mﬂ—gj sin((wy —w, )R)+

2\ w,
_sm((wo )R _mﬁ_’zfj_sin((wo v, )R)} _

as 7 — —oo.

Proof of (3a):
Using Eq. (A1.11)

by(r) = 5 R 00 ), (g R) = i Gy R+ O )]

If Ji(wR) = 0, then according to Eq. (A4.9)
J,(w,R)=0(w}) as 7 —n,
thus in this case

b,(7)= %Rﬂ'[O(wl2 )— O(wl2 )[1 + O(wl2 )]]: O(Wf)a 0as7—n.

If J1(wR)#0, then simply
1
by ()= RalOlwi 1 (wR) = o (o + O |-
1 2 1
== RmwyJ, (woR)+ o(w1 )—> 5 Raw, (WR) as 7 — n?.

Proof of (3b):
Using Eq. (A1.11).

b, (T) = %R”[Wl']m ("VOR)O(WIm+1 )_ Wo it (WOR)O(Wlm )] =
=S Rl (RO )= O R)OLr) 85 7 >t
Hence if J,+1(WR) # 0, then

b, (r)=0(w")—0 as 7 —n.
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If J,.+1(WR) = 0, then according to Eq. (A4.9)
J o (WOR)ZO(WIZ) as 7 n,
and in this case

bm(z')=0(wl’”+2)—>0 as 7 —n.

Proof of (4):
Follows directly from Eq. (A1.15). ||

A4.3 Term a,,’(7) + b,’(7)
Respective parts of Lemma A4.1 and Lemma A4.2 can be combined to obtain:

LEMMA A4.3.
(1) a’

(2) ForeachmeZ q’(7)+b>(r)—>1as 7——oo.
(3) As 7 —n!
(©) (Im|=0)If Jy(wR)=0, then a(7)+b;(7)— J;(WR)#0, else
ay (7)+b;(z) = o
() (Im|=1) If JywR)=0, then > (z)+5(r)=0(w? In> w,) >0, else
al(z)+b] (1) = o
(e) (Im|=2) If Jy(wR)=0, then 42(7)+b2(7)— 4J2(wR)=0, else
a3 (z)+5;(z) = -
(f) Inallother cases @’ (7)+b>(7) — oo [ |

m

(2)+02,(c)=a,(z)+b,(z)-

—-m

LEMMA A4.4 Let
e = _inf | la2 (2)+62 (2)]
TE\—oo,m

Then

(1) €,20
(2) &,=0iff |m|=1 and Jo(wR)=0.

Proof:
Part (1) is obvious from the definition of ¢,,. The proof of (2) will be given in three steps:
Step 1: a’(7)+b2(r)>0 for each me Zand e (— oo, n? )

Proof of Step 1: Assume the opposite, i.e. that there exist such myeZ and 7, € (— oo’nlz)

that 42 (70)+bio (z,)=0. Then a, (1-0):bmD (70):0 and thus also each their linear

mgy

combination:
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0=J, (wR)a, (z,)+Y, (wRp, (7,)=

ny

my my+1

= %”RWI Jmn (WOR)[Jmn-H (WIR)Y (WIR)_ Jm0 (WIR)Y (WIR)] =

= Jm“ (WOR),
due to Eq. (A1.1). In a similar way

O = "]mOH (W]R)amo (TO ) + Ym(,+l (WIR)bmo (TO ) =

(WOR)[J (WIR)Y (WIR)_JmO (W]R)Y (WIR)]z

my my+1

1
= E”RWO JmO-H my+1

= ﬁ']moﬂ (WOR) '
w,

1

Therefore J, (WOR)_J (WOR):(), a contradiction to Eq. (A4.8). Thus, a’ (r)+bi (1)

Y my+l

is positive for each me Z and e (—oo,nf).

Step 2: Implication “<" in (2) holds.

Proof of Step 2: Follows from Lemma A4.3(3b).
Step 3: Implication “="in (2) holds.

Proof of Step 3: Assume the opposite, i.e. that there exist mpeZ and a sequence
{Tk\ke N}c (—oo,nf) such that

a, (z,)+b, (r,)—0 as k—eo

mg

and (|[mo#1 or Jo(wR)=0). Due to the Bolzano-Weierstrass lemma [27], there exists such a
subsequence 1z, ‘ne Nic {Tk} that as n—eo either:

7, —>—oo
’ . . , 2

or 7, — 7 foragiven finite 7°¢ (—oo,n1 )
2

orz, —n .

First possibility contradicts Lemma A4.3(2), the second contradicts Step 1 of this lemma
and the third (with the condition (|mo|#1 or Jy(wR)#0)) contradicts Lemma A4.3(3). [ ]
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