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Abstract

Calogero-Moser-Sutherland Hamiltonians describe one-dimensional many-body sys-
tems with inverse-square interactions. They can be generalized by substituting the
coupling constants in the interaction terms with additional dynamical variables,
often referred to as internal or spin degrees of freedom. Classical, completely inte-
grable N-body systems of this type, with the internal degrees of freedom spanning
the so(N), su(N) or sp(N) Lie algebra, arise in the surprisingly opposite context,
namely energy level repulsion in quantum chaotic systems. On the other hand the
quantum Calogero-Moser-Sutherland models appear in the area of topological quan-
tum matter, Quantum Hall Effect in particular, as their eigenfunctions are obtained
as 1D representations of Laughlin states projected on a single Landau level.

The classical dynamics of the internal degrees of freedom were studied to some
extent, but the details relevant to the problem of level repulsion, such as the existence
of a finer classification of models within the orthogonal, unitary and symplectic
classes, still need to be resolved. As for the quantum case, specific models with
internal degrees of freedom have been investigated, but they typically loose this
internal structure in the classical limit. Models whose spin degrees of freedom survive
the quantum-classical transition, together with the potential presence of topological
effects, are not fully understood.

The perhaps most remarkable characteristic of the classical Calogero-Moser-
Sutherland systems, taking the interactions and internal degrees of freedom into
account, is their complete integrability. This trait is a direct consequence of the fact
that these systems can be obtained via Hamiltonian reduction of very simple (such
as free or harmonic), integrable dynamics in spaces of matrices. The reduction pro-
cedure, though defined rigorously in the language of symplectic geometry, in this
case simplifies to diagonalizing an N ×N time-dependent matrix X(t), assigning its
eigenvalues to instantaneous positions of the N particles and eliminating the eigen-
vectors from the equations of motion. So obtained functions on a reduced phase
space can be quantized canonically by the Dirac’s prescription. On the other hand,
simple dynamics in a matrix phase space can be quantized and then reparametrized
by eigenvalues and eigenvectors.

Within the framework of Hamiltonian mechanics I have shown that the Lie-
algebraic, matrix generalization of the Calogero-Moser model is equivalent to an
alternative, vectorial formulation in which the internal state of each particle in en-
coded in a complex vector. The dimension of the subspace spanned by these vectors
(equivalent to the rank of the matrix from the corresponding Lie algebra) is a con-
stant of motion which I have used to classify the models. I have proven that the
models with purely imaginary matrices encoding the initial values of internal vari-
ables have special properties: they approximate the phase space trajectories of the
non-generalized Calogero-Moser system with distinct coupling constants and have
the smallest reachable sets. Additionally, by combining the matrix and vector de-
grees of freedom and reducing it as described above, I have obtained a new integrable
model with 1/x interactions. I have obtained two different Hamiltonians from the
procedures of canonical quantization of the matrix model and reducing a free quan-
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tum model. The reduction of the quantum model introduces an additional term
− ~2

4m
∑
i<j

α(2−α)
(xi−xj)2 where α = 1, 2 for the so(N) and su(N) cases respectively, which

is an attractive term in the orthogonal setting. I have identified some of the irre-
ducible representations of the Lie algebra spanned by the internal observables, for
which the internal degrees of freedom introduce diagonal matrices into the Hamil-
tonian, and I have found the spectrum and eigenfunctions for N = 3.

The classical results can be used in the further study of energy level repulsion.
The expected level spacing distribution for the purely imaginary matrices is differ-
ent from the one which is known for general su(N) matrices. Similarily, one should
expect differences in probability distributions depending on the rank of the matri-
ces. The study of the quantum systems can be continued in two main directions:
the quantum reduction can be done in the symplectic case, as well as the spec-
tra and eigenfunctions can be found (if not exactly, then at least approximately)
for higher numbers of particles and dimensions of the space of internal states. The
finite-dimensional space of internal states, once well understood, can serve as an ad-
ditional dimension, thus yield the system two-dimensional and prone to topological
effects.

The original results presented in the thesis were published in the following papers:

• K. Kowalczyk-Murynka, M. Kuś. Matrix and vectorial generalized Calogero–Moser
models. Physica D: Nonlinear Phenomena, 440: 133491, 2022

• K. Kowalczyk-Murynka, M. Kuś. Calogero-Moser models with internal degrees
of freedom revisited, arXiv:2010.10215.
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Streszczenie

Hamiltoniany Calogero-Mosera-Sutherlanda opisują jednowymiarowe układy wielu
cząstek z oddziaływaniem proporcjonalnym do odwrotności kwadratu odległości.
Można je uogólnić zastępując stałe sprzężenia w wyrazach określających oddziały-
wanie dodatkowymi zmiennymi dynamicznymi, które zwykle nazywane są spinowymi
lub wewnętrznymi stopniami swobody. Klasyczne, całkowalne N-ciałowe układy tego
typu, z wewnętrznymi stopniami swobody rozpinającymi algebrę so(N), su(N) lub
sp(N), pojawiają się w zaskakująco innym kontekście, mianowicie odpychania poziomów
energetycznych w chaotycznych układach kwantowych. Z drugiej strony, kwantowe
modele Calogero-Mosera-Sutherlanda pojawiają się w obszarze topologicznej materii
kwantowej, kwantowego Efektu Halla w szczególności. Ich funkcje własne otrzymuje
się jako jednowymiarowe reprezentacje stanów Laughlina zrzutowanych na poje-
dynczy poziom Landaua.

Klasyczna dynamika wewnętrznych stopni swobody została w pewnym stop-
niu zbadana, ale jej szczegóły istotne dla problemu odpychania poziomów, takie
jak istnienie dokładniejszej klasyfikacji modeli wewnątrz klasy ortogonalnej, uni-
tarnej i symplektycznej, wciąż wymagają doprecyzowania. W przypadku kwantowym
konkretne modele z wewnętrznymi stopniami swobody były badane, ale typowo tracą
one tę wewnętrzną strukturę w granicy klasycznej. Modele, których spinowe stopnie
swobody są w stanie przetrwać przejście do granicy klasycznej, wraz z ich potenc-
jałem związanym z efektami topologicznymi, nie zostały dokładnie poznane.

Być może najbardziej niezwykłą cechą klasycznych układów Calogero-Mosera-
Sutherlanda, wziąwszy pod uwagę oddziaływania i wewnętrzne stopnie swobody, jest
ich zupełna całkowalność. Cecha ta jest bezpośrednią konsekwencją tego, że modele
te otrzymuje się poprzez redukcję hamiltonowską bardzo prostego (np. swobodnego
lub harmonicznego) ruchu w przestrzeni macierzy. Proces redukcji, choć można go
zdefiniować formalnie w języku geometrii symplektycznej, sprowadza się w tym przy-
padku do diagonalizacji N-wymiarowej, zależnej od czasu macierzy X(t), przypisa-
nia jej wartościom własnym roli położeń i eliminacji wektorów własnych z równań
ruchu. Tak otrzymane funkcje określone w zredukowanej przestrzeni fazowej można
skwantować kanonicznie według przepisu Diraca. Z drugiej strony prosty układ w
przestrzeni macierzy może zostać skwantowany, a następnie sparametryzowany przez
wartości i wektory własne.

W ramach formalizmu hamiltonowskiego pokazałam, że macierzowe uogólnie-
nie modelu Calogero-Mosera związane z algebrami Liego jest równoważne innemu,
wektorowemu sformułowaniu, w którym wewnętrzny stan każdej cząstki opisany
jest zespolonym wektorem. Wymiar podprzestrzeni rozpinanej przez te wektory
(równoważny rzędowi macierzy z odpowiedniej algebry Liego) jest stałą ruchu, którą
wykorzystałam do klasyfikacji modeli. Pokazałam, że modele z czysto urojonymi
macierzami opisującymi wewnętrzne stopnie swobody w chwili początkowej mają
specjalne własności: ich trajektorie w dobrym przybliżeniu opisują dynamikę modeli
bez wewnętrznych stopni swobody ale z różnymi wartościami stałych sprzężenia, a
także mają minimalne zbiory osiągalne. Dodatkowo, łącząc macierzowe i wektorowe
stopnie swobody i przeprowadzając opisaną wcześniej redukcję otrzymałam nowy
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całkowalny model z oddziaływaniami zależnymi od odwrotności odległości między
cząstkami. Poprzez kanoniczną kwanyzację układu z wewnętrznymi stopniami swo-
body i redukcję kwanowego układu swobodnego otrzymałam dwa różne hamilto-
niany. Hamiltonian otrzymany z redukcji układu swobodnego posiada dodatkowy
wyraz − ~2

4m
∑
i<j

α(2−α)
(xi−xj)2 gdzie α = 1, 2 odpowiednio w przypadku stopni swobody

należących do algebry so(N) lub su(N). Wyraz ten wprowadza przyciąganie w mod-
elu ortogonalnym. Zidentyfikowałam niektóre z nieprzywiedlnych reprezentacji al-
gebry rozpinanej przez obserwable związane z wewnętrznymi stopniami swodody,
wprowadzających do hamiltonianu macierze diagonalne, oraz znalazłam wartości i
wektory własne w przypadku N = 3.

Klasyczne wyniki mogą zostać zastosowane w dalszych badaniach nad problemem
dynamiki poziomów energetycznych. Spodziewany rozkład prawdopodobieństwa odległości
między poziomami dla czysto urojonych macierzy różni się od tego, który odpowiada
wszystkim macierzom należącym do algebry su(N). Podobnie, można się spodziewać
różnic w rozkładach w zależności od rzędu macierzy opisującej wewnętrzne stop-
nie swobody. Praca nad układami kwantowymi może być kontynuowana w dwóch
głównych kierunkach: redukcja kwantowa może zostać wykonana w przypadku sym-
plektycznym, oraz widma i funkcje własne mogą zostać znalezione (jeśli nie ściśle,
to przynajmniej w przybliżeniu) dla większej liczby cząstek i większych wymiarów
przestrzeni stanów wewnętrznych. Skończenie wymiarowa przestrzeń stanów wewnętrznych,
po dokładnym zbadaniu, może posłużyć za dodatkowy wymiar, czyniąc cały układ
dwuwymiarowym i podatnym na efekty topologiczne.

Oryginalne wyniki zaprezentowane w niniejszej rozprawie zostały opublikowane
w następujących pracach:

• K. Kowalczyk-Murynka, M. Kuś. Matrix and vectorial generalized Calogero–Moser
models. Physica D: Nonlinear Phenomena, 440: 133491, 2022

• K. Kowalczyk-Murynka, M. Kuś. Calogero-Moser models with internal degrees
of freedom revisited, arXiv:2010.10215.
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Chapter 1

Introduction

Integrability, let alone explicit solvability, of equations of motion should not be taken
for granted. Apart from the case of one degree of freedom, it is in fact not common for
a system to be symmetric enough to have completely integrable equations of motion.
In the case of many-body interacting systems on a line, defined by the Hamiltonian:

H =
N∑
i=1

p2
i

2m
+
∑
i<j

V(xi − xj)

the requirement of integrability imposes very stringent conditions on the interaction
potential. These conditions can be transferred to the quantum context as well, and
they limit V(x) to only few known cases:

• the Calogero system with V(x) = g
x2 + mω2

2 x2, usually called the Calogero-
Moser system for ω = 0,

• the Sutherland system defined by V(x) = g
a2 sin2(ax) ,

• the inverse hyperbolic sine potential V(x) = g
a2 sinh2(ax)

.

• the Weierstrass function V(x) = ga2P(x)1,

• the Toda chains with nearest neighbour exponential interactions.

The earliest work on this class of systems was done in the late sixties and early
to mid seventies, both in the classical and quantum case. One of the first studies
involved the normal modes of a classical chain with exponential interactions by
M. Toda [1] and the general method of using linear operators to solve non-linear
equations of motion associated with interacting potentials by P.D. Lax [2]. Shortly
after F. Calogero found the eigenfunctions and energy spectra for the inverse square
potential (with and without the harmonic confinement) [3–5] and for the hyperbolic
sine potential [6], while B. Sutherland studied the inverse sine square model [7,8]. The
systems combining different inter-particle and external potentials, their integrability
and scattering properties were studied by M. Adler [9]. The classical integrability
of the above systems was proven by J. Moser [10] with the method of isospectral
matrix deformations and, on more formal mathematical grounds of Hamiltonian

1Let ω1, ω2 ∈ C be linearly independent over R, and Λ = {mω1 + nω2 : m,n ∈ Z be a lattice
generated by them in C. The Weierstrass function is then defined for z ∈ C \ Λ as:

P(z) = P(z;ω1, ω2) =
1
z2 +

∑
λ∈Λ\0

(
1

(z − λ)2 −
1
λ2

)

1



group actions, by Kazhdan, Kostant and Sternberg [11]. The results of this period
were summarised by M.A. Olshanetsky and A.M. Perelomov in two comprehensive
review articles: [12] on the classical and [13] on the quantum context. They both
emphasise the connection of the different types of two-body interacting potentials
listed above with Lie algebra representations.

Since the late seventies the Calogero-Moser-Sutherland (from now on referred
to as CMS) systems were studied extensively, as they emerged in different areas of
physics and mathematics. They entered the field of non-linear dynamical systems
through their relation with certain solutions of the Korteweg-deVries2, Kadomtsev-
Petviashvili3 and Benjamin-Ono4 equations [14–22]. They also emerged in the area of
energy level repulsion in quantum chaotic systems. The equations of motion related
to this class of Hamilton functions were shown to describe the repulsion of the energy
levels of quantum systems in a form H(λ) = H0 + λV , with the control parameter
λ taking the role of time [23–26]. This in turn, if H0 is identified with an integrable,
and V with a chaotic contribution (both in the classical limit), can be related to the
probability distribution of level spacing [27,28], and compared with the predictions
of random matrix theory [29]. Depending on the universality class of the V term,
meaning if it is diagonalizable via (a) orthogonal, (b) unitary or (c) symplectic
matrix, the level spacing distribution is P (s) ∝ sβ as s → 0, where β = 1, 2, 4
respectively. This means the energy levels repel, as opposed to the level clustering
indicated by the distribution P (s) = e−s in an integrable system.

The third field, in which CMS systems made a noticeable appearance is con-
densed matter theory, the Quantum Hall Effect [30–32],and fractional statistics
[33–35] in particular.

The relationship of the CMS potentials with root systems and Coxeter groups
pointed out by Olshanetsky and Perelomov and the notion of the Calogero-Moser
spaces introduced by Kazkdan, Kostant and Sternberg sparked the interest in this
class of systems among the mathematical community [36–42].

1.1 Generalizations of the CMS systems

The interaction potentials listed in the beginning of this chapter involved a common
coupling constant for all interacting pairs. This set-up, to which I will be referring
to as the family of ordinary CMS systems, can be generalized in various ways.
For example, the positions and momenta can be upgraded to complex variables [43].
The common coupling constant can be altered to pair-dependent values, as to model
multiple species of particles in the system [44], although this kind of modifications
may in principle lead to the loss of integrability.

Perhaps the most prominent generalizations are the ones involving additional,
internal degrees of freedom modifying the interaction potential. These are often
called, despite the classical context, the spin generalizations and can be divided into
two basic types: the one-particle properties encoded in complex vectors {|ei) : i =
1, 2, ..., N} [45,46] and two-particle functions Lij which stem from the Hamiltonian
reduction procedure in a matrix phase space, and turn out to form the representation
of the so(N) or su(N) Lie algebra [10,12,47]. Spin generalizations of the CMS systems
in the quantum setting involve exchange operators acting on internal states [48–52].

2usually abbreviated to KdV, is a nonlinear PDE for a function u = u(t, x) of the form ∂tu +
∂3
xu− 6u∂xu = 0.

3often abbreviated to KP, is a non-linear PDE for a function u = u(t, x, y), defined as ∂x(∂tu+
∂3
xu+ 6u∂xu) + 3σ2∂2

yu = 0, where σ2 = ±1.
4it is a non-linear integro-differential equation of the form ∂tu + u∂xu + H(∂2

xu)=0, where
H(f)(ξ) = 1

π
p.v.

∫∞
−∞

f(τ)
ξ−τ is the Hilbert transform.
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The vector and matrix degrees of freedom mentioned above are the main fo-
cus of this thesis. The matrix formulation arises naturally in the level dynamics of
integrable and chaotic Hamiltonians. The two-particle |Lij |2 functions replace the
coupling constants in the repulsive potential. Therefore a closer look at the classical
dynamics of these functions, meaning the types of orbits and reachable sets in phase
space, as well as their influence on the spatial degrees of freedom can be of use to
the problem of level repulsion.

On the other hand, the internal properties of each individual particle, entering
the repulsion potential, seem much less mysterious and much more natural as a
model of physical interaction. The questions is how are the two formulations related
or mapped onto one another.

Another problem is the quantization of these degrees of freedom. The classical
scheme of Hamiltonian reduction as well as methods of mapping the ordinary quan-
tum Calogero-Moser systems onto the systems of free particles [53] or decoupled har-
monic oscillators [54] can be treated as guidelines towards this task. Independently
of the purely operator-algebraic approach presented in [55], a direct derivation of
a quantum Calogero-Moser Hamiltonian with internal degrees of freedom will be
of much benefit. Such a system, with spin degrees of freedom that survive in the
classical limit is expected to have a rich structure of eigenstates, and can be further
used in the study of topological effects.

1.2 Overview of the thesis

The rest of the dissertation is organized as follows: in chapter 2 I introduce the
mathematical tools, definitions and notation used in the subsequent chapters. These
involve the fundamentals of group theory and differential geometry, as well as an
overview of Hamiltonian formalism and non-relativistic quantum mechanics, and
finally the method of Hamiltonian reduction.

In chapter 3 I review the key facts about the matrix and vector formulations of
the classical CM systems. I also present the solution for the spectrum and wave-
functions of the ordinary quantum CM system, some properties of the systems with
spin state exchange and the relationship of the CM system with the Quantum Hall
Effect.

In chapters 4 and 5 I present my contribution. Chapter 4 involves the classical
dynamics of the internal degrees of freedom: the relationship between the matrix
and vectorial formulation, the uniqueness of fixed points, the reachable sets and the
influence on the motion in physical space, as well as a new model which combines
the matrix and vector degrees of freedom in an augmented phase space.

Chapter 5 is devoted to quantization schemes of the generalized Calogero-Moser
system, one of them being the direct, canonical quantization of the spatial and
internal degrees of freedom, and the other being the reduction of a canonically
quantized free system in a larger phase space, using the classical procedure as a
blueprint.

In chapter 6 I summarize the obtained results together with an outlook on future
research, particularly in the areas of quantum chaos and topological effects.

The appendices A and B contain the detailed proofs of some of the results from
chapter 4 and 5 respectively.
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Chapter 2

Mathematical Tools

In this chapter I provide a review of the mathematical definitions and theorems used
in the rest of the thesis. The topics covered here are:

• the basics of Lie groups, Lie algebras and group actions,

• the fundamentals of differential geometry

• symplectic geometry and Hamiltonian mechanics,

• canonical quantization,

• Marsden-Weinstein reduction theorem,

• quantum reduction.

My main goal and focus is to introduce the mathematical tools and justify the
methods used throughout the thesis without delving into the depth of the underlying
theories. The sources I have used are [56] for Lie algebras, [57, 58] for differential
geometry, [59–61] for classical Hamiltonian mechanics, [62] for quantum Hamiltonian
mechanics, [63] for canonical quantization, and [64,65] for reduction procedures.

2.1 Lie groups, Lie algebras and important examples

2.1.1 Basic definitions

Definition 1. A group is a set G with a composition operation · : G×G→ G which
satisfies the following axioms:

• there is an element e ∈ G, called the identity, such that e · g = g · e = g for all
g ∈ G,

• every element g ∈ G has an inverse, g−1 ∈ G such that g · g−1 = g−1 · g = e,

• the composition operation is associative, that is (f · g) ·h = f · (g ·h) = f · g ·h.

A group is called Abelian if all elements g, h ∈ G commute, i.e. g.h = h.g. The
symbol of the group composition can be omitted to simplify the notation: fg = f · g.

Definition 2. A subset H ⊂ G is called a subgroup it is closed under the group
operations, i.e. for all g, h ∈ H both g.h and g−1 belong to H.

Groups are especially relevant to physics when they define some operations on a
physical object: they translate,rotate or permute its constituents for example. This
is captured by the notion of group actions:
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Definition 3. The action of the group G on a set X is a function ϕ : G×X → X
which satisfies the following axioms:

• the identity e ∈ G acts as identity on every element of X:

∀x∈Xϕ(e, x) = x

• the actions compose through composition within the group G:

ϕ(g, ϕ(h, x)) = ϕ(gh, x)

Depending on what G and X consist of, it may make sense for an element g to act
from the left, meaning that if x is itself a map of some type, then g acts on the result
of x, that is:

ϕL(g, x)(; ) = g.x(; ) = g(x(; )).

Another possibility is to act from the right, that is to act on the argument of x, i.e.
x.g(; ) = x(g(; )), but in this case the composition takes place in the different order:
(x.g).h(; ) = x.(hg)(; ), this is why the right action of g which satisfies the second
axiom must be defined with the inverse, g−1:

ϕR(g, x)(; ) = x.g−1(; ) = x(g−1(; )).

Whenever both kinds of action make sense, for example when both G and X are
matrices, they can be composed into conjugation:

ϕL(g, ϕR(g, x)) = g.x.g−1.

Often the symbols of ϕL,R and the dot can be omitted, and the usual notation is
gx, xg−1, gxg−1.

The following important constructions arise when group actions are considered:

Definition 4. A stabilizer of a point x ∈ X is a subset of Gx ⊂ G such that:

Gx = {g ∈ G : g.x = x}.

Every such subset is a subgroup of G.

Definition 5. An orbit of a point x ∈ X is a subset Ox ⊂ X such that:

Ox = {g.x : g ∈ G}.

Definition 6. Fixed points of X under the action of G are the following subset:

XG = {x ∈ X : ∀g ∈ G : g.x = x}.

Definition 7. The action of a group G on a set X is called faithfull or effective, if

∀x ∈ X : g.x = x =⇒ g = e.

Definition 8. The action of a group G on a set X is called free, if

∃x ∈ X : g.x = x =⇒ g = e.

A group can be discreet (like the permutation group) or a continuous meaning
that its elements can be parametrised by d continuously varying real numbers. It
locally looks like Rd thus it is a d-dimensional manifold. This leads us to the definition
of a Lie group:
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Definition 9. A Lie group is a group, which is also a manifold, and the action of
the group on itself by the composition operation is a smooth map.

Definition 10. A Lie algebra is a vector space L with a bilinear, antisymmetric
operation [·, ·] : L× L→ L which obeys the Jacobi identity:

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0

for all elements A,B,C ∈ L.

Definition 11. For every Lie group G there is a uniquely defined Lie algebra, which
is the tangent space at the identity g = TeG.

A group can act on itself, and a Lie algebra g, as a vector space is endowed with
a dual space g∗. Due to these two facts, for every group there are two naturally
defined actions:

Definition 12. Every group G acts on itself by conjugation:

g, h ∈ G : Ψg(h) = ghg−1.

In case of a Lie group the adjoint action Ad : G→ Aut(g) can be defined for every
g ∈ G as the derivative of Ψg : G→ G at the identity:

Adg = dΨg : g→ g.

Definition 13. The coadjoint action of Ad∗ on the dual space g∗ is defined with the
use of the natural pairing of g and g∗:

〈Ad∗gx, ξ〉 = 〈x,Adg−1ξ〉.

2.1.2 The so(N) and su(N) Lie algebras

The formulation of the various, both classical and quantum, Calogero-Moser models
relies strongly on the properties of the so(N) and su(N) Lie algebras. Their respec-
tive Lie groups, SO(N) and SU(N), are also an important ingredient. The general
notion of the Lie algebra was already introduced (def. 10), together with its relation
to Lie groups (def. 11). The specific examples which are the subject of this section
are introduced through the following definitions:

Definition 14. The general linear group G(N ; C(R)) is the group of all invertible
N ×N matrices with complex (real) entries.

Definition 15. A matrix Lie group G is a closed subgroup of G(N ; C). It is said to
be compact if it is compact as a subset of complex N ×N matrices MN (C) ≡ R2N2

.
It is said to be connected, if for every two elements g, h ∈ G there is a continuous
path g : [0, 1]→ G, such that g(0) = g and g(1) = h.

Definition 16. A Lie algebra g of a matrix Lie group G is a set of matrices V such
that exp(tV ) ∈ G for all t ∈ R.

The definition 12 of the adjoint action is much easier to grasp in the case of
matrix Lie groups, as the derivative can be performed explicitly:

Adg(V ) =
d

dt

(
getV g−1

)
|t=0 = gV g−1.

The definition 16 implies that g is a vector space over the real numbers and it is
closed under the commutation operation:

∀X,Y ∈ g,∀a, b ∈ R aX + bY ∈ g, XY − Y X = [X,Y ] ∈ g
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Definition 17. The special orthogonal and special unitary groups and their under-
lying Lie algebras are defined as follows:

SO(N) =
{
O ∈ G(N ; R) : OOT = 1, detO = 1

}
SU(N) =

{
U ∈ G(N ; C) : UU † = 1, detU = 1

}
so(N) =

{
V ∈MN (R) : V T = −V, TrV = 0

}
su(N) =

{
V ∈MN (C) : V † = −V, TrV = 0

}
Groups, and their underlying algebras are abstract sets of objects obeying certain

multiplication rules. These objects and rules can be realised with appropriately
chosen matrices and a certain realisation is called a representation. TheN×N matrix
representation of these algebras, the so called defining representation defined in 17
is of particular importance, since the (ij)th matrix element encodes the repulsion
between the ith and jth particle in an N -particle Calogero-Moser system. This is
the reason why I am using pairs of numbers as labels for the basis elements defined
below.

Using the natural basis of RN , that is (êi)j = δij , I introduce:

Definition 18. The basis of su(N) consists of N2 − 1 traceless, anti-Hermitian
N ×N matrices:

τij = êiê
T
j − êj êTi

σij = i
(
êiê

T
j + êj ê

T
i

)
dk = i

√
2

k(k + 1)

(
k∑
l=1

êlê
T
l − kêk+1ê

T
k+1

)
=

k+1∑
l=1

iαklêlê
T
l

where 1 ¬ i < j ¬ N and 1 ¬ k < N . The τij matrices span so(N). The above
matrices are orthogonal with respect to (A,B) = TrA†B. The only pairs of matrices
with a nonvanishing scalar product are:

(τij , τkl) = (σij , σkl) = −2δikδjl, (dk, dl) = −2δkl.

All vector spaces of the same finite dimension are isomorphic, but an algebra
is more than just a vector space. It has a commutation operation built in, and the
commutation relations between the basis elements are what distinguishes one algebra
from another:

Definition 19. The commutation relations between basis elements of su(N) are the
following:

[τij , τkl] = δjkτil − δikτjl − δjlτik + δilτjk

[τij , σkl] = δjkσil − δikσjl + δjlσik − δilσjk
[σij , σkl] = −δjkτil − δikτjl − δjlτik − δilτjk

[dk, dl] = 0

[dk, τij ] =
k+1∑
l=1

αkl(δilσjl − δjlσil)

[dk, σij ] =
k+1∑
l=1

αkl(δilτjl + δjlτil)

The subspace spanned by τij , the so(N) algebra, is closed under the commutation
operation.
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Definition 20. Commutation relations between basis elements (τ1, τ2, ..., τd) of a
Lie algebra can be presented with the use of structure constants f cab ∈ R:

[τa, τb] =
d∑
c=1

f cabτc, f cab =
([τa, τb] , τc)

(τc, τc)

The d×d matrices (f1, f2, ..., fd), such that (fa)bc = −f cab obey the same commutation
relations as (τ1, τ2, ..., τd):

[fa, fb] =
d∑
c=1

f cabfc

which means they themselves form a representation of the same algebra, the so called
adjoint representation.

2.2 Fundamentals of differential geometry

Definition 21. A real differentiable manifold M is a topological space1 with a family
of pairs {(Ui, ϕi)}, where Ui are open sets covering M , i.e. M = ∪iUi and ϕi : Ui →
U ′i ⊂ Rm are homeomorphisms, i.e. continuous bijections with continuous inverses.
For Ui ∩ Uj 6= ∅ the function ϕj ◦ ϕ−1

i in infinitely differentiable. Each pair (Ui, ϕi)
is called a chart.

In simple words, a differentiable manifold defined above resembles, at least lo-
cally, the familiar m-dimensional real space Rm. The maps ϕi describe every point
p ∈M in terms of m real coordinates ϕi(p) = (x1, ..., xm)(p). On a non-empty over-
lap Ui ∩ Uj of two sets, there are two valid coordinate systems, ϕi and ϕj and the
transition between them, that is ϕj ◦ ϕ−1

i is required to be smooth.
A map f : M → N between two manifolds can be expressed with the use of

charts (U,ϕ) and (V, ψ), where p ∈ U and f(p) ∈ V as:

f = ψ ◦ f ◦ ϕ−1 : ϕ(U) ⊂ Rm → ψ(V ) ⊂ Rn.

If f is invertible and both f and f−1 are smooth, we call the map f : M → N
a diffeomorphism and the manifolds M and N diffeomorphic to each other, which
means they are essentially the same. The set of diffeomorphisms f : M → M of a
manifold onto itself, Diff(M), is known to form a group.

As special cases of maps applied to manifolds we distinguish: functions, f : M →
R and curves, γ : (a, b) ⊂ R→M .

It is not difficult to imagine a line, which is tangent to a curve, or a plane which is
tangent to a curved surface at a single point p. For a general differentiable manifold
this idea is generalized by the notion of the tangent space:

Definition 22. Let f, g ∈ C∞p , that is functions which are smooth on a neighbour-
hood of a point p ∈M . The set of all maps v : C∞p → R, such that:

• v(af + bg) = a(vf) + b(vg)

• v(fg)(p) = (vf)g(p) + (vg)f(p)

• (av + bw)f = a(vf) + b(wf)

1i.e. a most general space on which neighbourhoods, open sets, closed sets and continuity are
possible to define
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is a vector space called the tangent space to M at the point p, denoted by Tp(M), and
its elements are called tangent vectors at p. The set theoretical union of all points
with their tangent spaces, TM = ∪p(p, Tp(M)), is called the tangent bundle.

Relative to a chart (U,ϕ), with ϕ(p) = (x1, x2, ...xm)(p) every element v ∈ Tp(M)
can be expressed as:

v =
m∑
i=1

vi
∂

∂xi
, v(f) =

m∑
i=1

vi
∂(f ◦ ϕ−1)

∂xi
,

where the coefficients vi are uniquely defined by vi = v(xi). The coordinate vectors{
∂
∂xi

: i = 1, 2, ...,m
}

form a (so called coordinate) basis of Tp(M) at each point p.

Definition 23. A cotangent space T ∗p (M) is the dual space to Tp(M). It consists of
linear functions α : Tp(M) → R and the image in R is denoted α(v) or 〈α, v〉. For
any function f : C∞p → R we define a unique element df ∈ T ∗p (M) by requiring:

〈df, v〉 = v(f)

for all v ∈ Tp(M). From this it can be shown that every α ∈ T ∗p (M) may be expressed
as

α =
m∑
j=1

αjdxj , 〈dxj ,
∂

∂xi
〉 = δij ,

in particular df =
∑m
j=1

∂f
∂xj

dxj . The elements of T ∗p (M) are called 1-forms or cov-
ectors at p ∈ M . Again the union of all (p, T ∗p (M)), denoted by T ∗M is called the
cotangent bundle.

Definition 24. A tangent vector v ∈ Tp(M) assigned smoothly to every point p ∈M
defines a vector field, which can be described in the coordinate basis as V = vi(p) ∂

∂xj
,

where the components are now functions of coordinates (x1, ..., xm) = ϕ(p). The set
of vector fields on M is denoted by X (M) and is a linear space itself. Moreover, with
the commutator [V,W ] = VW −WV it forms a Lie algebra.

Analogously, assigning a 1-form to every point p ∈M defines a covector field.

The idea of vector and covector fields can be generalized to tensor fields of
arbitrary type (r, s), where r, s ∈ {0, 1, 2...}, defined by the transformation rules
under the change of coordinate system from (x1, ..., xm) to (y1, ..., ym):

(T ′)l1...,lsj1...jr
=
(
∂yj1
∂xh1

...
∂yjr
∂xhr

)(
∂xk1

∂yl1
...
∂xks
∂yls

)
T k1...,ks
h1...hr

,

which makes the vector fields fall into the (1, 0) type, and the 1-forms into the (0, 1)
type. In simple words, an (r, s) tensor field has r slots for covector fields and s slots
for vector fields and is linear in all r+ s arguments. Given these r+ s objects it will
result in a function.

Definition 25. A k-form is a (0, k) type completely antisymmetric tensor:

α(k) : Tp(M)×k → R, α(k)(v(1), ...v(k)) = (−1)sign(σ)α(k)(v(σ(1)), ...v(σ(k)).

A k-form field assigns a k-form at every point p ∈M .

The wedge (exterior) product, ∧, is a product of forms, which preserves the
antisymmetry condition. A wedge product of a k-form and an l-form results in a
(k+l)-form if k + l ¬ m. If k + l > m the exterior product vanishes identically. The
direct sum of the spaces Λk(Tp(M)) of k-forms, where k = 0, 1, ...m constitutes an al-
gebra with the wedge product. The coordinate basis of k-forms on an m-dimensional
manifold has

(m
k

)
elements given by:

dxl1 ∧ dxl2 ∧ ... ∧ dxlk : 1 ¬ l1 < l2 < ... < lk ¬ m.
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Definition 26. The map called the exterior derivative, d : Λk → Λk+1 is defined by
the following conditions:

• for f ∈ C∞(M) = Λ0: df(v) = v(f)

• for α, β ∈ Λk: d(aα+ bβ) = adα+ bdβ

• for α ∈ Λk and β ∈ Λl: d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ

• for any α ∈ Λk: d2α = d(dα) = 0.

There is also a map from Λk to Λk−1, which requires the existence of a smooth
vector field V , at least on the neighbourhood p ∈ U ⊂M :

Definition 27. The interior multiplication of α ∈ Λk is denoted by ιV α, ι(V )α or
V yα. It satisfies the following conditions:

• for a function (0-form) f : U → R: ιV f = 0

• for any 1-form α ∈ Λ1: ιV α = 〈α, V 〉.

• for α, β ∈ Λk: ιV (aα+ bβ) = aιV α+ bιV β

• for α ∈ Λk and β ∈ Λl: ιV (α ∧ β) = ιV (α) ∧ β + (−1)kα ∧ ιV (β)

The final important operation is the Lie derivative. For an arbitrary tensor field
it returns a tensor field of the same type. It also requires a vector field, and may
be understood as derivation along the flow of the vector field, i.e. a function σ :
(−a, a) × U → M , that describes the curves passing through every p ∈ U ⊂ M at
t = 0 with the velocity given by V (p) ∈ TpM :

σ(0, p) = p,
d

dt
σ(t, p) = V (σ(t, p)).

It has the following properties:

• when it acts on a function: LV f = V (f),

• when it acts on a vector field LVW = [V,W ],

• when it act on a 1-form LV α = ιV dα+ d(ιV α).

• for any two tensors of the same type LV (aT1 + bT2) = aLV T1 + bLV T2,

• for two tensors of arbitrary type LV (T1 ⊗ T2) = LV (T1)⊗ T2 + T1 ⊗ LV (T2),

from which the expressions in coordinate basis can be derived.
Lastly, for a smooth map Φ : M → N between two manifolds two induced maps

can be defined:

Definition 28. Let f ∈ C∞q , where q = Φ(p) for some p ∈ M . Then F = f ◦ Φ ∈
C∞p . An induced map Φ∗ called the push-forward is defined as follows:

Φ∗ : TpM → TqN, ∀V ∈TpM (Φ∗V )(f) = V (f ◦ Φ).

Definition 29. An induced map called the pull-back Φ∗ is defined in the following
way:

Φ∗ : T ∗qN → T ∗pM, ∀α∈T ∗q N∀V ∈TpM (Φ∗α)(V ) = α(Φ∗V ).

It can be generalized to k-forms in the following way:

(Φ∗α(k))(V1, ..., Vk) = α(k)(Φ∗V1, ...,Φ∗Vk).
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2.3 Hamiltonian mechanics

The generalised Calogero-Moser systems studied in this thesis are formulated within
the Hamiltonian formalism. The Hamiltonian formulation provides us with the no-
tion of a phase space, in which we can look at the trajectories traced by the coordi-
nates (usually the positions and momenta) from a purely geometrical point of view.
This point of view, expressed in the language of symplectic geometry, is reviewed
below. The formalism of Hamiltonian dynamics is also necessary for us to transition
to the (non-relativistic) quantum world. The quantum Hamiltonian formulation and
the canonical quantization procedure are also reviewed in this section.

2.3.1 Classical Hamiltonian mechanics

The phase space, that is the space of all states of a mechanical system is an example
of a symplectic manifold.

Definition 30. Let M2n be a differentiable manifold of even dimension. A symplec-
tic structure on M2n is a closed, nondegenerate 2-form ω on M2n:

dω = 0, ∀v 6= 0∃w : ω(v, w) 6= 0, (v, w ∈ TxM) (2.1)

The pair (M2n, ω) is called a symplectic manifold.

The space R2n with coordinates (q̄, p̄) = (q1, q2, ..., qn, p1, p2, ..., pn) and ω =∑n
i=1 dpi ∧ dqi is an example of a symplectic manifold. The coordinates q̄ ∈ Rn are

the available positions, and p̄ ∈ Rn are the available momenta. Yet the available
positions, that is the configuration space, need not to be the full Euclidean space.
They may be constrained to a different n-dimensional manifold (like a circle or
sphere in the case of a pendulum). Let us call it V , the configuration space. Then
the cotangent bundle T ∗V with coordinates (q̄, p̄), where q̄ ∈ V , p̄ ∈ T ∗q̄ V and with
the form ω =

∑n
i=1 dpi ∧ dqi is a symplectic manifold. It is also the phase space of a

system with the configuration space V . The cotangent bundle of the configuration
space covers most of the cases relevant in physics. Yet for a completely general case
of a symplectic manifold there is the Darboux Theorem which states that locally
there always exists a coordinate system (q̄, p̄) in which the symplectic form can be
written as ω =

∑n
i=1 dpi ∧ dqi. From now on I will express every introduced object

in (q, p) coordinates to stay in touch with its physical meaning.

Definition 31. There is an isomorphism of tangent vectors and 1-forms defined by
the symplectic structure (M2n, ω). To every v ∈ TxM we assign a 1-form ωv ∈ T ∗xM
such that:

∀w ∈ TxM : ωv(w) = ω(w, v). (2.2)

We denote the inverse of this isomorphism as I : T ∗xM → TxM .

Definition 32. Consider a function H : M → R. Then dH is a 1-form on M , and
I(dH) is a vector field on M . We call VH = I(dH) a Hamiltonian vector field, and
H itself - the Hamilton function.

Let us express the Hamiltonian vector field in coordinates (q̄, p̄). For ω = dp̄ ∧
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dq̄,and H : M → R we have:

dH =
∂H

∂q̄
dq̄ +

∂H

∂p̄
dp̄

VH = hq̄
∂

∂q̄
+ hp̄

∂

∂p̄
,

v = vq̄
∂

∂q̄
+ vp̄

∂

∂p̄
,

ω(v, I(dH)) = dH(v)

−hp̄vq̄ + hq̄vp̄ =
∂H

∂q̄
vq̄ +

∂H

∂p̄
vp̄

VH =
∂H

∂p̄

∂

∂q̄
− ∂H

∂q̄

∂

∂p̄
.

Having a vector field, we may ask what are its integral curves γ : R → M . In the
case of a Hamiltonian vector field:

γ(t) = (q̄(t), p̄(t))
dγ(t)
dt

= VH(γ(t))

d

dt

(
q̄
p̄

)
=

(
∂H
∂p̄

−∂H
∂q̄

)

they are the solutions of the Hamilton canonical equations.

Definition 33. Equivalently to the integral curves we can think of a group of one-
parameter diffeomorphisms γt : M →M defined by the Hamiltonian vector field:

d

dt
γt(x)|t=0 = VH(x).

This group is called the Hamiltonian phase flow with Hamilton function H, and will
be denoted as γtH .

Clearly, the value of H is, by definition, constant along the integral curves of VH ,
in other words H is the co called first integral of the system of ordinary differential
equations defined by the Hamiltonian vector field. But there can be other, nontriv-
ially different first integrals of VH , and we need to know how to identify them. This
motivates the introduction of the Poisson bracket:

Definition 34. Let F,H : M → M be two functions on a symplectic manifold
M . The Poisson bracket of F and H is defined as the derivative of F along the
Hamiltonian flow of γtH :

{F,H}(x) =
d

dt
F (γtH(x))|t=0

which is again a function on M .

This definition implies that the Poisson bracket obeys the Leibniz rule:

{F1F2, H} = F1{F2, H}+ F2{F1, H}.

It also indicates that a function F is a first integral of the Hamiltonian flow γtH if
and only if the Poisson bracket {F,H} vanishes. Using the definitions of γtH and
the isomorphism I, we may write two other, equivalent definitions of the Poisson
bracket:

{F,H} = dF (VH) = ω(VH , VF ).
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The latter makes it apparent that the Poisson bracket is billinear and skew-symmetric
in F and H. It allows for an efficient calculation of the Poisson bracket in (q, p) co-
ordinates:

{F,H} = ω

(
∂H

∂p̄

∂

∂q̄
− ∂H

∂q̄

∂

∂p̄
,
∂F

∂p̄

∂

∂q̄
− ∂F

∂q̄

∂

∂p̄

)
=
∂F

∂q̄

∂H

∂p̄
− ∂F

∂p̄

∂H

∂q̄

The above expression (or some more general results about Lie derivatives) can be
used to prove, that the Poisson bracket obeys the Jacobi identity:

{{F,G}, H}+ {{G,H}, F}+ {{H,F}, G} = 0.

Recalling the definiton of a Lie algebra, 10 we clearly see, that the Hamilton functions
on a symplectic manifold form a Lie algebra,and the operation in this algebra is given
by the Poisson bracket. Moreover, the first integrals of the Hamiltonian flow form
its subalgebra (that is a subset, which is also an algebra and is closed under the
algebra operation).

It is important to mention, that vector fields on a manifold also form a Lie
algebra, with the operation called a Lie bracket or commutator. They act as deriva-
tives of functions along the integral curves of the field. In particular, we have the
Hamiltonian vector fields on a symplectic manifold, and they act in the following
way:

[VF , VH ] = LVH (F )(x) =
d

dt
F (γtH(x))|t=0 = {F,H}(x), x ∈M.

Integrability

The standard physical interpretation of the constructions presented above is that
the function H : M → R represents the total energy of the system. The equations
for integral curves γ : R → M of the Hamiltonian vector field associated with H
parametrised with time,

γ(t) = (q̄(t), p̄(t)), γ̇(t) = VH(γ(t)), (2.3)

can be rewritten equivalently as the Hamilton canonical equations2:

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (2.4)

Their solutions tell us what happens with the positions and momenta of the bodies
the system defined by H consists of, given the initial conditions. This, among many
other reasons, may motivate us to ask, is the single H function giving us enough
data to solve the equations (2.4)? Or, more generally, we may ask, how many first
integrals do we need to know in order to solve the system of differential equations
by quadratures3? In other words: what are the conditions for integrability of (2.4)?
Let us first consider a general dynamical system:

ẋi = fi(x1, x2, ..., xN ), x̄(0) = (x1,0, x2,0, ..., xN,0). (2.5)

The existence of r constants of motion (F1, F2, ..., Fr), which are functionally inde-
pendent, that is dF1 ∧ dF2 ∧ ...∧ dFr 6= 0 reduces the dimensionality of the problem
from N to N − r. The way it works is that each constant of motion has a defined
value Fj = Fj(x̄(0)) at the initial x̄(0), defining an N − 1 dimensional surface (so

2In the case of H = 1
2m

∑
p2
i + V (x1, ..., xN ) they may be directly transformed into Newton’s

equations of motion.
3i.e. through algebraic operations, as well as taking integrals and partial derivatives
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called leaf) of points the integral curve of (2.5) is allowed to pass through. Intersect-
ing r such leafs decreases the dimensionality of the allowed submanifold to N −r. In
particular if r = N−1 this results in a curve which is in fact the solution of (2.5), per-
haps up to reparametrisation. One can also think of the vector field V =

∑N
i=1 fi

∂
∂xi

(the solutions of (2.5) are its integral curves) and search for vector fields Xa, where
a = 1, ..., s, such that [Xa, V ] = [Xa, Xb] = 0. Having such vector fields, one may
change the coordinates to (y1, ..., yN ), where:

Xa =
∂

∂ya
, a = 1, ..., s, V =

N∑
i=s+1

gi(ȳ)
∂

∂yi
. (2.6)

and (2.5) in these coordinates turns out to automatically have s constants of motion:

ẏi = 0, i = 1, ..., s, ẏi = gi(y1, ..., yN ) i = s+ 1, ..., N (2.7)

Having r constants of motion and s = N−r−1 vector fields ( such that Xi(Fj) =
0),that is all in all N − 1 pieces of information ( or N if we are counting V as well)
makes the system (2.5) integrable.

Does this mean that the integrability of (2.4), which is a special case of (2.5)
with N = 2n needs indeed 2n−1 pieces of information (i.e. independent constants of
motion or commuting vector fields)? The Arnold-Liouville theorem [60] states, that
n functionally independent constants of motion, (F1 = H,F2, ..., Fn) are enough for
the integrability of (2.4), but the additional condition is, that they have to be in
involution, that is their mutual Poisson brackets must vanish:

{Fi, Fj} = 0, i, j = 1, 2, ..., n. (2.8)

In case of a system with many degrees of freedom this is a significant improvement.
The reason for it lies in the symplectic structure. Having n constants of motion
we may of course limit the search of the integral curve of (2.4) to an 2n − n = n
dimensional submanifold of M2n given by the intersection of level sets containing
the initial (q̄, p̄)(0). But thanks to the symplectic structure M is endowed with, we
may also construct the Hamiltonian vector fields VFi corresponding to each con-
stant of motion. The tangency condition is fulfilled due to the vanishing Poisson
brackets VFi(Fj) = {Fi, Fj} = 0. The n − 1 Hamiltonian vector fields define the
coordinates VFi = ∂

∂yi
in which n − 1 equations have the form ẏi = 0 and a simple

solution yi(t) = yi(0). These n − 1 constants of motion carve out an integral curve
in the n-dimensional submanifold of M we got from the intersection of level sets
Fi(q̄(t), p̄(t)) = Fi(q̄(0), p̄(0)).

2.3.2 Quantum Hamiltonian mechanics

The classical trajectories in phase space provide us with very precise information
about the physical objects: where they are and how fast they move in every instant
of time. Quantum mechanics, on the other hand, offers us probability distributions
of observing different results,together with their time evolution.4 The description of
the quantum world is realised through normalized state vectors |ψ〉 ∈ H, where H
is a Hilbert space defined by the degrees of freedom present in the system.

Definition 35. A Hilbert space H is a complex vector space with a Hermitian prod-
uct. Finite dimensional Hilbert spaces used to describe the spin degree of freedom are
isomorphic to Cn. Infinite dimensional Hilbert spaces used to describe particles in a
configuration space M are the L2(M) spaces of square-integrable functions.

4These probability distributions converge to classical trajectories in the limit of the Planc con-
stant h ≈ 6.6 · 10−34Js being negligible in comparison with the values of action typical for the
system.
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Physical quantities are represented by linear Hermitian operators, so called ob-
servables acting on vectors fromH. Each such operator has a diagonalizing orthonor-
mal basis:

Â =
n∑
i=1

ai|αi〉〈αi|, 〈αi|αj〉 = δij ,
n∑
i=1

|αi〉〈αi| = 1 (2.9)

|ψ〉 =
n∑
i=1

|αi〉〈αi|ψ〉 =
n∑
i=1

ψa,i|αi〉, Â|ψ〉 =
n∑
i=1

aiψa,i|αi〉 (2.10)

A measurement of the quantity A represented by Â is realized as a projection of
the state vector on one of the eigenspaces of Â. Each coefficient ψa,i ∈ C is the
probability amplitude, and pa,i = |ψa,i|2 is the probability of obtaining the result ai
in a measurement of the quantity A taken for a system in the state |ψ〉. This prob-
abilistic interpretation allows for calculating the expectation value of the quantity
A in the state |ψ〉, that is 〈ψ|Â|ψ〉 =

∑n
i=1 aipa,i, as well as its higher moments. An

experiment, on the other hand would involve preparing the quantum system in the
quantum state |ψ〉, repeating the measurement of A many times and gathering a
sample of {a1, ..., an} values comparable with the theoretical predictions. Probabil-
ities must sum to unity (we are certain obtain one of the results) and this imposes
the requirement for the state vectors to be normalized to unity:

〈ψ|ψ〉 =
n∑

i,j=1

ψ∗a,jψa,i〈αj |αi〉 =
n∑
i=1

pa,i = 1 (2.11)

It is important to stress, that even if we are interested in a single observable Â, it
may happen that the eigenspaces of Â are more than one-dimensional and within
each such eigenspace we may want to know a complete decomposition of the state
|ψ〉 into orthogonal projections on one-dimensional subspaces. What is needed is a
complete set of commuting observables, Âi,i = 1, 2, ..., I which may be seen as a
quantum analogy of the complete set of first integrals mentioned in section 2.3.1.

All the expansions above were discrete and finite, but they can be easily gen-
eralised to infinite sums. The generalization to the continuous case, that is to the
observables with a continuous spectrum is worth taking a closer look.

The continuous spectrum

The most important examples of observables with a continuous spectrum are position
and momentum. In the simplest case of a single spinless particle on a real line the
state is represented by the wavefunction ψ(x) = 〈x|ψ〉:

x̂ =
∫
x|x〉〈x|dx, 〈x′|x〉 = δ(x′ − x),

∫
|x〉〈x| = 1 (2.12)

|ψ〉 =
∫
|x〉〈x|ψ〉 =

∫
ψ(x)|x〉dx, ψ(x) = 〈x|ψ〉, (2.13)

x̂ψ(x) = xψ(x), p̂ψ(x) = i~
dψ(x)
dx

,

∫ ∞
−∞
|ψ(x)|2dx = 1 (2.14)

The wavefunctions are elements of the infinite dimensional Hilbert space L2(R),
that is the space of square-integrable functions. The value |ψ(x)|2 is the probability
distribution, therefore the probability of finding the particle in the segment [a, b] ⊂ R
(for example some screen or detector) is given by

∫ b
a |ψ(x)|2dx. The relationship

between the position and momentum operator:

[x̂, p̂] = i~1 (2.15)

lies at the heart of quantum uncertainty on one hand, and is the sibling of the
classical conjugation relation {x, p} = 1 on the other.
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Many-body quantum systems on a real line

This thesis is focused on many-body systems confined to a real line. Usually in the
many-body case the problem of indistinguishability of quantum particles arises. In
the Calogero-Moser systems the particles repel with a 1/x2 potential which makes
the tunneling between states with exchanged pairs of particles impossible, and allows
us to consider the wavefunctions on sectors of configuration space with fixed ordering
of particles, for example x1 < x2 < ... < xN .

The time evolution of states and observables

The time evolution of the state is given by the Schrödinger equation:

i~
d

dt
|ψ〉 = Ĥ|ψ〉 (2.16)

where the operator Ĥ is the Hamiltonian, the operator associated with the energy
of the system. In the case of a time independent Ĥ the solution of this equation is
straightforward:

|ψ(t)〉 = e−i
tĤ
~ |ψ(0)〉 = Û(t)|ψ(0)〉, Ĥ =

n∑
i=1

Ei|ψi〉〈ψi| (2.17)

|ψ(0)〉 =
n∑
i=1

ψE,i|ψi〉, |ψ(t)〉 =
n∑
i=1

ψE,ie
−i tEi~ |ψi〉, (2.18)

where the eigenstates of the Hamiltonian are called stationary states, since they only

acquire a phase |ψE,i〉 → e−i
Eit

~ |ψE,i〉 as time t passes. The task is more complicated
when the Hamiltonian depends explicitly on time, but in essence it is still the problem
of finding the unitary operator Û(t) which takes the state |ψ(0)〉 to the state |ψ(t)〉.

The information about the quantum system is not accessed directly from the
state vector |ψ(t)〉, but from the expectation values of observables calculated in this
state. This is why we may just as well as treat the states vectors as evolving in time
and operators as constant, attribute the time evolution to operators:

〈Â〉(t) = 〈ψ(t)|Â|ψ(t)〉 = 〈ψ|Û †(t)ÂÛ(t)|ψ〉 = 〈ψ|Â(t)|ψ〉. (2.19)

The description of state vectors as changing in time is called Schrödinger picture,
while the one with evolving operators carries the name of Heisenberg. Moreover, as
we have the Schrödinger equation for time evolution of state vectors, we have the
Heisenberg equation for evolving operators:

d

dt
Â(t) =

1
i~

[
Â(t), Ĥ

]
. (2.20)

2.3.3 Canonical quantization

The equation (2.20) resembles the equation for the time dependence of phase space
functions along the integral curves generated by the Hamilton function:

df

dt
= {f,H} (2.21)

and as it was stated in section 2.3.1, functions defined on the phase space form a Lie
algebra with the Poisson bracket as the algebra multiplication. This motivates the
following approach towards quantizing a classical Hamiltonian system: let us take
the algebra of relevant functions and define its representation Γ on a Hilbert space.
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For two functions f, g this would mean a possibility of defining operators f̂ , ĝ, such
that:

Γ(f) = f̂ , Γ(g) = ĝ, [Γ(f),Γ(g)] = i~Γ({f, g}). (2.22)

The correspondence with classical mechanics should serve as a guide to obtain a
canonical definition of the map Γ. The simplest example of an algebra of functions
on phase space M of a system with n degrees of freedom is spanned by (qi, pj , 1),
where i, j = 1, 2, ..., n, that is the Heisenberg algebra with commutation relations
{qi, pj} = δij · 1,{qi, 1} = {pj , 1} = 0. Its representation is proven to be unique
(up to unitary equivalence) by the Stone-von Neumann theorem [66] and given by
operators acting on L2(Rn) as:

Γ(qi) = q̂i = qi, Γ(pj) = p̂j = −i~ ∂

∂qj
, (2.23)

Γ ({qi, pj}) = Γ(δij · 1) = [q̂i, p̂j ] = i~δij1. (2.24)

This algebra is clearly too small to model any physical system: it does not contain
any reasonable Hamilton functions, not even the one of a free system. The question
is how can this set be extended so that the map Γ is still well defined. Degree two
polynomials of qi and pj may be included:

Γ(qiqj) = q̂iq̂j , Γ(pipj) = p̂ip̂j , Γ(qipj) =
1
2

(q̂ip̂j + p̂j q̂i) . (2.25)

If i 6= j the operators commute and their order does not matter, but in case of
i = j the symmetrisation of Γ(qipi) is important, as one can check for example
by comparison of {q2

i , p
2
i } and

[
q̂2
i , p̂

2
i

]
. This allows the inclusion of the Hamilton

functions of n free particles or harmonic oscillators. In fact Hamilton functions in a
form:

H(q̄, p̄) =
1

2m

n∑
i=1

p2
i + V (q1, ..., qn) (2.26)

allow for a consistent Γ representation which meets the condition (2.22). As stated by
the Groenewold-van Hove theorem [67], higher order terms including both conjugate
variables, such as qip2

i do not admit an unambiguous result of the Γ map. The
problem lies in the ordering of operators in such a way, that (2.22) would be met for
all the functions in the algebra. The discrepancies which arise due to this ambiguity
are of order of ~k, where k > 1, so they may be considered small of higher order
than the commutators, and they clearly vanish faster than the commutators in the
classical limit. Yet we must bear in mind, that the quantization procedure is hardly
ever unambiguous. After all it is an attempt to guess a richer model from its limit,
while some information was lost when the limit was taken. In fact different plausible
quantum models could in principle have the same classical limit, and some examples
of this fact are present in this thesis.

2.4 Symplectic reduction

Reduction procedures serve as a method of obtaining complicated dynamical systems
from simple ones. They are vital to obtaining many-body interacting systems, which
are also completely integrable, such as the Calogero-Moser system. The necessary
ingredients for such a procedure are an equation of motion on a carrier space M ,
such as the phase space for example, giving rise to a solution Φ : R ×M → M , an
invariant submanifold Σ ⊂M , i.e. Φ(R×Σ) ⊂ Σ and an equivalence relation between
points of Σ, such that if m ≡ m′, then Φ(R,m) ≡ Φ(R,m′). The reduced dynamics
is defined on the manifold of equivalence classes. The submanifold Σ introduces
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nonlinearities and couplings between the remaining degrees of freedom. The simplest
prototype of this procedure involves a free particle moving in R3. Its motion is of
course r̄(t) = r̄(0) + t ˙̄r(0), but instead of looking at the Cartesian components of
r̄(t), we may consider the equations of motion in the spherical coordinate system,
where r̄ = rn̄, n̄ · n̄ = 1 and r > 0. The equations of motion simplify to r̈ = r ( ˙̄n)2,
the equivalence relation is given by the action of the rotation group SO(3) on initial
positions and momenta, and the invariant submanifold can be chosen to have a fixed
value of angular momentum. This results in a condition l2 = r4 ( ˙̄n)2 and an equation
r̈ = l2

r3 for r(t).
In this section I am reviewing the special case of Hamiltonian reduction, when

the equivalence relation between points of the phase space is given by the action of
a compact and connected Lie group. The quantum counterpart of this procedure is
briefly summarised as well.

2.4.1 Group action on a symplectic manifold

The group action (def. 3), together with the notions of a stabilizer subgroup,orbit
and fixed points (def.4-6) were defined for an unspecified set. When this set is a
manifold, a vector field can be associated with every element of the Lie algebra g:

Definition 36. For an action a : G×M →M of a Lie group G on a manifold M ,
we may consider a map am : G → M and its derivative dam : g → TmM , which
maps an element of the Lie algebra to a vector attached at m ∈ M . Applying this
definition at every point m we obtain a map from g to vector fields X (M), and for
every ξ the resulting vector field ξM is called the fundamental vector field.

The fundamental vector field ξM has the following geometrical interpretation:
an element ξ ∈ g generates trajectories in M trough the action a. These trajectories
are the integral curves of the fundamental vector field ξM .

When a group is acting on two manifolds, a map between the manifolds can be
compatible with the group action:

Definition 37. A map f : M → N between two manifolds a group G is acting on
is called equivarant if:

∀g ∈ G,m ∈M : f(g.m) = g.f(m).

One of the central notions which arise when a Lie group G is acting on a sym-
plectic manifold (M,ω) is the moment map:

Definition 38. A moment map µ : M → g∗ is a map such that:

∀ξ ∈ g : ω(; , ξM ) = d〈µ, ξ〉

A tautological example of a moment map would be simply the Hamilton function
for G = R acting on M by translations in time, that is

t.(q̄(t0), p̄(t0)) = (q̄(t0 + t), p̄(t0 + t)).

Other examples are the momentum p̄ for G = Rn acting by translations ā.(q̄, p̄) =
(q̄ + ā, p̄) and angular momentum for G = SO(3) acting on M = R6 by rotations
on positions and momenta: O.(q̄, p̄) = (Oq̄,Op̄). It has to be stressed that not
every action admits a moment map. The above definition of µ could be rephrased:
the fundamental vector field ξM is the Hamiltonian vector field of the function
〈µ(; ), ξ〉 : M → R, and not all vector fields are Hamiltonian. This distinguishes a
special type of actions together with the symplectic structures they are applied to:
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Definition 39. A Hamiltonian G-space is a symplectic structure (M,ω) with an
equivariant moment map, i.e.

∀g ∈ G,m ∈M : µ(g.m) = Ad∗g(µ(m)).

The equivariance of the moment map implies that for two elements ξ, η ∈ g of
the Lie algebra:

{〈µ, ξ〉, 〈µ, η〉} = 〈µ, [η, ξ]〉,

which means that µ gives rise to a Lie algebra homomorphism between g and func-
tions on M under the Poisson bracket.

In fact the moment map can be understood as a Hamiltonian version of the
Noether theorem. Let us consider a Hamilton function H which is invariant under
a group action:

H(g.(q̄, p̄)) = H(eλξ.(q̄, p̄)) = H(q̄, p̄).

This means that:

0 =
d

dλ
H(eλξ.(q̄, p̄))|λ=0 = dH(ξM ) = ω(ξM , VH) = −(d〈µ, ξ〉)(VH) = {H, 〈µ, ξ〉},

that is 〈µ, ξ〉 is a constant of motion.

2.4.2 The Marsden-Weinstein Theorem

One of the central applications of the Hamiltonian G-spaces and moment maps is
the Marsden-Weinstein reduction theorem [68]:

Theorem. Let (G � M,ω, µ) be a Hamiltonian G-space. For a regular value x ∈
g∗ assume the action of the coadjoint stabilizer Gx on µ−1(x) is free. Define the
embedding

ix : µ−1(x) ↪→M,

and the projection
πx : µ−1(x)→Mx = µ−1(x)/G.

Then (Mx, ωx) is a symplectic structure, where ωx defined as:

i∗xω = π∗xωx

is unique.

This theorem fits the general scheme described in the beginning of this section:
having Φ(t, (q̄0, p̄0)) as the integral curves of VH passing through (q̄0, p̄0) ∈M and a
group action which leaves the Hamilton function unchanged, we choose the invariant
submanifold by choosing x ∈ g∗ and we have the equivalence relation between points
in M given by the group action. What is special about the reduction applied to a
Hamiltonian G-space is that the resulting dynamics takes place in a symplectic
structure. This is especially fruitful for the physical interpretation of the reduced
systems.

Quantum reduction

The simplistic picture of the quantum Hamiltonian reduction is that the functions
µξ = 〈µ, ξ〉 can be quantized as discussed in the previous section, together with the
Hamilton function, and that the Poisson brackets will translate to commutators,
as usual. Then the domain on which the quantum operators act is restricted to a
quotient domain with respect to the group action. On the other hand a classically
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reduced system could also be quantized, although the reduced symplectic manifold
Mx is rarely a familiar R2n phase space, for which it is clear how to define a Hilbert
space. The conjecture that reduction and quantization commute i.e. result in the
same space of quantum states no matter the order in which they are carried out,
was first presented in [69] and proven in [70].
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Chapter 3

Generalised Calogero-Moser
system preliminaries

The simplest case of the ordinary CM system

HCM,g =
1
2

∑
i

p2
i +

1
2

∑
i 6=j

g2

(xi − xj)2 . (3.1)

can be extended to arbitrary values of coupling constants

HCM,g =
1
2

∑
i

p2
i +

1
2

∑
i 6=j

g2
ij

(xi − xj)2 (3.2)

mimicking some artificial charge carried by the particles for example. A further
generalisation, which is the focus of this thesis consists of additional dynamical
variables, sort of internal degrees of freedom instead of coupling constants:

HCM,g =
1
2

∑
i

p2
i +

1
2

∑
i 6=j

Λij(t)
(xi − xj)2 (3.3)

In this chapter I am reviewing the various formulations of the latter generalisation
and some results which were the foundation for my research.

3.1 Classical generalizations of Calogero-Moser systems

3.1.1 Matrix Calogero-Moser system

One of the ways of obtaining a system described by (3.3) is the reduction of a
linear Hamiltonian system on the space of matrices [10]. The configuration space
in this case is the linear space of N × N complex Hermitian matrices: M = {X ∈
MN (C) : X† = X}. The corresponding symplectic structure consists of the space
M = T ∗M =M×M = {(X,Y ) : X† = X,Y † = Y }, and the canonical symplectic
form:

ω =
∑
i,j

dYij ∧ dXji = Tr(dY ∧ dX). (3.4)

The Poisson brackets are constructed as stated in section 2.3.1:

{f, g} =
∑
i,j

∂f

∂Xij

∂g

∂Yji
− ∂g

∂Xij

∂f

∂Yji
= Tr

(
∂f

∂X

∂g

∂Y
− ∂g

∂X

∂f

∂Y

)
, (3.5)

and the equation of motion for an arbitrary phase-space function f generated by a
Hamilton function H : M → R reads, in terms of the Poisson bracket, as

ḟ = {f,H} . (3.6)
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Let us consider the following Hamilton function on M :

H =
1
2

TrY Y † =
1
2

TrY 2. (3.7)

The corresponding equations of motion,

Ẋ = Y, Ẏ = 0, (3.8)

have a simple solution,

X(t) = X0 + t · Y0, Y (t) = Y0, (3.9)

which is just a straight line in the space of Hermitian matrices. I will now express
X(t) and Y (t) in the diagonalising basis of ofX(t) (assumingX(0) = X0 is diagonal):

U(t)

(
X(t)
Y (t)

)
U(t)† =

(
D(t)
V (t)

)
, (3.10)

withD(t) diagonal. DenotingA := U̇U † ∈ u(N) and L := [D,V ] = U(t)[X0, Y0]U(t)† ∈
su(N) leads to the following equations of motion

Ḋ = V + [A,D] , V̇ = [A, V ] , L̇ = [A,L] . (3.11)

Relabeling xi = Xii, and pi = Vii and eliminating the entries of A as Aij = Lij/(Di−
Dj)2 results in a system of nonlinear differential equations:

ẋi = pi (3.12)

ṗi =
∑
k 6=i

−2LikLki
(xi − xk)3 (3.13)

L̇ij =
∑
k 6=i,j

LikLkj

(
1

(xi − xk)2 −
1

(xj − xk)2

)
, (3.14)

which could be written shortly as:

v̇i = fi(v), v = (x1, .., xN , p1, ..., pN , L12, ..., LN,N−1). (3.15)

The pairs of matrices (V,A) and (L,A) are the examples of the so called Lax pairs
defined by the equations Ḃ = [B,A]. The existence of such linear operator equations
associated to a nonlinear differential equation is very useful in the construction of
the first integrals [2]. By applying (3.11) and the cyclic property of the trace one
can check that

Ik1,k2...,kM = Tr(Lk1V k2 · · ·LkM−1V kM ), (3.16)

are the integrals of motion of the system (3.12)-(3.14) where k1, ...kM are arbitrary
natural numbers and V is expressed in terms of xi, pi, and Lij . [71]. Of course only
a limited subset of the integrals of motion is independent. Which and how many of
the integrals belong to this subset can be found in [72].

Equations (3.12)-(3.14) are still Hamilton equations of motion derived from the
old Hamilton function, H = 1

2TrY 2 = 1
2TrV 2 expressed in the new parametrisation,

HCM,L =
1
2

∑
i

p2
i −

1
2

∑
i 6=j

LijLji
(xi − xj)2 . (3.17)

They describe the dynamics of N interacting particles on a line. Note that the L
matrix is anti-Hermitian and LijLji = −|Lij |2,thus the interaction in (3.17) is always
repulsive.
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Energy level repulsion

The task of diagonalising an N ×N Hermitian matrix is of course familiar to every
physicist in the quantum context. As a special case, one can consider a perturbed
Hamiltonian in the form:

Ĥ = Ĥ0 + λV̂ (3.18)

where the Ĥ0 is diagonal. The eigenvalues εi(λ) of the perturbed Hamiltonian depend
on the parameter λ as the positions of a one-dimensional gas of repulsive particles
described by (3.17) [73].

The harmonic and inverse sine squared potential

The same change of parametrisation applied to H(X,Y ) = 1
2Tr(ω2X2 + Y 2) leads

to a similar system of repelling particles, but in an external harmonic potential [12],

HC,L =
1
2

∑
i

p2
i + ω2x2

i −
1
2

∑
i 6=j

LijLji
(xi − xj)2 . (3.19)

As an intermediate step, the equations of motion in the big phase space will be:

Ẋ = Y, Ẏ = −ω2X, (3.20)

and their solution:(
X(t)
Y (t)

)
=

(
cos(ωt) 1

ω sin(ωt)
−ω sin(ωt) cos(ωt)

)(
X0

Y0

)
, (3.21)

an ellipse in the phase space tends to the linear solution as ω → 0.
Applying the same procedure to a Hamilton function H(X,Y ) = 1

2Tr(XY )2

results in a unitary matrixX(t) = e−itY0e−iX0 , and its eigenphases repel like particles
in the Sutherland potential:

HS,L =
1
2

∑
i

p2
i −

1
8

∑
i 6=j

LijLji

sin2((φi − φj)/2)
. (3.22)

The symplectic form and the Poisson brackets

The symplectic structure on the big phase space M is of course modified by this
change of parametrisation. The tautological one-form τ = Tr(Y dX) is much easier
to translate to the (x, p, L, U) variables, than ω = dτ = Tr(dY ∧ dX). Once τ is
reexpressed, the expression for ω is straightforward:

τ = Tr(Y dX) = Tr(U †V Ud(U †DU)) = Tr(V dD − [D,V ]dUU †) =

= Tr(V dD − LdUU †)
ω = dτ = Tr(dV ∧ dD)− Tr(dL ∧ dUU †) + Tr(LdUU † ∧ dUU †) =

=
N∑
i=1

dpi ∧ dxi − Tr(dL ∧ a) + Tr(La ∧ a) = ωx,p + ωL,U (3.23)

The matrix-valued one form a = dUU † is a special case of a Mauer-Cartan one
form [74] with the property da+a∧a = 0. There is a separation of the (x, p) degrees
of freedom in a canonical symplectic form ωx,p and and the (L,U) degrees of freedom
in a less obvious ωL,U , which is an example of the Kirillov-Kostant-Souriau form [75].
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The Hamiltonian vector field corresponding to a function f : (x, p, L, U)→ R is the
following:

Vf =
N∑
i=1

∂f

∂pi

∂

∂xi
− ∂f

∂xi

∂

∂pi
−Tr

(
∂f

∂LT
U

∂

∂LT

)
+ Tr

{(
U
∂f

∂UT
+
[
∂f

∂LT
, L

])
∂

∂UT

}
,

(3.24)
and the arising Poisson brackets of two functions on the phase space:

{f, g} = ω(Vg, Vf ) =
N∑
i=1

∂f

∂xi

∂g

∂pi
− ∂g

∂xi

∂f

∂pi
+

−Tr
{
U

(
∂f

∂UT
∂g

∂LT
− ∂g

∂UT
∂f

∂LT

)}
+ Tr

(
L

[
∂f

∂LT
,
∂g

∂LT

])
The Poisson brackets of the relevant dynamic variables, (x, p, L) take the form

{xi, pj} = δij , {Lij , Lkl} = δilLkj − δjkLil, (3.25)

while all the other Poisson brackets vanish.

The Lie algebra spanned by the L variables

The L matrices, anti-Hermitian and traceless, belong to the su(N) algebra, so it is
expected that the The Poisson brackets (3.25) of Lij variables will somehow reflect
this fact. Indeed, let me define the real and imaginary parts of Lij as:

LRij = −Lij + Lji, LIij = i(Lij + Lji) (3.26)

and carefully calculate the Poisson brackets:

{LRij , LRkl} = δjkL
R
il − δikLRjl − δjlLRik + δilL

R
jk, (3.27)

{LRij , LIkl} = δjkL
I
il − δikLIjl + δjlL

I
ik − δilLIjk, (3.28)

{LIij , LIkl} = −δjkLRil − δikLRjl − δjlLRik − δilLRjk. (3.29)

These are exactly the commutation relations of the su(N) basis elements (τij , σij)
stated in the definition 19 after a simple substitution:

[, ]→ {, }, τij → LRij , σij → LIij . (3.30)

This means, that LR and LI variables span the off-diagonal subspace of the su(N)
algebra and the LR variables alone span so(N).

The orthogonal and unitary setting

It is clear, that if the initial conditions given by (X0, Y0) belong to the real symmetric
subspace of M , the dynamics of the system is confined to this subspace as a special
subset of solutions to the equations of motion (3.12)-(3.14). On the other hand the
same construction on the cotangent bundle of real symmetric matrices, T ∗MR =
MR×MR = {(X,Y ) : XT = X,Y T = Y } will lead to the same equations of motion
for the (x, p, L) variables. The only difference is, that since X(t) and Y (t) ale real and
symmetric matrices, and the diagonalizing matrices are no longer unitary U(t) but
orthogonal O(t). Moreover L(t) is now real antisymmetric with the Poisson bracket
equal to (3.27) up to a factor 1

2 , reflecting the fact that now L belongs to the so(N)
algebra [25,71].
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Gauge symmetry

It is a simple yet important observation that the matrix U(t) which diagonalises
X(t) is clearly not unique. Every matrix EU(t), where

E = diag(eiφ1 , eiφ2 , ..., eiφN ). (3.31)

is just as good. This results in a gauge invariance of (3.11) and consequently (3.12)-
(3.14). In the orthogonal setting φ ∈ {0, π}, which means that E ∈ Z×N2 , while
in the unitary setting φ ∈ [0, 2π) and E ∈ U(1)×N . This means that we can look
at the trajectories L(t) = U(t)L(0)U †(t) in the set of equivalence classes [L] ={
L′ = ELE†

}
, where E belongs to an appropriate set.

L and L′ belong to the same equivalence class, i.e, [L] = [L′], if and only if

L′ij = Lije
i(φi−φj). (3.32)

Writing Lij = |Lij |eiϕij and L′ij = |L′ij |e
iϕ′ij i < j we clearly get |Lij | = |L′ij |, but

there must also exist such φ1, φ2, ..., φN ∈ [0, 2π), that for all i < j:

ϕ′ij = ϕij + φi − φj . (3.33)

If such N phases exist, every triple (i, j, k) of indices must satisfy:

ϕ′ij + ϕ′jk + ϕ′ki = ϕij + ϕjk + ϕki =: Φijk. (3.34)

On the other hand if (3.34) is satisfied, φ1, φ2, ..., φN are well defined by (3.33).
Indeed, let us define αi = ϕ′i,i+1 − ϕi,i+1, i = 1, 2, . . . , N − 1. Then, since L and L′

are anti-Hermitian, i.e., ϕij = π−ϕji, ϕ′ij = π−ϕ′ji, we get from (3.34) ϕ′j,k−ϕj,k =
αj + . . . + αk−1 for j < k − 1. Now defining φk = α1 + α2 + . . . + αk−1 we easily
obtain (3.33). Therefore (3.34) is both sufficient and necessary for two matrices to be
gauge equivalent. The physical quantities, such as positions, momenta and repulsion
strenghts |Lij | are gauge independent, as expected.

Ordinary Calogero-Moser subspace

The equations of motion for (x, p) variables defined by (3.1) can be realised with
a specific choice of initial conditions (X0, Y0) in the big phase space. The chosen
L0 = [X0, Y0] must remain in its gauge equivalence class as it evolves with time:
[L(t)] = [L0]. Since Lii(t) = 0, |Lij |(t) = g and L(t) = U(t)L0U

†(t), the appropriate
matrix is

L0 = ig (|e〉〈e| − 1) , 〈e| = (1, 1, ..., 1). (3.35)

Indeed, L(t) = ig (|f〉〈f | − 1), where |f〉 = U(t)|e〉. For the diagonal elements to
vanish, Lii(t) = ig(|fi|2 − 1) = 0, every component of |f〉 must be of the form
fi(t) = eiφi(t), which in turn means that |f〉 = E|e〉 thus L(t) = E(t)L0E

†(t) and
[L(t)] = L0.

The reduction procedure

The Hamilton functions (3.17) and (3.19) and the corresponding equations of motion
were obtained by changing the variables (X,Y )→ (x, p, L, U) and silently eliminat-
ing the unitary degrees of freedom, as if all points (x, p, L, U) where U ∈ U(N) were
equivalent to a single point (x, p, L) in some new, reduced phase space. It is in fact
guaranteed by the Marsden-Weinstein reduction theorem stated in section 2.4, that
this procedure will work.
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Let us take a closer look at the symplectic manifold (M,ω = Tr(dX ∧ dY )) with
G = U(N) acting by matrix conjugation. The fundamental vector field vM ∈ X (M)
corresponding to an element v ∈ g = u(N) can be found by its action on a function
f ∈ C∞(M) at a point m = (X,Y ) ∈M :

vM (f)(m) =
d

dt

(
f(etv.m.e−tv)

)
|t=0 = [v,X]ij

∂f

∂Xij
+ [v, Y ]ij

∂f

∂Yij
. (3.36)

According to the definition ω(vM , ) = d〈µ, v〉 the moment map corresponding to
this action is given by µ(X,Y ) = [X,Y ] = L. All the points (X,Y ) ∈ µ−1(L) divide
into equivalence classes given by (D,V ) = U(X,Y )U †, where D is diagonal and
these equivalence classes form a symplectic manifold.

3.1.2 Vectorial Calogero-Moser models

A different generalisation of the CM systems arises when the interaction term is
described by strictly one-particle degrees of freedom, rather that by the dynamical
variables Lij measuring the coupling strengths between two particles [45], [46]. In
this case the extended phase space is parametrized by canonical variables (xi, pi) of
N particles on a line and vectorial degrees of freedom assigned to each particle. The
vectors |ei) ∈ Cd, and their duals (ei| = |ei)†, i = 1, 2, ..., N and define a symplectic
structure by the following symplectic form,

ω =
N∑
i=1

dpi ∧ dxi + i · d(e| ∧ d|e) (3.37)

The vectorial generalisation of the CM system is defined by the following Hamilton
function on this phase space:

H =
1
2

∑
i

p2
i +

1
2

∑
i 6=j

(ei|ej)(ej |ei)
(xi − xj)2 , (3.38)

and applying (3.6) gives us the equations of motion:

ẋi =
∂H

∂pi
= pi, (3.39)

ṗi = −∂H
∂xi

=
∑
k 6=i

2(ei|ek)(ek|ei)
(xi − xk)3 , (3.40)

d|ei)
dt

= −i · ∂H
∂(ei|

= −i
∑
k 6=i

|ek)(ek|
(xi − xk)2 |ei). (3.41)

The set of N equations (3.41) have the form |ėi) = −iMi|ei), where Mi are Hermitian
matrices, and it is useful to keep them in this form. Yet rewriting the symplectic
form and the arising Poisson brackets in terms of the real and imaginary parts of
|ei) vectors (rescaled by 1/

√
2):

ω =
N∑
i=1

(
dpi ∧ dxi +

d∑
k=1

deIi,k ∧ deRi,k

)
, (3.42)

{f, g} = {f, g}x,p +
N∑
i=1

d∑
k=1

∂f

∂eRi,k

∂g

∂eIi,k
− ∂g

∂eRi,k

∂f

∂eIi,k
(3.43)

shows explicitly that there are N · d additional degrees of freedom due to this ex-
tension, and that the canonically conjugate variables (analogical to positions and
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momenta in the additional subspace) are the real and imaginary part of each com-
ponent: {eRi,k, eIj,l} = δijδkl. There are two valuable conclusions from (3.41). Firstly,
the scalar products (ei|ei) are constant in time. Secondly, the dimension of the vec-
tor space spanned by |ei) vectors is effectively d ¬ N [45]. This stems from the
fact that |ei(t)) ∈ span{|e0,i)}, and as there are N vectors, at most N of which are
linearly independent, hence the space spanned by the evolving vectors is at most
N-dimensional (and fixed by the vectors given at t=0).

An extended phase space

A much broader set of systems may be defined in an extended phase space {(X,Y, E)}
where X,Y areN×N matrices, while E = (|e1), |e2), ..., |eN )) are rectangular matrices
build of N d-dimensional column vectors [45]. The symplectic form

ω = Tr(dX ∧ dY ) + i · Tr(dE† ∧ dE) (3.44)

together with a Hamiltonian function H(X,Y, E ,F) gives rise to the following equa-
tions of motion:

Ẋij =
∂H

∂Yji
, Ẏij = − ∂H

∂Xji
, Ėij = −i ∂H

∂E∗ij
. (3.45)

Different assumptions about {(X,Y, E)} matrices will lead to various matrix flows,
which could be studied. Yet for the tools introduced in section 3.1.1 to be appli-
cable in this case it is assumed that X,Y and E†E are Hermitian N × N matri-
ces. Moreover, we restrict the possible Hamilton functions H(X,Y, E) to those with
U(N) symmetry, such as the functions of Tr(Xn),Tr(Y n) or Tr((E†E)n). The solu-
tion (X(t), Y (t), E(t)) of the equations of motion (3.45) can be acted upon by the
matrix which diagonalizes X(t), as it was done in the case of the (X,Y ) system:

(D(t), V (t)) = U(t)(X(t), Y (t))U †(t) E(t) = E(t)U †(t). (3.46)

The equations of motion:

Ḋ = [A,D] + UẊU †, V̇ = [A, V ] + UẎ U †, Ė = −EA+ ĖU †, (3.47)

where A = U̇U † can be fully expressed with (D,V,E) variables for a specific solution
of (3.45).

3.2 Quantum Calogero-Moser system

3.2.1 Ordinary CM system, spectrum and wavefunctions

The quantum N -body Calogero-Moser Hamiltonian considered in [4] consisted of
both harmonic and inverse-square repulsion potentials between the particles:

Ĥ ′ = − ~2

2m

N∑
i=1

∂2

∂x2
i

+
mω2

4

∑
i<j

(xi − xj)2 + g
∑
i<j

1
(xi − xj)2 . (3.48)

In this section I will consider a slightly different Hamiltonian, where the harmonic
potential is external:

Ĥ = − ~2

2m

N∑
i=1

∂2

∂x2
i

+
mω2

2

∑
i<j

x2
i + g

∑
i<j

1
(xi − xj)2 . (3.49)
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and review the method used to find the spectrum and eigenstates in [4] by applying it
to this case1. The negative values of g clearly correspond to an attractive interaction,
and the scope of my research would allow not to consider them at all, but as discussed
in [4] and in more detail in [62], g ∈ (− ~2

4m , 0) is allowed and does not affect the
results presented below. A stronger attraction between particles would lead to a
Hamiltonian which is unbounded from below and a 2-body collapse. The system
is one-dimensional and the particles cannot overtake each other, therefore we can
choose a sector of the configuration space with a fixed ordering, for example x1 ­
x2 ­ .... ­ xN and then extend the solution by ψ(Px) = ηPψ(x) where P denotes
the permutation of positions and ηP is equal to one in case of Bose statistics, and
to sign(P ) in case of fermions. The solutions of the Schrödinger equation− ~2

2m

N∑
i=1

∂2

∂x2
i

+
mω2

2

N∑
i=1

x2
i + g

∑
i<j

1
(xi − xj)2 − E

ψ = 0 (3.50)

are assumed in the form:

ψ(R, r, z) = za+ 1
2ϕ(r)ρ(R), (3.51)

where

R =
1
N

N∑
i=1

xi, r2 =
1
N

∑
i<j

(xi − xj)2, z =
∏
i<j

(xi − xj). (3.52)

Careful calculation of Ĥψ leads to the separation of R and r variables:(
− d2

d2R̃
+ R̃2 − 2ER

~ω

)
ρ(R̃) = 0, (3.53)(

− d2

d2r̃
− b

r̃

d

dr̃
+ r̃2 − 2Er

~ω

)
ϕ(r̃) = 0, (3.54)

R̃ =

√
mωN

~
R, r̃ =

√
mω

~
r (3.55)

b = N − 2 + (N − 1)N(a+ 1/2) (3.56)

The crucial identity is:

1
z2

N∑
i=1

(
∂z

∂xi

)2

= 2
∑
i<j

1
(xi − xj)2 . (3.57)

which yields the term
(
g − ~2

m (a2 − 1/4)
)∑

i<j
1

(xi−xj)2 in the Schrodinger equation
to disappear for

a = ±1
2

√
1 +

4mg
~2 . (3.58)

Of course only the positive root is acceptable, since we require the za+1/2 factor
to vanish whenever the values of any two position variables coincide. The center of
mass contribution to the solution is clearly the harmonic oscillator (or free in the
case of (3.48)) eigen equation with the well known solutions:

ρn(R̃) =
1√

2nn!

(
− d

dR̃
+ R̃

)n
e−

R̃2

2 , ER,n = ~ω
(
n+

1
2

)
. (3.59)

1The sole difference between the two Hamiltonians is visible after separating the center of mass
degree of freedom: in the former the center of mass is free and in the latter it is confined by a
harmonic potential.
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The solution for ϕ(r̃) is less straightforward to find but has a simple form as well:

ϕn(r̃) = e−
r̃2

2 Lβn(r̃2), β =
b− 1

2
, Er,n = ~ω(2n+ β + 1), (3.60)

where Lβn(x) are the generalised Laguerre polynomials, that is the solutions of the
following ordinary differential equation:

xy′′(x) + (β + 1− x)y′(x) + ny(x) = 0, n = 0, 1, 2... (3.61)

The complete solution to the (3.50) eigenproblem, assuming the form (3.51) is:

ψnR,nr = za+ 1
2 e−

mω(NR2+r2)
2~2 HnR

√mωN

~
R

Lβnr (mω~ r2
)

(3.62)

EnR,nr = ~ω
[
nR + 2nr − 1 +

N

2
+

(
N

2

)(
a+

1
2

)]
. (3.63)

It has to be stressed, that the functions of (3.51) type exhaust the full set of solutions
only for N = 2. In general, for N ­ 3 after separating the R and r variables we are
left with a differential equation on the SN−2, and a modified equation for ϕ(r):(

− d2

dr̃2 −
N − 2
r̃

d

dr̃
+ r̃2 +

b2l
r̃2 −

2Er
~ω

)
ϕ(r̃) = 0, (3.64)(

−∆SN−2 +
2mg
~

f(θ̄)− b2l
)
χl(θ̄) = 0 (3.65)

f(θ̄) =
∑
i<j

r2

(xi − xj)2 |xi→(r,θ̄). (3.66)

The index l accounts for all the N − 2 remaining quantum numbers, and the corre-
sponding energy levers acquire an additional ~ωbl term. The angular problem defined
above is considered in [76].

In the case of a free system the solution in the relative variable r will be:

ψ(r) =
√
rJa(kr) (3.67)

3.2.2 Systems with spin state exchange

There is an interesting class of quantum Calogero-Moser systems, in which the spin
states of the particles influence the inverse-square interaction potential [50–52]. They
have a matrix structure similar to the classical one outlined in (3.1.1). Yet, as ex-
pected of spin degrees of freedom, the internal variables do not survive when the
classical limit is taken. One of the characteristic traits of these systems is that in
the matrix formulation the Hamiltonians have the form

Ĥ =
1

2m

∑
i,j

(
V̂ 2
)
ij

(3.68)

for an appropriate matrix-valued operator V̂ instead of Tr(V̂ 2) =
∑
i

(
V̂ 2
)
ii

. The
diagonal terms result in a Hamiltonian acting diagonally on the internal degrees of
freedom, that is an ordinary system with coupling constants possibly depending on
the spin states.
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Simple spin state exchange

The Hamiltonian presented in [50] is the quantum version of the Calogero-Moser
system with a spin degree of freedom. The operators Pij are matrices acting in spin
space, exchanging the states of the ith and jth particle. The terms without Pij should
be understood as identity matrices in spin space. The xi, pj are standard position
and momentum operators. The parameter a is a dimensionless number.

Ĥ =
1

2m

∑
i

p2
i +

~2

m

∑
i<j

a2 − a · Pij
(xi − xj)2 (3.69)

By analogy to the classical CM system this Hamiltonian has a corresponding
pair of Lax operators V ,A:

Vij = δijpi + (1− δij)
ia~Pij
xi − xj

(3.70)

Aij =
ia~
m

−δij∑
k 6=i

Pik

(xi − xk)2 + (1− δij)
Pij

(xi − xj)2

 (3.71)

Note that the matrix elements of these operators are themselves matrices in spin
space. The properties of the V ,A operators are the following:

Ĥ =
1

2m

∑
i,j

(
V 2
)
ij

(3.72)

V̇ij =
1
i~

[Vij , Ĥ] = [A, V ]ij (3.73)

By analogy with the classical case we introduce operators Dij = δijxi and Lij =
[D,V ]ij , and calculate the time dependence with Ĥ and A. The results resemble the
classical case:

Lij = i~δij + ia~ (1− δij)Pij (3.74)

The time dependence of D and L:

Ḋii =
1
i~

[xi, Ĥ] =
pi
m

=
Vii
m

(3.75)

[A,D]ii = 0 (3.76)

[A,D]ij = −Vij
m

(3.77)

L̇ii = 0 (3.78)

L̇ij =
1
i~

[Lij , Ĥ] = [A,L]ij (3.79)

where (3.77) serves as a consistency check.
In conclusion, the equations for D,V and L time evolution are the following:

Ḋ = [A,D] +
V

m
(3.80)

V̇ = [A, V ] (3.81)

L̇ = [A,L] (3.82)

The closed set of equations for Dii,Vii and Lij looks like this:

Ḋii =
Vii
m

(3.83)

V̇ii =
1
m

∑
j 6=i

−2LijLji + 2i~Lij
(Dii −Djj)3 (3.84)

L̇ij =
1
m

∑
k 6=i,j

[Lik, Lkj ]

(
1

(Dii −Dkk)
2 −

1

(Djj −Dkk)
2

)
(3.85)
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Weighted spin state exchange

The Hamiltonian presented in [51] is a generalisation of (3.69) in which interactions
depend on the spin states:

Ĥ =
1

2m

∑
i

p2
i +

~2

m

∑
i<j

∑
α,β gαβ

(
gαβX

αα
i Xββ

j +Xαβ
i Xβα

j

)
(xi − xj)2 (3.86)

the α, β indices run over spin degrees of freedom, the Xαβ
i matrices turn the state

of the ith particle from α to β. The matrices act on single particles, so the X matrix
products should be understood ( for i < j) as:

Xαβ
i Xγδ

j = 1i−1 ⊗Xαβ ⊗ 1j−i−1 ⊗Xγδ ⊗ 1N−j (3.87)

The summation over spin degrees of freedom for some general values of gαβ results
in:

Ĥ =
1

2m

∑
i

p2
i +

~2

m

∑
i<j

E2
ij + Eij

(xi − xj)2 (3.88)

where E2
ij is diagonal, and Eij =

∑
α,β gαβX

αβ
i Xβα

j exchanges the spin states of ith
and jth particle multiplying the state vector by a state-dependent factor.

By analogy with the (3.69) case,and looking at (3.70) and (3.71) it is possible to
guess the form of the Lax pair in this more general setting:

Vij = δijpi + (1− δij)
i~Eij
xi − xj

(3.89)

Aij =
i~
m

δij∑
k 6=i

Eik

(xi − xk)2 + (1− δij)
Eij

(xi − xj)2

 (3.90)

The definitions Dij = δijxi and Lij = [D,V ]ij do not change, and it turns out that:

Ĥ =
1

2m

∑
i,j

(
V 2
)
ij

(3.91)

V̇ij =
1
i~

[Vij , Ĥ] = [A, V ]ij (3.92)

Ḋij =
1
i~

[Dij , Ĥ] = [A,D]ij +
Vij
m

(3.93)

Whereas for the L operator:

Lij = i~δij + i~ (1− δij)Eij , (3.94)

There is an additional commutator with a diagonal operator:

L̇ij =
1
i~

[Lij , Ĥ] = [A+AD, L]ij (3.95)

which can be eliminated by the appropriate gauge transformation L→ ELE†.

3.3 Relation with Quantum Hall Effect

One of the features of the Calogero-Moser system which motivated my research is
its link with the Quantum Hall Effect presented in [31]. The core idea is that in
the strong magnetic field regime the states of the Quantum Hall system can be

33



projected onto the subspace of a single Landau level. The elements of this subspace
admit a 1D representation, which turns out to be identical to the wavefunctions of
the Calogero-Moser Hamiltonian. To see exactly how it works, we need to start from
the Hamiltonian of a single electron confined to the (x, y) plane in the magnetic field
B̄ = Bêz = ∇̄ × Ā:

ĤH =
1

2m

(
π̂2
x + π̂2

y

)
, π̂i = p̂i + eÂi. (3.96)

In the position representation p̂i = −i~∂xi , and therefore [π̂x, π̂y] = −i~eB. This
relation lets us efficiently show, that:

ĤH = ~ω
(
â†â+

1
2

)
, ω =

eB

m
, (3.97)

â =
1√

2~eB
(π̂x − iπ̂y) ,

[
â, â†

]
= 1. (3.98)

The eigenstates of this Hamiltonian can be constructed with the anihilation and
creation operators â and â† exactly as it is done for the quantum harmonic oscillator:

âψ0 = 0, ψn =

(
â†
)n

√
n!

ψ0, ĤHϕn = ~ω
(
n+

1
2

)
ψn, (3.99)

and in this context the quantized energy levels are called the Landau Levels. Just
as we would get for the classical phase space functions with the use of the Pois-
son bracket, we obtain the time derivatives of the operators with the use of the
commutator,i.e. the Heisenberg equations:

d

dt

(
π̂x
π̂y

)
= −−1

i~

[
ĤH ,

(
π̂x
π̂y

)]
=

(
−ωπ̂y
ωπ̂x

)
. (3.100)

The solution is of course a pair of operators rotating with the cyclotron frequency
ω = eB

m : (
π̂x
π̂y

)
(t) =

(
cosωt − sinωt
sinωt cosωt

)(
π̂x
π̂y

)
(0). (3.101)

Instead of (x̂, ŷ) we will use the centre of mass position operators which commute
with the Hamiltonian:(

X̂

Ŷ

)
=

(
x̂− π̂y

mω

ŷ + π̂x
mω

)
,

d

dt

(
X̂

Ŷ

)
= −−1

i~

[
ĤH ,

(
X̂

Ŷ

)]
=

(
0
0

)
. (3.102)

The algebra of the four operators (X̂, Ŷ , π̂x, π̂y) is the following:[
X̂, Ŷ

]
= il2, [π̂x, π̂y] = −i~eB (3.103)[

X̂, π̂x
]

=
[
Ŷ , π̂y

]
= 0 (3.104)[

X̂, π̂y
]

=
[
Ŷ , π̂x

]
= 0 (3.105)

where l =
√

~
eB . Instead of X̂ and Ŷ we may define yet another pair of operators, b̂

and b̂†, such that:

b̂ =
1√
2l

(
Ŷ − iX̂

)
,

[
b̂, b̂†

]
= 1,

[
b̂, â
]

=
[
b̂, â†

]
= 0 (3.106)
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The existence of such b̂, b̂† operators means that the eigenvalue of m̂ = b̂†b̂ is a good
quantum number and we may create a ladder of states numbered by m within each
Landau Level:

âψ0,0 = b̂ψ0,0 = 0, (3.107)

ψn,m =
1√
n!m!

(
â†
)n (

b̂†
)m

ψ0,0 (3.108)

In a strong magnetic field, that is when the level spacing ~ω is much larger that
kBT , we may treat the system as confined to the lowest Landau Level (LLL) with
the π̂x and π̂y frozen by the condition âψ = 0. The remaining two variables describe
an effectively one-dimensional system, since in the diagonal basis of X̂, that is for
states |s〉 such that X̂|s〉 = s|s〉 the operator Ŷ can be treated as the conjugate
momentum: Ŷ = −il2∂s = p̂s

eB .
Until now all the definitions were gauge independent, but to work out the wave-

functions in the 1D representation, a specific gauge is necessary. The choice made
in [31] is the symmetric gauge, Ā = B

2 (−y, x, 0), which allows for the use of very
convenient complex variables (z, z∗) = 1

l
√

2
(x + iy, x − iy). The operators â, b̂ and

their Hermitian conjugates can be expressed in these variables2:

â = −i
(
∂z +

z∗

2

)
, â† = i

(
−∂z∗ +

z

2

)
(3.109)

b̂ = −i
(
∂z∗ +

z

2

)
, b̂† = i

(
−∂z +

z∗

2

)
(3.110)

The LLL wavefunctions defined by âψ0 = 0 have a general form:

ψ(z, z∗) = ϕ(z∗)e−
|z|2

2 . (3.111)

To change the representation of a state |Ψ〉 from Ψ(z, z∗) = 〈zz∗|Ψ〉 to Ψ(s) =
〈s|Ψ〉, we need to calculate:

Ψ(s) = 〈s|Ψ〉 =
∫
〈s|zz∗〉〈zz∗|Ψ〉dzdz∗ =

∫
〈s|zz∗〉Ψ(z, z∗)dzdz∗ (3.112)

where 〈s|zz∗〉 is the complex conjugate of normalized eigenstate of X̂ with the eigen-
value s written in the z, z∗ variables:

X̂ =
x

2
+ il2∂y =

l√
2

(
z + z∗

2
+ ∂z∗ − ∂z

)
(3.113)

Ψs(z, z∗) = 〈zz∗|s〉 =
1√
lπ1/4

e−
s2

2l2
+
√

2
l
sz∗− (z∗)2+|z|2

2 (3.114)

X̂Ψs(z, z∗) = sΨs(z, z∗). (3.115)

The integral for Ψ(s):

Ψ(s) =
1√
lπ1/4

e−
s2

2l2

∫
e
√

2sz
l
− z

2

2 ϕ(z∗)e−|z|
2
dzdz∗ = (3.116)

=
1√
lπ1/4

e−
s2

2l2 e−
l2

4 ∂
2
s

∫
e−|z|

2+
√

2sz
l ϕ(z∗)dzdz∗ = (3.117)

∝ e−
s2

2l2 exp

(
− l

2

4
∂2
s

)
ϕ

(√
2s
l

)
, (3.118)

2only in this specific, symmetric gauge, which enters into the â, b̂ operators through the gauge
dependent π̂x,y
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where we use the fact that l2

4
∂2

∂l2

(
e
√

2sz
l

)
= z2

2 and the coherent state identity:

1
π

∫
e−|z|

2+αzϕ(z∗)dzdz∗ = ϕ(α). (3.119)

Extending this result to many-body wavefunctions

ψ(z1,..N , z
∗
1,...,N ) = ϕ(z∗1 , ..., z

∗
N )e−

∑N

i=1
|zi|

2

2 (3.120)

and using a dimensionless parameters s̃i =
√

2si
l leads to:

Ψ(s̃1, ..., s̃N ) = e−
1
4

∑N

i=1 s̃
2
i e
− 1

2

∑N

i=1
∂2

∂2s̃2
i ϕ(s̃1, ..., s̃N ) (3.121)

In the case of the Laughlin state ϕ(z∗1 , ..., z
∗
N ) =

∏
i<j(z

∗
i − z∗j )m and the 1D repre-

sentation:

Ψ(s̃1, ..., s̃N ) = e−
1
4

∑N

i=1 s̃
2
i e
− 1

2

∑N

i=1
∂2

∂2s̃2
i

∏
i<j

(s̃i − s̃j)m (3.122)

In the strong magnetic field the length l =
√

~
eB is small and the long distance

approximation |s̃i − s̃j | >> 1 may be used. In this approximation the derivatives:

∂

∂s̃k

∏
i<j

(s̃i − s̃j)m
 = m

∑
l 6=k

1
s̃k − s̃l

∏
i<j

(s̃i − s̃j)m
 <<

∏
i<j

(s̃i − s̃j)m


so if we expand the exponent with the derivatives acting on
(∏

i<j(s̃i − s̃j)m
)
, the

zero order term will be dominant. This means that in the strong magnetic field:

Ψ(s̃1, ..., s̃N ) ≈ e−
1
2

∑N

i=1 s̃
2
i

∏
i<j

(s̃i − s̃j)m
 (3.123)

which is the ground state of the Calogero-Moser Hamiltonian:

ĤCM = ~ω

−1
2

N∑
i=1

∂2
s̃i +

1
2

N∑
i=1

s̃2
i +

∑
i<j

m2 −m
(s̃i − s̃j)2

 . (3.124)
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Chapter 4

Classical Results

In this chapter I am presenting the results of my research on the classical generalisa-
tions of the Calogero-Moser system formulated in section (3.1). The accomplishments
in this area can be summarised as follows:

1. I have proven the equivalence of flows defined by the Hamiltonian functions
(3.17) and (3.38) under the condition, that all vectors |ei) are equally nor-
malised. In this case Lij(t) ≡ i(ei|ej)(t), which means that the seemingly
two-particle quantities Lij are in fact defined completely by the internal states
of individual particles.

2. Within the vectorial formulation I have proven that there are no initial condi-
tions recovering the (3.2) dynamics unless gij = g.

3. I have proposed a model which combines the matrix and vectorial degrees of
freedom as outlined in (3.1.2). A coupling between the two types of variables,
after a unitary reduction, gives rise to 1/xij interaction potential. This is a
very interesting result, as this is the only known integrable many-body model
with this type of interaction.

4. I have solved the equations of motion given by a classical counterpart of a
modified Hamiltonian (3.68).

5. I have examined the influence of the internal variables Lij on the external
degrees of freedom (x, p) and shown that a matrix model with Lij(0) = igij can
be used recreate the (x, p)(t) trajectories defined by (3.2) with high accuracy.

6. I have studied the influence of particle collisions on the values of Lij variables.

7. I have analytically found the reachable sets of the L degrees of freedom for a
Calogero-Moser system of N = 3 particles. I have also made an attempt to
generalise this result to N > 3.

4.1 Relation between the vectorial and matrix models

A careful look at (3.41) and (3.14) leads to an observation that Lij = i ·(ei|ej) obeys
an equation of motion which is similar to (3.14):

d

dt
Lij =

∑
k 6=i,j

LikLkj

(
1

(xi − xk)2 −
1

(xj − xk)2

)
− iLij

x2
ij

· (cj − ci), (4.1)

where ci = (ei|ei). It coincides with (3.14) if all the vectors are equally normalised
(ei|ei) = g. Moreover, the Poisson brackets obtained with the use of |e)-dependent
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part of the symplectic form (3.37)

{Lij ,Lkl} = i

(∑
m

∂(ei|ej)
|em)

∂(ek|el)
(em|

− ∂(ek|el)
|em)

∂(ei|ej)
(em|

)
= (δjkLil − δilLkj) , (4.2)

coincide with {Lij , Lkl} = δjkLil − δilLkj (3.25). This means that once we find such
initial |e0,i) that recover a given anti-Hermitian L0 matrix via L0,ij = i · (ei,0|ej,0),
and (ei,0|ei,0) = g, the two flows will be equivalent. Expressing the above with
a rectangular matrix E = (|e1)|e2)...|eN )), we can say that any matrix E†E with
a constant diagonal defines a repulsive (3.38) system. Once the initial conditions
coincide, Lij(0) = i(E†E)ij(0), and the diagonal elements are all equal (E†E)ii(0) = g,
the trajectories will coincide as well: Lij(t) = i(E†E)ij(t). Now two questions need
to be answered: 1. does every L matrix decompose into appropriately normalized |e)
vectors, 2. does every vectorial model translate to an L formulation (3.38)? In other
words: do (3.17) and (3.38) coincide, overlap or one contains the other?

To answer this question let us decompose an L matrix into |ei) vectors. Every
Hermitian, positive definite N ×N matrix M can be written in terms of a Cholesky
decomposition M = E†E , where E is upper (or lower, depending on the convention)
triangular, and its column vectors {|εi)} span the full N -dimensional space. A pos-
itive semi-definite matrix can be decomposed likewise, only the column vectors of
E will span a subspace of dimension N − µ0, where µ0 is the multiplicity of the
0 eigenvalue. Negative (semi-)definite matrices will be simply M = −E†E . The L
matrices are anti-Hermitian and non-definite, yet we can easily adjust such a matrix
to a decomposable form

±iL+ 1g = E†gEg, (4.3)

with a large enough value of g, to make it positive semi-definite. This adjustment
is, of course, not unique, but I am choosing the one which minimizes the dimension
of span(|εi)). The extreme eigenvalues i|λ+| and −i|λ−| of L give us two positive
semi-definite matrices to choose from,

±iL+ 1|λ±| = E†±E±. (4.4)

The one with the higher multiplicity results in the smallest possible subspace spanned
by the column vectors |εi) and will be denoted as E . The column vectors of E give a
valid expression of the initial conditions given by L,

Lij = i(εi|εj), (εi|εi) = |λ±|. (4.5)

The symmetry of the (3.38) and resulting equations of motion (3.41) imply that
having found the {|ei)} decomposition of L, we automatically obtain a vast set of
other choices:

|ei) = W |εi), W ∈ U(N) (4.6)

The Cholesky decomposition allows every valid L matrix to be expressed with a
set of N vectors of equal length. Yet the vectorial formulation does not restrict the
norms of the |ei) vectors to be equal. This means that the role of the non-vanishing
ci − cj term has to be checked. If it can be removed by a choice of gauge, that is
if there exist φi(t), i = 1, 2, ..., N such that all i(ei|ej)ei(φi−φj) obey (3.14), then the
E†E matrices with different diagonal elements are equivalent to the L formulation
as well. Let us write the time derivative of Lijei(φi−φj) and find the equations for
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the suitable gauge:

d

dt

(
Lijei(φi−φj)

)
− L̇ijei(φi−φj) = Lijei(φi−φj)i(φ̇i − φ̇j) = (4.7)

=
i

x2
ij

(cj − ci)Lijei(φi−φj), (4.8)

φ̇i − φ̇j =
1
x2
ij

(cj − ci). (4.9)

For a set of functions φ1(t), φ2(t), ..., φN (t) to exist, every triple (k, l,m) of equations
must sum up to 0 at every instant of time:

0 = φ̇k− φ̇l+ φ̇l− ˙φm+ ˙φm− φ̇k =
1
x2
kl

(cl−ck)+
1
x2
lm

(cm−cl)+
1
x2
mk

(ck−cm) (4.10)

The numerator of the right hand side expanded in xkl = a, xlm = b, xkm = a− b
will have coefficients that vanish for any a, b only if ck = cl = cm. Therefore, as we
are free to choose any initial positions xi(0), and momenta the (4.9) conditions have
no solution. Of course we can tune the initial positions so that they are met at time
t = 0, but in t = δt it will no longer be true. The conclusion is that E†E matrices
with different diagonal elements do not translate into an L matrix formulation. They
define a flow of i(ei|ej) matrix elements which is not gauge equivalent to any Lij
evolution.

The final observation of this section is that just as the L matrices in Section 3.1.1,
the vectorial variables also fall into equivalence classes due to gauge symmetry. In
case of vectors this is the simplest possible U(1) symmetry: [|ei)] = [|e′i)] ⇐⇒
|e′i) = eiφ|ei) and it translates automatically to gauge equivalent L matrices formed
as Lij = i(ei|ej) and L′ij = i(ei|ej)ei(φj−φi) = Lije

i(φj−φi). In other words equivalent
vectors define the same one-dimensional eigenspace of a projection operator Pi =
|ei)(ei|
g .
We can conclude that the vectorial |ei) formulation is equivalent to the L = [X,Y ]

formulation of the Calogero-Moser system if and only if the diagonal elements are all
equal: (ei|ei) = g. In this case L can be expressed via the Cholesky decomposition
with a set of N complex vectors of equal length. If the diagonal elements are different,
the differences appear in the equations of motion and are impossible to remove with
a choice of gauge. This means, that the unequal values of (ei|ei) take us beyond the L
matrix formulation. This section can be summarised as folows: The Lij variables of
the generalized Calogero-Moser system (3.17) do not need to be treated as
two-body, independent, dynamical interaction strengths, but may always
be viewed as arising as functions of one-particle observables with internal
degrees of freedom.

This is a valuable hint for the quantization of the system.

4.2 Orbits of L classified by rank

A set of complex vectors E = (|e1)|e2)...|eN )) of the same length describes the
repulsion forces in the CM system equivalently to an anti-Hermitian L matrix. The
equations of motion

d|ei)
dt

= −i
∑
k 6=i

|ek)(ek|
x2
ik

|ei) = −i ·Mi(t)|ei), (4.11)

where xik = xi − xk, imply that the dimension of the subspace spanned by |ei(t))
does not increase with time. It does not decrease either, due to the unitary evolution
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of L(t). This means that d = rank(E) = rank(L) is constant and the orbits of L
fall into separate classes given by the value of d = dim(span(|ei))). This value
can be translated into the number of independent variables needed to describe the
internal (non-spatial) evolution of the CM system. The N vectors belong to an d-
dimensional subspace of CN . Therefore we can choose a basis in CN in which at most
first d components of {|ei)} are nonzero, and treat them as elements of Cd. Each
complex vector in Cd is described with 2r real variables, yet one has to be excluded
due to fixed lenght, and another one due to gauge symmetry,which leaves us with
2d− 2 real parameters per vector:

r = (2d− 1− 1)N = 2(d− 1)N. (4.12)

The general solution of (4.11) is the following:

|ei)(t) = Ui(t)|ei)(0) (4.13)

where Ui(t) = Texp
(
−i
∫ t

0 Mi(τ)dτ
)
∈ U(d). The unitarity of Ui(t) expresses the

fact that (ei|ei) are constants of motion. These matrices are, of course, very sensitive
to the initial positions xi(0) and momenta pi(0), but I am interested in the properties
of |ei) variables independent of the initial conditions other that |ei)(0). In particular
I am going to solve the problem of the conditions for |L(t)| = |L(0)|.

4.2.1 Rank d = 1 as the ordinary CM system

The vectors |ei) evolve within the span of the initial vectors and their length is a
constant of motion. Therefore, if |ei)(0) = eiφi |e), which corresponds to d = 1, the
evolving vectors will stay in this one dimensional subspace, their length is constant,
and all that can change in time is the phases: |ei)(t) = eiφi(t)|e). In fact regardless
of the phases and the choice of the vector |e) this initial condition corresponds to

Lij(t) = ig · ei(φj(t)−φi(t)). (4.14)

In this case |Lij(t)| = |Lij(0)| = g thus it corresponds to the ordinary CM system
(3.1). The initial condition in matrix form is equivalent to (3.35). This result is in
full agreement with (4.12), which indicates that for d = 1 we get r = 0 thus no room
for nontrivial change of the interaction strenghts.

4.2.2 Rank d = 2 dynamics on the Bloch sphere

Before looking at the general features of CM systems with d > 1 I will explore the
d = 2 case. For simplicity I set g = 1 and I parametrise the unit vectors |εi) ∈ C2 as
follows:

|ei) =

 cos
(
θi
2

)
eiφi sin

(
θi
2

)  . (4.15)

I map the vectors to S2 sphere in a standard way:

v̄i = (cosφi sin θi, sinφi sin θi, cos θi), (4.16)

just like the states of a qubit are depicted on the Bloch sphere. The interparticle
repulsion strengths can be expressed with Bloch vectors:

|Lij |2 = |(ei|ej)|2 =
1 + v̄i · v̄j

2
. (4.17)
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By applying (4.11) to v̄i ∈ S2 I obtain the following equations:

dv̄i
dt

= ᾱi × v̄i, ᾱi =
∑
k 6=i

v̄k
x2
ik

(4.18)

d

dt
(v̄i · v̄j) = (v̄i × v̄j) · (ᾱi − ᾱj) = (v̄i × v̄j) ·

∑
k 6=i,j

v̄kfij,k(x). (4.19)

where fij,k(x) = 1
x2
ik
− 1
x2
jk

. This means that the motion of each v̄i on the Bloch sphere

is generated by an infinitesimal rotation arround the superposition of all the other
vectors with position dependent weights . Moreover the time derivative of v̄i · v̄j has
a geometrical interpretation as well: it is the projection of the sum of the weighted
vectors onto the direction of v̄i × v̄j .

If all the vectors are set initially in one plane, the derivative (4.19) vanishes at
t = 0. Yet, we may expect the second derivative to be nonzero, since the vectors
rotate according to (4.18) and start deviating from the initial plane. Indeed, the
second derivative

d2

dt2
(v̄i · v̄j) =

d(v̄i × v̄j)
dt

· (ᾱi − ᾱj) + (v̄i × v̄j) ·
d(ᾱi − ᾱj)

dt

has terms of different geometrical types:

d2

dt2
(v̄i · v̄j) = (v̄i × v̄j) ·

∑
k 6=i,j

v̄kḟij,k(x)

+ (v̄i × v̄j) ·

∑
k 6=i,j

∑
l 6=i,jk

v̄l × v̄k
x2
kl

fij,k(x)

+

− (v̄i · v̄j)|ᾱi − ᾱj |2 + (v̄i · ᾱi)(v̄j · ᾱi) + (v̄i · ᾱj)(v̄j · ᾱj)− 2(v̄i · ᾱj)(v̄j · ᾱi) +

+
v̄i · (P⊥j ᾱj) + v̄j · (P⊥i ᾱi)

x2
ij

+
∑
k 6=i,j

(
v̄j · (P⊥i v̄k)

x2
ik

−
v̄i · (P⊥j v̄k)

x2
jk

)
fij,k(x),

where P⊥a = 1− v̄av̄Ta . The first term is of the same type as (4.19) and will vanish if
all the vectors v̄a, a =, 1, 2, ...N belong to the same plane, yet in this case the other
terms will depend on the positions x = (x1, ..., xN ) and will not generally result in
a vanishing derivative and a constant value of |Lij | = |(ei|ej)|.

4.2.3 Rank d > 1

The example of d = 2 suggests that for any rank d > 1 there is room for nontrivial
evolution of |L(t)|2 = |(ei|ej)|2(t). A heuristic argument for this is that for (ei|ej)(t)
to differ from (ei|ej)(0) only by a phase factor, the two vectors should aquire phase
factors only (as in the d = 1 case) or rotate in a strictly synchronised way, which
is likely only for isolated positions and momenta. Let us therefore reexpress the
condition |L(t)| = |L(0)| in the language of vectors and look for such sets of |ei)(0),
that result in stationary couplings:

∀i 6=j |(ei|ej)|2(t) = |(ei|ej)|2(0). (4.20)

All time derivatives at t = 0 must vanish for a constant function, but the vanishing
of first two is a necessary condition:

d

dt
|(ei|ej)|2(0) = i

∑
k 6=i,j

(ei|[Pk, Pj ]|ei)fij,k(x)(0) = 0 (4.21)

d2

dt2
|(ei|ej)|2(0) = i

∑
k 6=i,j

d

dt
[(ei|[Pk, Pj ]|ei)fij,k(x)] (0) = 0 (4.22)
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The first step is to search for vectors which satisfy (4.21), regardless of the initial
positions. The

(N
3

)
position dependent factors are expressed only by N − 1 inde-

pendent relative distances. This is why it cannot be automatically assume that all
(ei|[Pk, Pj ]|ei) must vanish. Yet it can be shown (see Appendix A.1) that when we
expand (4.21) for a fixed pair i < j in terms of independent distances (for exam-
ple xi,j 6=i) over a common denominator, the obtained polynomial expression will be
identically zero if and only if all the coefficients, that is (ei|[Pk, Pj ]|ei), vanish. This
condition can be rewritten as:

∀k,i,jIm((ei|ek)(ek|ej)(ej |ei)) = 0 (4.23)

There are only two types of initial conditions which satisfy this set of equalities:
either all vectors project on the same one-dimensional subspace: |ei) = eiφi |e) (this
is, of course, the d = 1 case discussed before) or all vectors are (gauge equivalent
to) real |ei) = |eRi ). It can be shown (see App. A.2) that in case of d ­ 2 this is the
only possibility to satisfy (4.23).

In the next step we find the sets of real vectors which satisfy (4.22) as well. The
time derivative can be expanded as follows:

d2

dt2
|(ei|ej)|2(0) = i

∑
k 6=i,j

d

dt
[(ei|[Pk, Pj ]|ei)] fij,k(x) + (ei|[Pk, Pj ]|ei)ḟij,k(x). (4.24)

In cases when (4.21) is satisfied, the terms proportional to (ei|[Pk, Pj ]|ei) vanish and
we are left with ∑

k 6=i,j

(
1
x2
ik

− 1
x2
jk

)
d

dt
[(ei|[Pk, Pj ]|ei)] = 0. (4.25)

Further expansion of the derivative:

d

dt
[(ei|[Pk, Pj ]|ei)] = (ėi|[Pk, Pj ]|ei) + (ei|[Pk, Pj ]|ėi) + (ei|

d

dt
([Pk, Pj ])|ei) =

= i

∑
l 6=i

1
x2
il

(ei|[Pl, [Pk, Pj ]]|ei) +
∑
l 6=j

1
x2
jl

(ei|[Pk, [Pj , Pl]]|ei)

+

+si
∑
l 6=k

1
x2
kl

(ei|[Pj , [Pl, Pk]]|ei) (4.26)

makes use of the fact, that Ṗk = i
∑
l 6=k x

−2
kl [Pk, Pl]. The last equality in (4.26) applied

to (4.25) gives us a double sum with many terms which are difficult to manage in
general. Yet we require (4.25) to be true for any initial distances xab, so we can
choose for example a special configuration in which two particles, ith and (i + 1)st,
are close to each other, while the others are much further away: |xi,i+1| << |xkl|.
This lets us take only the dominant term, proportional to |xi,i+1|−4 (others are of
order |xi,i+1|−2|xkl|−2, or even smaller |xkl|−2|xmn|−2) and demand that it vanishes,

2|(ei|ei+1)|2

x4
i,i+1

(
|(ei|ej)|2 − |(ei+1|ej)|2

)
= 0. (4.27)

We assume nonzero repulsion between adjacent particles, |(ei|ei+1)| 6= 0. This leads
to a condition:

∀i,j |(ei|ej)|2 = |(ei+1|ej)|2 (4.28)

For d > 1 all the vectors must be real, |ei) ∈ Rd and in this case (4.28) simplifies to

∀i,j(ei|ej) = ±(ei+1|ej), (4.29)
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where we can choose any pair of N − 1 nearest neighbours, thus the scalar product
must be the same, up to a ± sign, for all possible pairs:

∀i 6=j,k 6=l(ei|ej) = ±(ek|el). (4.30)

This corresponds to a system of evenly distributed vectors, i.e:

∀i 6=j(ei|ej) = cos(φij) = (−1)nijg, (ei|ei) = 1, 0 < g ¬ 1, (4.31)

or in matrix form:

Lij = ig(1− δij)eiπ·nij , nij ∈ {0, 1}. (4.32)

Importantly, the condition arrising from the colliding particles approximation al-
ready excludes the possibility of a matrix model recovering a system (3.2) with
different coupling constants.

In the case of N = 3 this is a rank 1 matrix equivalent to ±L0 found in Sec-
tion 4.2.1. Indeed, the characteristic equation of (4.32) in this case reads:

λ3 − 3λ∓ 2 = (λ± 1)2(λ∓ 2) = 0, (4.33)

where the ± sign is given by (−1)n123 (nijk = nij + njk + nki), but regardless of
the sign there is always a double eigenvalue ∓1. This means that we can shift it as
explained in Section 4.1 and obtain an d=1 matrix:

L = ±ig {2|v1)(v1| − |v2)(v2| − |v3)(v3|} −→ L∓ ig1 = ±3ig|v1)(v1|. (4.34)

Of course if ∀i|ei) = ±|e), the condition (4.30) will be satisfied for N > 3 as
well (this is again the known d = 1 case). But what happens if there are repeating
vectors among |ei), but some are different? It means that for some fixed i, j, k we
have |ej) = ±|ei), (ei|ej) = ±1 and |ek) 6= ±|ei), |(ei|ek)| < 1. Such a set cannot
satisfy (4.30), and we are left with two options: all vectors are the same up to a sign
|ei) = ±|e) (this is the case of d = 1) or all N vectors are non trivially different, i.e.,
they project on different directions.

We need to know what is the rank d in the second case and instead of looking at
the characteristic equation we will take up a more geometrical approach. We have
N real vectors pointing at N different, but evenly distributed directions defined
by (4.31). What is the dimension of a real space in which such a construction is
possible? Of course RN is enough since it contains N different orthogonal vectors
forming a standard basis {êi : i = 1, 2, ..N}. Projecting this set of vectors onto an
N − 1-dimensional subspace orthogonal to e+ = 1√

N

∑N
i=1 êi reduces the necessary

dimension to N −1. This is equivalent to subtracting 1λmin from (4.31) and making
it positive semi-definite if the corresponding eigenspace is one-dimensional.

For some particular configurations of nij the eigenspace of the extreme eigenvalue
can have dimension higher than one, thus the span of |ei) vectors can be reduced to
d < N−1. The possible ranks, that is the dimensions in which N ­ 4 vectors can be
packed, are presented in table 4.1. For example in R3 there can be up to 6 vectors -
they point to the vertices of a regular icosahedron. There are 12 of them, but once a
vertex is chosen,its antipodal vertex must be excluded. For N = 8, 9, 10, 11 vectors
defined in (4.31) fit in N − 1, N − 2 or N − 3-dimensional real space. An anomaly
occurs for N = 7 since R4 accepts only up to 6 vectors.

In the last step we look at the second time derivative (4.22) in an arbitrary con-
figuration of initial positions. Expanding (4.25) with the use of (4.26) and expressing
the left hand side with a set of independent distances (see Appendix A.3) results in
a condition:

∀i 6=j 6=k 6=l(ei|[Pl, [Pk, Pj ]]|ei) = 0. (4.35)
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Figure 4.1: In R3 up to six |ei) vectors
can satisfy (4.31). They point at the ver-
tices of the regular icosahedron, and once
a vertex is chosen, its antipodal must be
excluded.

N d

4 1, 3
5 1, 3, 4
6 1, 3, 4, 5
7 1, 5, 6

8, 9, 10, 11 1, N − 3, N − 2, N − 1

Table 4.1: Possible ranks of N×N (4.32)
matrices calculated numerically for dif-
ferent combinations of ± signs.

in case of real vectors satisfying (4.30) this is equivalent to

∀i 6=j 6=k 6=lnij + nkl = nik + njl = nil + nkj , (4.36)

which gives
(N

4

)
sets of equalities. In case of N = 4 there is just one, that is:

n12 + n34 = n13 + n24 = n14 + n23. (4.37)

Keeping in mind that nij ∈ {0, 1} and that by addition we mean addition modulo
2, we can transform these equalities into

n12 + n23 + n31 = n12 + n24 + n42 = n13 + n34 + n41 = n23 + n34 + n42. (4.38)

The simple relation between nij and the phases ϕij defined in Section 3.1.1, that is
ϕij = π

2 + nijπ, leads to the conclusion that all cyclic sums Φijk defined by (3.33)
must be the same, and the resulting L matrix is equivalent to L0,ij = ig(1 − δij)
found in Section 4.1. The generalisation of this fact onto N > 4 is simple: the

(N
4

)
relations Φijk = Φijl = Φikl = Φjkl imply that Φabc is the same for all choices of
a, b, c, and this is the definition of matrices which are equivalent to L0,ij = ig(1−δij).
This proves that the matrix found in Section 4.1, that is the one which corresponds
to d = 1, is the only one (up to gauge equivalence) which recovers the ordinary CM
model. Any higher rank d allows a nontrivial unitary evolution.

We summarize the findings of this section as the following observations,

1. Orbits of generalized Caloger-Moser systems can be classified by
rank, i.e., the dimension of the space of internal, vectorial degrees
of freedom

2. Rank d = 1 corresponds to the ordinary Calogero-Moser system.
This is the only rank for which we can obtain constant values of
|L(t)|.

4.3 Beyond the repulsive CM model

In this section I present a model which couples the matrix and vectorial degrees of
freedom. This coupling leads to a new integrable system with additional 1

x interac-
tions between particles in the reduced phase space.
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4.3.1 The CM model in the extended phase space

The special case of the Calogero-Moser Hamiltonian H = 1
2Tr(Y 2) leads to a very

simple solution of (3.47), for which the (D,V,E) dynamics is similar to what we
know from Section 3.1.1. Let us define an anti-Hermitian matrix valued function S:

S = [D,V ]− iE†E, Ṡ = [A,S] (4.39)

Initial conditions (X0, Y0, E0) that satisfy S0 = [X0, Y0] − iE†0E0 = −ig · 1 define
special orbits for which S(t) = S0. When restricted to these orbits, trajectories of
Lij and (ei|ej) coincide (this is exactly the equivalence stated in Section 4.1). Other
choices of S(0) will result simply in a unitary evolution E(t) = E0U

†(t) with no
influence of these degrees of freedom on the (X,Y ) dynamics.

4.3.2 Example of interacting matrix and vectorial degrees of free-
dom

The matrix and vectorial degrees of freedom can be coupled through a modified
Hamilton function on the extended phase space. One of the simplest examples of
such a coupling is:

HE =
1
2

Tr((Y + ξE†E)2) (4.40)

where the free system is modified with a ξE†E Hermitian matrix, and ξ−1 has the
dimension of X. The resulting equations of motion are:

Ẋ = Y + ξE†E , Ẏ = 0, Ė = −iξE(Y + ξΦ), Φ̇ = [iξY,Φ] , (4.41)

where Φ = E†E . The solutions for Y and Φ are straightforward, while E contain a
nontrivial u(t,Φ) ∈ U(N) modification which cancels in the Φ evolution:

Y (t) = Y0, Φ(t) = eiξY0tΦ0e
−iξY0t, E(t) = u(t,Φ)E0e

−iξtY0 , u̇ = −iξ2Φu.
(4.42)

The equation for X becomes:

Ẋ = Y0 + ξeiξtY0Φ0e
−iξtY0 . (4.43)

If [Y0,Φ0] = 0, the solution is very simple: X(t) = X0 + t(Y0 + ξΦ0) and equivalent
to the case discussed in section 3.1.1. If it is not the case, we obtain:

X(t) = X0 + tY0 + ξ

∫ t

0
eiξτY0Φ0e

−iξτY0dτ, (4.44)

which is easiest to interpret when expressed in the diagonal basis of Y0 as:

(X(t))ij = X0,ij + t [δij(Y0,ii + ξΦ0,ii) + ξδ(∆yij)Φ0,ij ] +
f(ξ∆yijt)

∆yij
Φ0,ij (4.45)

where ∆yij = Y0,ii − Y0,jj and f(τ) = sin(τ) + i(1− cos(τ)). Clearly X(t) performs
a spiral motion. The direction of its linear component is dictated by Y0 (with an
additional boost given by the projection of Φ0 on this direction, if we think of the
Hermitian matrices as a vector space with (A,B) = Tr(AB)). The periodic motion
takes place in the subspace perpendicular to Y0 (again in the sense of (A,B) =
Tr(AB) scalar product). This system turns out to have a constant of motion:

[X(t), Y (t)]− iΦ(t) = [X0, Y0]− iΦ0 = S0. (4.46)

i.e. [X(t), Y (t)]− iΦ(t) is a constant of motion, just like for the simple Y dependent
Hamilton function. The X(t) trajectories, though more complicated than simple
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lines obtained in 3.1.1 are still numerically accessible and it is worth looking at the
dynamics of their eigenvalues. This is why in the next step I parametrize the flow
with eigenvalues of X(t) in the known way, with the use of (3.47). From now on
the E = (|e1(t), |e2(t), ..., |eN (t)) degrees of freedom will be tracked with entries of
Ω(t) = U(t)Φ(t)U †(t). The obtained equations are:

Ḋ = [A,D] + V + ξΩ, V̇ = [A, V ], Ω̇ = [A+ iξV,Ω], L̇ = [A,L]− ξ[V,Ω],
(4.47)

where L = [D,V ], and A(t) = U̇(t)U †(t) as usual. An anti-Hermitian matrix (4.39)
can be introduced for a general system defined by (3.47). It may not necessarily be
a Lax operator due to an additional term:

Ṡ = [A,S] + U

[
d

dt

(
[X(t), Y (t)]− iE†E

)]
U †, (4.48)

but in the considered case this term vanishes, as stated in (4.46). This means S =
[D,V ]− iΩ is a Lax operator and just as for the matrix dynamics in Section 3.1.1,
we have a vast set of constants of motion,

Ik1,k2...,km = Tr(Sk1V k2 · · ·Skm−1V km), (4.49)

where k1, ..., km are non-negative integers. The Hamilton function (4.40) in the
(D,V,Ω, L) parametrization reads:

HE =
1
2

Tr((V + ξΩ)2). (4.50)

In the (xi = Dii, pi = Vii, L,Ω) variables

HE(x, p, L,Ω) =
1
2

∑
i

(pi + ξΩii)2 +
∑
i<j

|Lij |2

x2
ij

+
2ξ<(LijΩ∗ij)

xij
+ ξ2|Ωij |2 (4.51)

and it suggests that the additional degree of freedom introduces a long distance,
1/xij interaction potential between particles. The symplectic form (3.44) differs from
(3.23) by the iTr(dE† ∧ dE) term, which results in replacing L with S = L− iΩ:

ωE =
N∑
i=1

dpi ∧ dxi + id(ei| ∧ d|ei)− Tr(dS ∧ a) + Tr(Sa ∧ a). (4.52)

The variables xi = Dii and pi = Vii are still canonically conjugate, but the mechan-
ical momentum, let us call it πi, contains Ωii = iSii terms as well. The equations
of motion for (xi, πi = pi + ξΩii) contain terms with not only 1/x3

ij and 1/x2
ij as

expected at first glance (and present in the ṗi = −∂xiH equation), but 1/xij as well:

ẋi = πi (4.53)

π̇i =
∑
j 6=i

2|Sij + iΩij |2

x3
ij

+
4ξ<(SijΩ∗ij)

x2
ij

−
2ξ2=(SijΩ∗ij)

xij
, (4.54)
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while the equations of motion for Sij and Ωij are even more involved:

Ω̇ii = iṠii =
∑
j 6=i

2<(SijΩ∗ij)

x2
ij

−
2ξ=(SijΩ∗ij)

xij
(4.55)

Ṡij =
∑
k 6=i,j

(
Sik + iΩik

x2
ik

+
ξΩik

xik

)
Skj − Sik

(
Skj + iΩkj

x2
kj

+
ξΩkj

xkj

)
+

+i

(
Sij + iΩij

x2
ij

+
ξΩij

xij

)
(Ωii − Ωjj) (4.56)

Ω̇ij =
∑
k 6=i,j

(
Sik + iΩik

x2
ik

+
iξSik
xik

)
Ωkj − Ωik

(
Skj + iΩkj

x2
kj

+
iξSkj
xkj

)
+

−
(
Sij + iΩij

x2
ij

+
iξSij
xij

)
(Ωii − Ωjj) + iξΩij(πi − πj). (4.57)

A set of initial conditions such that:

∀i 6=j
d

dt
(SijΩji) = 0,

d

dt

(
|Sij + iΩij |2

)
= 0 (4.58)

would lead to a dynamical system with a clearer physical interpretation:

ẋi = πi, π̇i =
∑
i<j

c1

x3
ij

+
c2

x2
ij

+
c3

xij
. (4.59)

My next step is to explore this possibility.

Exact solution for N = 2

The simplest case of N = 2 can be solved analytically. Let us define the initial
conditions via Pauli matrices:

X0 = x0σz Y0 = y0(n̄y · σ̄) Φ0 = φ0(n̄φ · σ̄), (4.60)

where n̄y, n̄φ are unit vectors, and y0, φ0 are positive constants. Note that in this
definition all the matrices are traceless. The equations of motion for traces (which
correspond to the center of mass motion) separate, and the equations for the traceless
part reflect the relative motion. Naturally the Y (t) matrix is constant, and:

Φ(t) = φ0 [(n̄y|n̄φ)n̄y + cos(2ξy0t)(n̄φ − (n̄y|n̄φ)n̄y)− sin(2ξy0t)(n̄y × n̄φ)] · σ̄ =

= Φ||Y0
0 + cos(2ξy0t)Φ

⊥Y0
0 + sin(2ξy0t)Ψ⊥Y0,Φ0 (4.61)

X(t) = X0 + t
(
Y0 + ξΦ||Y0

0

)
+

1
2y0

(
sin(2ξy0t)Φ⊥Y0 + (1− cos(2ξy0t))Ψ⊥Y0,Φ0

)
= d̄(t) · σ̄. (4.62)

If we treat the above matrices as vectors in R3, we may say that the component
of Φ(t) parallel to Y0 is constant, and the perpendicular one circulates with fre-
quency 2ξy0. The trajectory of X(t) is therefore a spiral, as expected. If we interpret
the eigenvalues of X(t) as positions of the particles, the distance between them,
r(t) = 2|d̄(t)|) oscillates. The oscillations are vanishing slowly, which shows that
there is a long distance interaction between particles. The trajectory of X(t) and its
eigenvalues are illustrated in Figure 4.2. Let us express the matrices in the diagonal
basis of X(t):

D(t) =
r(t)

2
σz, Ω(t) = Ω̄(t) · σ̄ (4.63)

iS(t) = s̄(t) · σ̄ = (rvy + Ωx)σx + (−rvx + Ωy)σy + Ωzσz (4.64)

V (t) = v̄(t) · σ̄ =
(Ωx − sx)σx + (Sy − Ωy)σy

r
+ p(t)σz (4.65)
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The Hamilton function (4.50) in this case is equal to |v̄ + ξΩ̄|2 and in the new
parametrisation it has the form:

H2(r, p, sx, sy,Ωx,Ωy) = (p+ ξΩz)2 +
|s̄− Ω̄|2

r2 +
2ξ(s̄× Ω̄)z

r
+ ξ2(Ω2

x + Ω2
y). (4.66)

Adjusting the equations (4.47) equations to the vectorial form we obtain:

˙̄v = 2i(ā× v̄), ˙̄Ω = 2i(ā+ iξv̄)× Ω̄, ˙̄s = 2i(ā× s̄) (4.67)

From a geometrical point of view we have two vectors, Ω̄ and s̄ rotating in R3 around
two different axes. If some choice of s̄ and Ω̄ were to recover (4.59), their difference
s̄− Ω̄ = il̄ would have to have a constant length. But this would imply:

0 =
d

dt
|s̄− Ω̄|2 = −2

d

dt
(s̄ · Ω̄) = 4ξs̄ · (v̄ × Ω̄), (4.68)

thus the three vectors, s̄,v̄ and Ω̄) stay in the same plane. We know from (4.67) that
both s̄ and v̄ rotate around the same axis, so in their rotating frame Ω̄ will leave their
common plane if it rotates around any other axis. For that not to happen we must
require v̄×Ω̄ = 0,which in the language of matrices means that [V (t),Ω(t)] = 0. This
vanishing commutator means that in the initial basis [Y0,Φ0] = 0 and the system is
equivalent to the system without additional degrees of freedom, that is just the two
particle Calogero-Moser system with c1 > 0 and c2 = c3 = 0 in (4.59).

Generalization to higher values of N

As stated in (4.45), the spiral motion in the matrix space is not a unique feature of
the N = 2 case. For any value of N we can express X(t) in the diagonal basis of Y0:

(X(t))ij = X0,ij + t
(
Y0 + ξΦ||Y0

)
ij

+
i

∆y2
ij

[Y0,Φ0]ij(1− eiξ∆yijt) (4.69)

(Φ||Y0
0 )ij = δijΦ0,ij + (1− δij)δ(∆yij)Φ0,ij , [Y0,Φ

||Y0
0 ] = 0 (4.70)

where ∆yij = Y0,ii − Y0,jj and

f(τ) = sin(τ) + i(1− cos(τ)) = i(1− eiτ ). (4.71)

Therefore X(t) − X0 has a linear part stemming from Y0 and the part of Φ0

which commutes with Y0 and a circulating part given by the entries of [Y0,Φ0]ij =
∆yijΦ0,ij . The frequency of oscillation of the ijth entry is ωij = ξ∆yij . Oscillations of
matrix elements will be reflected in oscillating eigenvalues, and the only Φ0 for which
the oscillations vanish is the one which commutes with Y0 and ads nothing but a
boost to the (X,Y ) matrix motion. Eigenvalues of X(t) are interpreted as positions
of particles in an N − body one-dimensional system. If the positions of the 1st and
N th particle oscillate in time, it means that the interaction potential continuously
changes between attractive and repulsive. This is why we should expect that for a
general N once we have [Y0,Φ0] 6= 0, a stationary case (4.59) cannot be recovered.
Nevertheless, the conditions (4.58) need to be solved with the use of (4.47):

d

dt

(
|Sij + iΩij |2

)
= 0 =⇒

∑
ij

d

dt

(
|Sij + iΩij |2

)
= 0

d

dt
Tr((S + iΩ)2) = 0 =⇒ Tr(S[Ω, V ]) = 0 (4.72)

d

dt
(SijΩji) = 0 =⇒ d

dt
Tr(SΩ) = iξTr(S[Ω, V ]) = 0. (4.73)
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Figure 4.2: The trajectories and lengths of d̄(t).The black lines represent the unex-
tended model with Φ0 = 0. The legend applies to both plots.
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Both conditions in (4.47) imply a weaker condition (an N -particle counterpart of
s̄ · (v̄ × Ω̄) = 0), which can be now expressed in terms of (X,Y,Φ)(t):

Tr(S[Ω, V ]) = Tr([D,V ][Φ, V ]) = Tr([X(t), Y0][Φ(t), Y0]) = 0. (4.74)

This must be true for all t ­ 0, therefore:

Tr([X0, Y0][Φ0, Y0]) = 0,
d

dt
[Tr([X(t), Y0][Φ(t), Y0])] |t=0 = 0. (4.75)

The first equation implies one of two possibilities: either [X0, Y0] = iηΦ0 for some
η ∈ R or [Φ0, Y0] = 0. The second, after applying the Leibniz rule and the equations
for (Ẋ, Φ̇)(t) reads:

Tr([Φ0, Y0]2) + iξTr([X0, Y0][[Y0,Φ0], Y0]) = 0. (4.76)

It is automatically satisfied if [Φ0, Y0] = 0. If [X0, Y0] = iηΦ0, it implies:

(1− ξη)Tr([Φ0, Y0]2) = 0. (4.77)

The chosen Φ0 should recover (4.59) for arbitrary initial positions encoded in X0, so
η is unrestricted. Therefore Tr([Φ0, Y0]2) = 0 which corresponds to an non-extended
system. The constant potential is then realised by [X0, Y0] = L0 given by (3.35),
Sij = −igδij and c1 = g2, c2 = c3 = 0.

4.4 Classical counterparts of models with spin state ex-
change

The Calogero-Moser models presented in 3.1.2 have not been quantised yet, but in
section 3.2.2 we have seen quantum extensions with spin degrees of freedom, where
in the place of Lij variables we have matrices acting on spin states. Let us recall
that the above models are not a quantum analogue of H = 1

2Tr(V 2) but of a sum
of all terms,

H =
1
2

∑
i,j

(V 2)ij , (4.78)

which motivates us to look at the classical equations of motion for such a Hamilton
function.

4.4.1 The general solution

The classical counterpart of the discussed Hamiltonians in the (X,Y ) phase space:

H =
1
2

∑
i,j

(Y 2)ij , (4.79)

results in the following equations of motion:

Ẋij = Yij +
1
2

∑
k 6=j

Yik +
1
2

∑
m6=i

Ymj , Ẏij = 0, (4.80)

which is again a straight line in the space of Hermitian matrices:

X(t) = X0 +
t

2
[M,Y0]+, Y (t) = Y0, (4.81)

50



where Mij = 1 and [...]+ is the matrix anticommutator. It is much more interesting
to look at the harmonic case:

H =
1
2

∑
i,j

(Y 2 + ω2X2)ij , (4.82)

where the equations of motion take the following form:

Ẋ =
1
2

[M,Y ]+, Ẏ = −ω
2

2
[M,X]+. (4.83)

Just as in the simple harmonic oscillator case, we can solve the second order differ-
ential equation for a single matrix:

Ẍ = −ω
2

4
[M, [M,X]+]+, (4.84)

(the same for Y ). One of the possibilities is to vectorize the matrices and solve the
problem using standard diagonalization, but there is a simpler way: we notice that
M = N |e0〉〈e0|, where 〈e0| = 1√

N
(1, 1, 1, ..., 1), is proportional to a one-dimensional

projection. Therefore we can express the equation (4.84) in an orthonormal basis
containing |e0〉:

X =

(
x0 xi0
x†i0 xij

)
, M =

(
N 0
0 0

)
, Ẍ = −1

4
[M, [M,X]+]+, (4.85)

i.e., explicitly, (
ẍ0 ẍi0
ẍ†i0 ẍij

)
=

(
−(Nω)2x0 − (Nω)2

4 xi0

− (Nω)2

4 x†i0 0

)
, (4.86)

where xi0 = 〈e0|X|ei〉 is a row vector of length N − 1, x†i0 - a column, and xij =
〈ei|X|e0〉 - an (N −1)× (N −1) matrix. The same procedure applies to Y , and with
the use of the first order equations:(

ẋ0 ẋi0
ẋ†i0 ẋij

)
=

(
Ny0

N
2 yi0

N
2 y
†
i0 0

)
,

(
ẏ0 ẏi0
ẏ†i0 ẏij

)
=

(
−Nω2x0 −Nω2

2 xi0
−Nω2

2 x†i0 0

)
,(4.87)

we find the solution:

X(t) =

(
x0 cos(Nωt) + y0

ω sin(Nωt) xi0 cos(Nωt2 ) + yi0
ω sin(Nωt2 )

(xi0 cos(Nωt2 ) + yi0
ω sin(Nωt2 ))† xij

)
, (4.88)

Y (t) =

(
y0 cos(Nωt)− ωx0 sin(Nωt) yi0 cos(Nωt2 )− ωxi0 sin(Nωt2 )

(yi0 cos(Nωt2 )− ωxi0 sin(Nωt2 ))† yij

)
, (4.89)

where the x, y0,i,j are the elements of the initial X0, Y0 matrices in the chosen basis.
We see that the |e0〉〈e0| component oscillates with the frequency Nω, the |e0〉〈ei|
and |ei〉〈e0| components oscillate as well, but with a twice smaller frequency while
the block which is orthogonal to |e0〉 stays constant. If we take the limit ω → 0 of
(4.88) and (4.89), we will obtain (4.81), that is the dynamics of the Hamiltonian
(4.79). In the last step we may return to the diagonal basis of X0, although then the
results become less transparent - they are just linear combinations of constants and
oscillating functions.
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4.4.2 The N = 2 case

We shall illustrate the above considerations with explicit solutions for N = 2. Let
us define the evolving matrices in terms of functions, together with the initial con-
ditions:

X(t) = x0(t)1 + x̄(t) · σ̄, X0 = x001 + xz,0σz, (4.90)

Y (t) = y0(t)1 + ȳ(t) · σ̄, Y0 = y001 + ȳ0 · σ̄. (4.91)

The solution of the linear case is simple:

X(t) = X0 + t(Y0 + y00σx + y0x1) (4.92)

As M = 1 + σx, the basis which we use in the harmonic case is the eigenbasis of σx:
|e0) = (1, 1)/

√
2, |e1) = (1,−1)/

√
2. Let us set ω = 1 and write down the equations

(4.84) and (4.87) in this basis:

d2

dt2

(
x0(t) + xx(t) xz(t) + ixy(t)
xz(t)− ixy(t) x0(t)− xx(t)

)
= −

(
4(x0(t) + xx(t)) xz(t) + ixy(t)
xz(t)− ixy(t) 0

)
d

dt

(
x0(t) + xx(t) xz(t) + ixy(t)
xz(t)− ixy(t) x0(t)− xx(t)

)
=

(
2(y0(t) + yx(t)) yz(t) + iyy(t)
yz(t)− iyy(t) 0

)

and the solutions are the following:

x0(t) =
1
2
{x00(1 + cos(2t)) + (y00 + y0x) sin(2t)}, (4.93)

y0(t) =
1
2
{(y00 + y0x) cos(2t)− x00 sin(2t) + y00 − y0x}, (4.94)

x̄(t) =

 x0(t)− x00

y0y sin(t)
x0z cos(t) + y0z sin(t)

 , (4.95)

ȳ(t) =

 y0(t)− y00 + y0x

y0y cos(t)
−x0z sin(t) + y0z cos(t)

 . (4.96)

Their linear approximations coincide with (4.92). The traces of X(t) and Y (t), that
is 2x0(t) and Tr2y0(t) respectively, oscillate with a period T = π. The difference
between them is a π

4 shift in time and a constant. This is why they easily combine
to a constant of motion:

(TrX(t)− x00)2 + (TrY (t)− y00 + y0x)2 = x2
00 + (y00 − y0x)2 (4.97)

The x̄(t), ȳ(t) vectors move along periodic trajectories, which can be viewed as de-
formed ellipses. In particular, if the initial condition has no σy component, the
resulting loop will be 2-dimensional.

The attractiveness of this model is revealed in higher dimensions, where out of
all N2 degrees of freedom only N2−(N−1)2 = 2N−1 evolve in time, while (N−1)2

remain constant. Its major drawback on the other hand is such that the Hamilton
functions constructed from the sum of all matrix elements instead of traces lacks
U(N) symmetry. The unitary reduction along the lines presented in Section 3.1.1 is
generally impossible. Yet U(N −1) transformations preserving the |e0〉 direction are
valid symmetries in this case, and the possible consequences of this symmetry can
potentially be useful.
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4.5 Evolution of the internal degrees of freedom

This section is focused on the interplay between the Lij variables and the spatial
degrees of freedom. Firstly I examine the influence of Lij dynamics on the motion
of particles in real space (as compared to the constant couplings gij), next I look at
the dynamics of Lij variables during particle collisions.

4.5.1 The influence of the internal degrees of freedom on the dy-
namics in physical space

The equations of motion of the ordinary N-body Calogero-Moser system (3.2) with
gij coupling constants are the following:

ẋi,g = pi,g, ṗi,g = 2
∑
k 6=i

g2
ik

x3
ik,g

, (4.98)

while the equations of motion for (xi, pi, Lij) variables which stem from (3.17):

ẋi,L = pi,L, ṗi,L =
∑
k 6=i

2|Lik|2

x3
ik,L

, L̇ij =
∑
k 6=i,j

LikLkj

(
1

x2
ik,L

− 1
x2
jk,L

)
, (4.99)

where xij = xi−xj , and the g and L subscripts distinguish the trajectories generated
by (3.2) and (3.17). The difference of the two trajectories:(

∆xi(t)
∆pi(t)

)
=

(
xi,L(t)− xi,g(t)
pi,L(t)− pi,g(t)

)
, (4.100)

for the two systems starting in what we may call the same state, that is

xi,g(0) = xi,L(0), pi,g(0) = pi,L(0), gij = |Lij |(0), (4.101)

will be influenced by the dynamics of the internal variables Lij(t). This influence
can be detected in the Taylor expansion of ∆x(t) around t = 0. The chosen initial
conditions yield:

∆xi(0) = ∆pi(0) = 0 (4.102)

∆ṗi(0) =

∑
k 6=i

2|Lik|2

x3
ik,L

− 2g2
ik

x3
ik,g

 (0) = 0 (4.103)

which means:

∆xi(t) = ∆xi(0) + t∆pi(0) +
k−1∑
n=2

tn

n!
∆p(n−1)

i (0) +O(tk) =

=
t3

3

∑
k 6=i

1
x2
ik,L(0)

(
d|Lik|2

dt

)
(0) +

+
t4

12

∑
k 6=i

1
x2
ik,L

d2|Lik|2

dt2
− 4ẋik,L

x3
ik,L

d|Lik|2

dt

 (0) +O(t5). (4.104)

Once we have expanded the expression for the positions, the result for the momenta
is straightforward:

∆pi(t) = t2
∑
k 6=i

1
x2
ik,L(0)

(
d|Lik|2

dt

)
(0) + (4.105)

+
t3

3

∑
k 6=i

1
x2
ik,L

d2|Lik|2

dt2
− 4ẋik,L

x3
ik,L

d|Lik|2

dt

 (0) +O(t4). (4.106)
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The deviation of trajectories generated by (3.2) and (3.17) in the physical space
appears as a 3rd order effect in time, so it does not appear immediately, but should
be well expected at longer time scales. On the other hand, in the system defined
by (3.17) the particles interact for a short time, and then scatter like almost free
particles. Therefore to see the long time influence of the additional degrees of free-
dom, one can look at the system enclosed in a harmonic trap (3.19). Importantly,
the harmonic confinement does not affect the 3rd and 4th order terms of the ∆xi(t)
expansion (as well as the 2nd and 3rd order terms in ∆pi(t) expansion). The reason
for this is that the nth order coefficient in the expansion of ∆xi(t) will be modified
by (n− 2)nd order derivatives ∆x(n−2)

i (0), and for n = 3, 4 these vanish.

The orthogonal vs. unitary setting

As it was mentioned in Section 3.1.1, the real and symmetric subset of initial condi-
tions (X0, Y0) leads to a special subclass of trajectories confined to the subspace of
real symmetric matrices (X,Y ). The L matrices arising in this, as we already called
it, orthogonal setting, belong to the so(N) Lie algebra: LO ∈ span(τij : 1 ¬ i, j ¬
N). A complementary possibility corresponds to L which is purely imaginary and
symmetric with zeroes on the diagonal. I will denote them as LI ∈ span(σij : 1 ¬
i, j ¬ N). The two subspaces are orthogonal, and together they form an N2 − N
dimensional off-diagonal subspace of the su(N) algebra (spanned of course by τij
and σij from definition 19).

The most interesting difference between the orthogonal and unitary cases is the
first time derivative of absolute values of the matrix elements. It can be directly
checked from (3.14) that

d

dt
|Lij |2 = 2<

Lij ∑
k 6=i,j

LjkLki

(
1
x2
ik

− 1
x2
jk

), (4.107)

and therefore:

∀LI
d|LIij |
dt

= 0, ∀LO
d|LOij |
dt

= 4LOij
∑
k 6=i,j

LOjkL
O
ki

(
1
x2
ik

− 1
x2
jk

)
. (4.108)

The special initial condition L0 (3.35) is of course of LI type, but it turns out that
all imaginary L matrices give rise to coupling which does not change at least for
a short time. In the orthogonal case there is no stationary point in L space, the
couplings |Lij | between particles change immediately.

Application of LI matrices to gij systems

The restriction of the flow φt(x0, p0, L
I) = (x, p, L)(t) with LIij = igij to the (x, p)

phase space can be used as an approximation of the (xg, pg)(t) flow. In case of LI

matrices the influence of L variables on the positions (4.104) is of order of t4, since the
terms with d|Lik|2

dt (0) vanish and the first significant terms are a linear combination

of d2|Lik|2
dt2 (0):

xi,g(t) = xi,LI (t)−
t4

12

∑
k 6=i

d2|LIik|
2

dt2 (0)
(xi,LI − xk,LI )3(0)

+O(t5) (4.109)

pi,g(t) = pi,LI (t)−
t3

3

∑
k 6=i

d2|LIik|
2

dt2(0)

(xi,LI − xk,LI )3(0)
+O(t4), (4.110)
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where: (
xi,LI
pi,LI

)
(t) =

(
(U(t)X(t)U †(t))ii
(U(t)Y (t)U †(t))ii

)
(4.111)

X0,ij = δijxi,g(0) (4.112)

Y0,ij = δijpi,g(0) + (1− δij)
igij

xi,g(0)− xj,g(0)
(4.113)

Higher order terms, dn(xg,i−xL,i)
dtn with n ­ 5 could be used to improve the order

of convergence even further, yet the computational cost of such an improvement
should be compared with other known methods, like the symplectic Runge-Kutta
algorithms [77].

I wish to conclude this subsection with an illustration of the above ideas. The first
row of figure 4.3 shows the numerical solution to the equations of motion (4.98) for
coupling constants g12 = g23 = g34 = 10, g13 = g24 = 20 and g14 = 30 together with
solutions of (4.99) for LOik = sign(i−k)gik and LIik = i ·gik. The choice of initial posi-
tions and momenta, common to all cases, is x̄ = (1, 2, 3, 4) and p̄ = (10, 5,−5,−15).
In the second row the repulsion is an order of magnitude stronger and in the third
- an order of magnitude weaker. In the moderate and strong repulsion regime the
LI matrix gives clearly a much better approximation of the motion governed by
(4.98) than LO, even without the 4th order correction included in (4.109). In the
weak interaction case there is little difference between the trajectories generated
by the LI and LO models, but they both differ significantly from the trajectory of
(4.98), especially in the long time scale. The possible reason for this is that when
the repulsion is weak, the particles stay relatively close to each other thus the time
derivatives of L matrix elements are significant and the rapidly changing repulsion
strengths make the trajectories of (4.99) deviate more from the ones given by (4.98),
where the repulsion is (by definition) constant.

4.5.2 The dynamics of L variables during collisions

The equations of motion

L̇ij =
∑
k 6=i,j

LikLkj

(
1
x2
ik

− 1
x2
kj

)

suggest that there is perhaps not much happening with Lij if the particles are far
apart, but rapid changes should be expected whenever the ith or jth particle takes
part in a collision. This is noticeable in our numerical example 4.3, where the biggest
relative deviation between the matrix models and models with constant couplings is
visible when the relative distances are small. My goal in this subsection is to examine
the influence of collisions on the Lij variables in two cases: 1. when the system is
initially fully interacting, that is for all pairs i, j there is a non-zero Lij(0), and 2.
when the system is divided in two subsystems (the L matrix has a block structure)
which weakly interact through |LI,I+1| << |Lkl|, where k, l entries belong to the
interacting blocks.

It is convenient to parametrise the entries of the L matrix with their moduli and
phases, Lij = |Lij |eiφij , where ϕji = π − ϕij , so that Lji = −L∗ij . The equations of
motion can than be separated into:

d

dt
|Lij | =

∑
k 6=i,j

|Lik||Lkj |
(

1
x2
ik

− 1
x2
kj

)
cos(Φikj) (4.114)

|Lij |
dϕij
dt

=
∑
k 6=i,j

|Lik||Lkj |
(

1
x2
ik

− 1
x2
kj

)
sin(Φikj), (4.115)
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Figure 4.3: The positions of N = 4 particles interacting via constant gik values
(black), in the orthogonal setting with LOik = sign(i − k)gik (red) and with purely
imaginary LIik = i · gik (blue). The left column shows the long time scale dynamics,
the right column - the beginning of the motion. In the first row the repulsion is
moderate, that is δxik · δpik ≈ |Lik|, where δxik and δpik are the initial relative
distance and relative momentum. In the second row δxik · δpik ≈ 0.1|Lik| (strong
repulsion), and in the third δxik · δpik ≈ 10|Lik| (weak repulsion). Initial positions
and momenta are the same for all cases.
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where Φikj = ϕik +ϕkj +ϕji coincides with (3.34) and is gauge invariant. Even per-
mutations of indices leave it unchanged: Φikj = Φkji = Φjik and odd permutations
invert it around π: Φijk = Φkij = Φjki = π − Φikj .

Collisions in a fully interacting system

In this case we assume that all |Lij(0)| > 0, and that two adjacent particles, for
example the 1st and 2nd are much closer to each other than any other two particles,
that is |x12| << |x1k|, |x2k|, |xkl| ≈ λ for k, l /∈ {1, 2}. This means we have two typical
distances, small x12 and large λ. The values of derivatives (4.114) and (4.115) are
dominated by terms proportional to 1

x2
12

. Let us sort the terms by order of magnitude:

d

dt
|L12| = O

(
x12λ

−3
)

(4.116)

d

dt
|L1k| =

|L12||L2k|
x2

12
cos(Φ12k) +O

(
λ−2

)
(4.117)

d

dt
|L2k| =

|L12||L1k|
x2

12
cos(Φ21k) +O

(
λ−2

)
(4.118)

d

dt
|Lkl| = O

(
λ−2

)
+O

(
x12λ

−3
)
. (4.119)

The time derivative of Φ12k within the above approximation reads:

dΦ12k

dt
=
|L12|
x2

12

( |L1k|
|L2k|

− |L2k|
|L1k|

)
sin(Φ12k) +O

(
λ−2

)
+O

(
x12λ

−3) (4.120)

With the use of the fact that cos(Φ21k) = − cos(Φ12k), and the chain rule d cos(f)
dt =

−sin(f)dfdt , after discarding the small terms, we get a closed system of differential
equations for (f = |L1k|, g = |L2k|,Φ = Φ12k):

ḟ = αg cos(Φ) (4.121)

ġ = −αf cos(Φ) (4.122)

Φ̇ = α

(
f

g
− g

f

)
sin(Φ), (4.123)

where α = |L12|
x2

12
can be treated like a constant, since

α̇ =
1
x2

12

(
d|L12|
dt

− 2ẋ12

x12

)
= O(x−1

12 λ
−3)− 2ẋ12

x3
12

(0) (4.124)

and the initial relative velocity ẋ12(0) of the colliding particles can be set to as small
value as needed. From (4.121) and (4.122) it is clear that f2 + g2 = const.. If we use
the angular parametrisation (f, g) = ρ(sin(η(t)), cos(η(t)), we get:

η̇ = α cos(Φ) (4.125)

Φ̇ = −2αcot(2η) sin(Φ). (4.126)

In the special case of the orthogonal setting we have all φij ∈ {0, π}, and the solution
of the above system in the linear approximation will be simply

(η,Φ)(t) = (αΦt+ η(0),Φ(0)) +O(t2), (4.127)

where αΦ = α cos(Φ(0)) = ±α. This means that depending on the value of αΦ, the
point

(|L1k(t)|, |L2k(t)|)√
|L1k(0)|2 + |L2k(0)|2

≈ (sin(αΦt+ η0), cos(αΦt+ η0)) (4.128)
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can be anywhere on the quarter-circle. In the other extreme case, that is when
L(0) is purely imaginary, we have all Φijk = ±π

2 , η̇(0) = 0 and in the quadratic
approximation:

η(t) = η(0) + α2t2cot(2η(0)) +O(t3), (4.129)

where α > 0. This means, that if initially

• 0 < η(0) < π
4 (this is 0 < |L1k(0)| < |L2k(0)|), η(t) will increase with time,

• π
4 < η(0) < π

2 (this is 0 < |L2k(0)| < |L1k(0)|), η(t) will decrease,

• η(0) = π
4 ( that is |L1k(0)| = |L2k(0)|) it will be stationary.

All in all, at least for short times, η(t) will cover only the angles between η(0) and
π
4 .

In the intermediate case, that is when L(0) has both a real and imaginary part
and Φijk /∈ {0,±π

2 , π}, we may conclude that

η(t) = η(0) + αt cos Φ(0) + α2t2cot(2η(0)) sin2 Φ(0) +O(t3), (4.130)

so this time depending on the initial values of η(0) and Φ(0) we have two possibilities:

• if t0 = − cos Φ(0)
αcot(2η(0)) sin2 Φ(0) < 0 the sign of the time derivative is still dictated by

the sign of cot(2η(0)), so the angle η(t) will stay in the segment between η(0)
and π

4 ,

• if t0 > 0, the available segment will be larger. For t ∈ (0, t0/2) the time
derivative will have an opposite sign than dictated by cot(2η(0)), and the
extreme available angle will be:

ηM = η(0)− 1
4

tan(2η(0))cot2Φ(0) (4.131)

that is clearly smaller than η(0) it η(0) < π
4 and larger if η(0) > π

4 .

The main conclusion of this subsection is, that as long as the made approximations
are valid, (|L1k|, |L2k|)(t) =

√
|L1k|2 + |L2k|2(0)(sin(ηk(t)), cos(ηk(t))), that is the

pairs of interaction strengths undergo a smooth exchange independently for every
particle outside the colliding pair. The angles available for ηk(t) depend on the initial
phases Φijk(0), which distinguish the different settings, the orthogonal, its imaginary
complement and the combination of the two. In particular for the orthogonal setting
the angles may vary freely depending α = |L12|

x2
12

, so the repulsion strengths |L1k| and

|L2k| may achieve any values, as long as the sum of their squares stays unchanged.
On the other hand for the imaginary case the angles are confined to a segment
between η(0) and π

4 , which means that ||L1k| − |L2k|| is not allowed to increase. In
particular if |L1k| = |L2k| are equal, they will stay equal, at leas up to 2rd order in
time.

Collisions between weakly coupled subsystems

In this subsection I am examining the influence of collisions on a different Calogero-
Moser setup, that is of two subsystems one consisting of particles enumerated by
i = 1, 2, ..., I and the other j = I + 1, I + 2, ..., I + J . The subsystems are fully
interacting and almost completely decoupled, that is initially |Lij | = 0, apart from
a weak interaction on the edge via a small |LI,I+1|. I am interested in the influence
of a collision between the subsystems on the values of |LI,j | and |Li,I+1| - that is
the interaction of the edge particles with the bulk particles of the other subsystem,
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as well as |Lij | with i < I and j > I + 1, that is the interaction between particles
in the bulk. It is convenient to introduce the above system through its Y0 matrix in
the initial, unreduced phase space:

Y0 =



0 ... 0
I × I 0 ... 0

ε ... 0
0... 0 ε∗

0... 0 0 J × J
0... 0 0


(4.132)

with a free parameter ε, where |ε| is small. We can assume that the distance between
the edge particles δ = |xI − xI+1| > 0 is small as well, while all the other distances
are of order of λ >> δ. The important parameter of the previous subsection was
α = |L12|

x2
12

. Using the new definitions we have |LI,I+1| = δ|ε|, which indeed is a small

parameter (of second order), while α = |ε|δ−1 is in fact an arbitrary positive number.
Some of the results of the previous subsection may be reused, after adjusting the
indices:

d

dt
|LI,I+1| = O

(
δλ−3

)
(4.133)

d

dt
|LIk| = α|LI+1,k| cos(ΦI,I+1,k) +O

(
λ−2

)
(4.134)

d

dt
|LI+1,k| = −α|LIk| cos(ΦI,I+1,k) +O

(
λ−2

)
(4.135)

d

dt
|Lkl| = O

(
λ−2

)
+O

(
δλ−3

)
. (4.136)

The first conclusion is, that indeed the edge particles immediately start to interact
with the other subsystem. This happens through the familiar exchange (|LIk|, |LI+1,k)(t),
only in this case η(0) ∈ {0, π/2}:

(|LIi|, |LI+1,i|)(t) = |LIi(0)|(sin ηi(t), cos ηi(t)), ηi(0) =
π

2
(|LIj |, |LI+1,j |)(t) = |LI+1,j(0)|(sin ηj(t), cos ηj(t)), ηj(0) = 0

for i < I and j > I + 1. The interaction between the bulk particles, that is between
i < I and j > I + 1 will arise as O(t2) terms but only if we allow the distances xiI
and xj,I+1 to be of the order of δ << λ.

4.6 The reachable sets of L variables

The question of finding the set of points accessible from given initial points in phase
space under certain dynamics is important in many problems of control theory [78].
The considerations of the previous section, where I asked for limitations on the angles
η(t) for chosen initial conditions (η(0),Φ(0)) were an example of such a question.
In this section I will consider a more general problem. Namely I will ask what are
the matrices L(t) ∈ g that can be reached from a chosen L ∈ g (so(N) or su(N)
depending on the setting) assuming complete freedom of choice of initial positions
and momenta. Predicting such a set of matrices, let us call it the reachable set of L,
with respect to the Calogero-Moser dynamics

RCM (L) = {L′ = ULU † : U(X0 + tY0)U † = D(t), [X0, Y0] = L} (4.137)

is the goal of this section. Clearly as RCM (L) is obtained by conjugating L with
unitary matrices, it will be a subset of what we would get by acting with the entire
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Lie group, RG(L) = {L′ = ULU †, U ∈ G}. The motion in physical space depends
on the absolute values |Lij |, so I will also consider the projection of RCM (L) onto a

region of R(N2 ):

SCM (L) = {(l′12, l
′
13, ...., l

′
N−1,N ) : l′ij = |L′ij |, L′ ∈ RCM (L)}. (4.138)

The reachable set RCM (L) ⊂ RG(L) may be computed numerically by gener-
ating trajectories L(t) = U(t)LU †(t) ∈ g for different choices of X0 and Y0 with a
fixed commutator [X0, Y0] = L, but my main objective is to predict it analytically.

Let me recall that if there are only N = 2 particles interacting, the dynamics of
the L matrix is trivial. We may see it from (3.14), that with no k 6= 1, 2 indices to
sum over automatically L̇12 = 0. This is why I am starting with the smallest non-
trivial case of N = 3. The number of variables in this case is small enough to make
direct predictions and to present them visually. Next I will generalise the results to
N > 3.

Connectivity of a Calogero-Moser system

It will be useful in the upcoming considerations to define the notion of connectivity
in the context of a Calogero-Moser system. If we think of the N particles as vertices
of a graph, then |Lij | 6= 0 will represent an edge connecting the ith and jth vertex.
I transfer the notion of paths and path lengths between two vertices directly to this
context, and I call a CM system connected if there exists a path (not necessarily
direct) between every two particles. On the other hand a single particle or a subset
of particles that has no connection to the rest of the system I will call a subsystem
disconnected. Below I am considering only connected systems, because a connec-
tion cannot arise between disconnected subsystems. The reason for this lies in the
structure of matrix dynamics. Let us recall the derivation in section 3.1.1, where we
had the Lax equation L̇ = [A,L], and Aij = Lijx

−2
ij , so the A matrix has the same

non-vanishing entries as L, only rescaled, in particular it inherits the block structure
of L. As we already discussed in 4.5.2 disconnected subsystems correspond to block
structured L matrices. In case of two subsystems we have L = L1⊕L2, A = A1⊕A2

has the same block structure, and so has [A,L] = [A1, L1] ⊕ [A2, L2], therefore no
changes can occur outside the blocks.

4.6.1 Reachable sets for N = 3

In the first step I am going to predict the projected reachable sets SCM (L) of an
N = 3 particle Calogero-Moser system. The parametrisation I choose for the L and
L(t) matrices is the following:

L = i

 0 l12e
iφ12 l31e

−iφ31

l12e
−iφ12 0 l23e

iφ23

l31e
iφ31 l23e

−iφ23 0

 , (4.139)

L(t) = i

 0 l12(t)eiφ12(t) l31(t)e−iφ31(t)

l12(t)e−iφ12(t) 0 l23(t)eiφ23(t)

l31(t)eiφ31(t) l23(t)e−iφ23(t) 0

 , (4.140)

where lij = |Lij | ­ 01 and Φ123 = φ12+φ23+φ31 ∈ [−π/2, π/2] (this is a sufficient set
due to gauge invariance). For L(t) ∈ RCM (L) the two matrices must first of all have
the same eigenvalues. Moreover the CM evolution preserves the vanishing diagonal,
that is Lii(t) = 0. In the orthogonal setting this is true for the entire SO(N) group

1At least two of the three values need to be positive for a connected N = 3 particle system
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acting on the Lie algebra so(N), but in the unitary setting this is not the case, and
this condition imposes additional limitations on L(t) ∈ RCM (L). The characteristic
equation at time t reads:

λ3 − |l̄(t)|2λ+ 2 cos(Φ123(t))l12(t)l23(t)l31(t) = 0, (4.141)

where l̄(t) = (l12, l23, l31)(t). The constrains for the time dependent lij and φij func-
tions stem from the initial values:

|l̄(t)| = |l̄|, cos(Φ123(t))l12(t)l23(t)l31(t) = cos(Φ123)l12l23l31. (4.142)

The first equation states that l̄(t) is confined to a sphere of the radius given at
t = 0 (and it is equivalent to the conservation of TrL2). In the orthogonal case
Φ123 = ±π/2 and the first equation is the only constraint.

The second equation says that l̄(t) is a point on a paraboloid x ·y ·z = p0, from a
family of paraboloids given by p0 = cos(Φ123)l12l23l31/ cos(Φ123)(t) ­ cos(Φ123)l12l23l31.
The two equations limit l̄(t) to those paraboloids which intersect with the sphere.
They cut out a spherical cap centered at the point x = y = z = |l̄|√

3
, and the edge

of the cap is the circular intersection of the sphere and x · y · z = cos(Φ123)l12l23l31.
The closer cos(Φ123) is to unity (and Φ123 - to zero), the smaller is the cap. In
particular for l12 = l23 = l31 = g√

3
and Φ123 = 0, that is for the stationary L0

matrix (3.35), it shrinks to a point. From this point of view, L0 is stationary be-
cause there are no other (not gauge equivalent) accessible matrices with the same
eigenvalues. The figure 4.4 illustrates the above predictions compared to numerically
generated trajectories projected to a sector of a 2-dimensional sphere representing
the points l̄(t). The first image, with Φ123 = π

2 , corresponds to the orthogonal set-
ting and shows that there is no limitations on l̄(t) apart from constant length. The
last image, Φ123 = 0, is the purely imaginary case, and it shows that the distance
between l̄(t) and l̄0 = (2, 2, 2)/

√
3 (the stationary point in the centre of the circular

region) cannot increase. The two middle illustrations, with Φ123 = π
3 and π

6 show
the available region growing with Φ123. This in accordance with the results of the
section 4.5.2: for example if we fix the value of |l12| the available values of |l13| and
|l23| are limited to a segment of a circle in (l13, l23) plane determined by the initial
ratio of l13 and l23 and the phase Φ123. It seems plausible, that there are no further
limitations on SCM (L) for N = 3, but to show this I will use a different approach,
which works for general N > 3.

4.6.2 Reachable sets for N ­ 3

The reachable set of a group action (at least its component connected to unity),
whether it is SO(N) or SU(N) acting on its Lie algebra, can be described by:

{L′ = etvLe−tv : t ∈ R+, v ∈ g} ⊂ RG(L) (4.143)

This can be translated to the directions in the Lie algebra in which L can be moved
by the group action:

L′ = L+ tδL+O(t2), δL = [v, L] ∈ g. (4.144)

The choice of v ∈ g is unrestricted. Therefore if we express δL, v and L in the basis
defined in section 2.1.2, definition 18 (for the SO(N) case we put all the LI and vI
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components equal to 0):

δL =
∑
a<b

δLRabτab + δLIabσab +
N−1∑
a=1

δLaada (4.145)

δLRab =
N∑
k=1

vRakL
R
kb − vIakLIkb − LRakvRkb + LIakv

I
kb (4.146)

δLIab =
N∑
k=1

vRakL
I
kb + vIakL

R
kb − LRakvIkb − LIakvRkb, (4.147)

we see that L can be moved in almost any direction in the Lie algebra by appropriate
choice of v. The excluded directions are the ones completely disconnected from L,
that is such that all Lak and Lbk entries vanish. Clearly, the full RG(L) consists of
all L′ ∈ g matrices with the same eigenvalues. Yet this local expansion around L
is now comparable to the local expansion of RCM (L). The Calogero-Moser matrix
dynamics imposes limitations on the directions δL. As it was discussed in section
3.1.1:

δL = L̇(0) = [A(0), L], A(0) ∈ g, Aij =
Lij
x2
ij

(0). (4.148)

This means that instead of commuting L with any element λ ∈ g, we are now
restricted to elements A ∈ g which are in a sense similar to L, i.e. they have the
same vanishing and non-vanishing components, only rescaled by positive factors x−2

ij .
Let us call gL ⊂ g the subspace spanned by the non-vanishing components of L. Of
course A ∈ gL, and the choice of positions x1 < x2 < ... < xN is completely free.
Yet since the factors given by x−2

ij are not independent, we do not have access to all
elements of gL. Using the results from section 4.5.2, we may say that we have access
to all elements defined as

Ai,i+1 =
LRi,i+1τi,i+1 + LIi,i+1σi,i+1

x2
i,i+1

+O(λ−2), i = 1, 2, .., N − 1, xi,i+1 << λ.

(4.149)
Each such element generates a rotation in the (LRik, L

R
i+1,k, L

I
ik, L

I
i+1,k) subspaces for

all k 6= i, i+ 1:

d

dt

(
LRik
LIi,k

)
=

(
αRi −αIi
αIi αRi

)(
LRi+i,k
LIi+1,k

)
(4.150)

d

dt

(
LRi+i,k
LIi+1,k

)
=

(
−αRi −αIi
αIi −αRi

)(
LRi,k
LIi,k

)
, (4.151)

where αR,Ii =
LR,Ii,i+1

x2
i,i+1

. In the orthogonal setting, where all the imaginary entries vanish,

and R superscripts may be dropped,this simplifies to:

d

dt

(
Lik
Li+i,k

)
=

(
0 αi
−αi 0

)(
Li,k
Li+1,k

)
(4.152)

and the solution:(
L′ik
L′i+1,k

)
=

(
cos(αit) sin(αit)
−sin(αit) cos(αit)

)(
Li+i,k
Li+1,k

)
= R(ηi)

(
Li+i,k
Li+1,k

)
, (4.153)

where the rotation angle ηi = αit is unrestricted due to the free choice of xi,i+1. The

antisymmetric L matrix can be represented by a vector l̄ ∈ R(N2 ) such that Lij =
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sign(j− i)lij . The effect Ai,i+1 has on L in this parametrisation can be described as:

l̄′ = [Pi(R(ηi)⊕R(ηi)⊕ ...⊕R(ηi)⊗ 1)Pi]l̄, (4.154)

where Pi permutes the components of l̄ so the first 2(N − 2) components are the
pairs (lik, li+1,k) affected by the R(ηi) ∈ SO(2) rotations, and then are the other(N

2

)
− 2(N − 2) which stay unchanged. The angles ηi ∈ [0, 2π] parametrise a loop

on a
(N

2

)
− 1 dimensional sphere of radius |l̄|. The projections of this loop on the

(lik, li+1,k) planes are full circles. In the unitary case we need to define two angles,
ηi which parametrises the loop and βi which encodes the phase of Li,i+1:

ηi = t
√

(αRi )2 + (αIi )2 = |αi|t, (4.155)

(cosβi, sinβi) =

 αRi√
(αRi )2 + (αIi )2

,
αIi√

(αRi )2 + (αIi )2

 . (4.156)

The solution reads:
L′Rik
L′Iik
L′Ri+1,k
L′Ii+1,k

 =


cos ηi 0 sin ηi cosβi − sin ηi sinβi

0 cos ηi sin ηi sinβi sin ηi cosβi
− sin ηi cosβi − sin ηi sinβi cos ηi 0
sin ηi sinβi − sin ηi cosβi 0 cos ηi




LRik
LIik
LRi+1,k
LIi+1,k

 .

This, together with the phases of the complex entries Lkl = i|Lkl|eiφkl (the imaginary
unit is factored out like in section 4.6.1) can be used to express the absolute values
|L′ik| and |L′i+1,k|:

|L′ik|2 = |Lik|2 cos2 ηi + |Li+1,k|2 sin2 ηi − sin(2ηi)|Lik||Li+1,k| sin (Φik,i+1)

|L′i+1,k|2 = |Li+1,k|2 cos2 ηi + |Lik|2 sin2 ηi + sin(2ηi)|Lik||Li+1,k| sin (Φik,i+1) ,

so just as it was discussed in the previous subsection, for the purely imaginary
initial L (Φi,k,i+1 = 0), the available values of |L′ik| and |L′i+1,k| are restricted to
the segment between the initial |Lik| and |Li+1,k|. As Φi,k,i+1 grows from 0 to π

2 the
available segment grows as in the case of N = 3.

We may freely use the linear combinations of the elements corresponding to dis-
joint pairs of particles, for example A12,A34,...,A2n−1,2n, where n = [N/2]. Such a lin-
ear combination generates rotations in the subspaces of real dimension 8 (or 4 in the
orthogonal case). The coordinates in these subspaces are (L2i−1,2j−1, L2i−1,2j , L2i,2j−1, L2i,2j)R,I ,
that is (LOO, LOE , LEO, LEE)R,Iij where 1 ¬ i < j ¬ n and we use O and E as short-
hands for odd and even. The generator of the rotation in such a subspace is described
by two complex parameters, αI = L2i−1,2i

x2
2i−1,2i

and αJ = L2j−1,2j

x2
2j−1,2j

. We may write the cor-

responding equation for the four component vectors LR and LI :

d

dt

(
LR

LI

)
=

(
AR AI

−AI AR

)(
LR

LI

)
, (4.157)

where

AR =


0 αRJ αRI 0
−αRJ 0 0 αRI
−αRI 0 0 αRJ

0 −αRI −αRJ 0

 , AI =


0 αIJ −αII 0
αIJ 0 0 −αII
−αII 0 0 αIJ

0 −αII αIJ 0

 .
(4.158)
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In the orthogonal case this simplifies to:

d

dt


LOO
LOE
LEO
LEE

 =


0 αJ αI 0
−αJ 0 0 αI
−αI 0 0 αJ

0 −αI −αJ 0



LOO
LOE
LEO
LEE

 . (4.159)

and the solution is:
L′OO
L′OE
L′EO
L′EE

 = R(η2i−1)⊗R(η2j−1)


LOO
LOE
LEO
LEE

 . (4.160)

In terms of vectors l̄ ∈ R(N2 ) we may write:

l̄′ = [P ((R(η1)⊗R(η3))⊕(R(η1)⊗R(η5))⊕...⊕(R(η2n−3⊗R(η2n−1))⊗1)P ]l̄, (4.161)

where again P is a permutation matrix which rearranges the components in the cor-
rect order and each 4×4 block R(η2i−1)⊗R(η2j−1) acts in the appropriate subspace.
The n = [N/2] angles η2i−1 = αI ·t are unrestricted as previously. In the unitary case
we again observe how the phases Φklm, where k, l,m are distinct triples from {2i−
1, 2i, 2j−1, 2j} affect the accessible values of (|L2i−i,2j−1|, |L2i−i,2j |, |L2i,2j−1|, |L2i,2j |).
The easiest way to see it is from (4.114):

d

dt


|LOO|
|LOE |
|LEO|
|LEE |

 =


0 |αJ | sin Φ1 |αI | sin Φ2 0

−|αJ | sin Φ1 0 0 |αI | sin Φ3

−|αI | sin Φ2 0 0 |αJ | sin Φ4

0 −|αI | sin Φ3 −|αJ | sin Φ4 0



|LOO|
|LOE |
|LEO|
|LEE |


where the indices from 1 to 4 in Φ1,2,3,4 stand for (2i−1, 2j−1, 2j),(2i−1, 2i, 2j),(2i, 2j−
1, 2j) and (2i, 2j − 1, 2j) respectively. The rotation generated by the above equa-
tion has again the form of R(ξi)⊗R(ξj), but the angles are modified by the phases
Φ1,2,3,4:

ξi =
1

2
√

2

(√
a+ b+

√
a− b

)
(4.162)

ξj =
1

2
√

2

(√
a+ b−

√
a− b

)
(4.163)

a = |αJ |2(sin2 Φ1 + sin2 Φ4) + |αI |2(sin2 Φ2 + sin2 Φ3) (4.164)

b =
√
a2 − 4(|αJ |2 sin Φ1 sin Φ4 − |αI |2 sin Φ2 sin Φ3)2. (4.165)

One can check that if all Φ12,3,4 = π
2 , we obtain the result for the orthogonal setting.

The question is how adding more than disjoint colliding pair components to A ∈ gL
is further increasing the reachable set. Let us assume all the nearest neighbours are
connected. In the orthogonal setting the elements A12,A34,...,A2n−1,2n allow us to
act on the initial L matrix with all matrices Oc = R(η1)⊕R(η3)⊕ ...⊕R(η2n−1) (the
subscript c refers to collisions). On the other hand we know that all matrices from
SO(N) look like Oc in some basis (that is in the canonical form), so we have enough
free parameters to perform any rotation. The only thing we need is to change the
directions in g preserved by the rotation generated by A from (τ12, τ34, ..., τ2n−1,2n)
to a different set of n directions. These n directions are precisely the basis elements
of a subspace commuting with A, and the choice of these directions is limited only by
connectivity of L. It is very similar in the unitary case, only the phases of complex
Lij elements give rise to limitations on the absolute values of |L′ij | as we have seen
in the simplest cases.
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(a) Φ123 = π/2 (b) Φ123 = π/3

(c) Φ123 = π/6 (d) Φ123 = 0

Figure 4.4: SCM (L) regions for the initial condition l̄ = (1, 1,
√

2) (black dots) and
various values of Φ123. Each image consists of 5000 trajectories generated from ran-
dom initial positions and momenta. The numerical results coincide with the analyt-
ical predictions and serve as an illustration.
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Chapter 5

Quantum Results

In this chapter I am presenting the results of my research on the quantum general-
isations of the Calogero-Moser model. My main objective was to study a quantum
version of the model defined in sections 3.1.1 and 3.1.2 and I chose two different ap-
proaches towards this task. The first one was the direct insertion of so(N) or su(N)
matrices in the numerators of 1

x2
ij

terms. The second one was the canonical quanti-

zation of a free (or harmonic) system in the phase space of matrices followed by the
reparametrisation with matrix eigenvalues. The main accomplishments within these
two lines of thought can be summarised as follows:

1. I have studied the three-particle Hamiltonian with spin operators ŝx,y,z in the
role of quantum L operators depending on the value of total spin. I have writ-
ten the Hamiltonian acting on the 2s+ 1 components of the wavefunction and
and diagonalized it exactly in the case of s = 1. I have partially generalized
this result to N particles and N × N matrices L̂ij = i~τij (the defining rep-
resentation of so(N)). In this case all the squares L̂2

ij in the interacting terms
are simultaneously diagonalizable. I have also made use of the result of section
4.1 and proposed a model with L̂ij = ı~l̂†i ⊗ l̂j , that is the quantum analogue of
the vectorial model. The commutation relations for L̂ operators turned out to
imply

[
l̂i, l̂
†
j

]
= δij . This means that each particle carries an internal quantum

oscillator state which determines its interaction with other particles.

2. I have performed the change of variables in a quantum Hamiltonian of N + d
free particles from the positions Xij encoded in a Hermitian (or real, sym-
metric) N × N matrix X to the eigenvalues (D1, ..., DN ). The value of d is
N2 −N in the Hermitian and

(N
2

)
in the real symmetric case. I have obtained

a quantum Calogero-Moser Hamiltonian:

Ĥ = − ~2

2m

N∑
i=1

∂2

∂D2
i

− ~2

4m

∑
(ij)

(λ̂ij)2 + (2− α)
(Di −Dj)2

where (ij) means i 6= j or i < j in the Hermitian and the real, symmetric
case respectively, and the operators λ̂ij obey the commutation rules of the
generators of the appropriate Lie algebra (su(N) for Hermitian and so(N) for
real symmetric matrices), α is either 1 in the real symmetric case or 2 in the
Hermitian case. I have found the reduced wavefunctions in the simplest case
of N = 2 by projecting the plane waves defined for the initial free systems on
eigenspaces of the single L̂12 operator.
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5.1 Direct quantization of the generalized CM system

The classical Calogero-Moser system defined in section 3.1.1,

H =
N∑
i=1

p2
i

2m
+

1
m

∑
i<j

|Lij |2

(xi − xj)2 (5.1)

{xi, pi} = δij , {Lij , Lkl} =
∑
mn

fmnij,klLmn (5.2)

{xi, Lkl} = {pj , Lkl} = 0 (5.3)

where fmnij,kl are the structure constants of su(N) or so(N) (listed in (3.27)-(3.29)),
depending on the chosen setting, can be quantized canonically in the known way.
The phase space variables (xi, pj) get promoted to operators on the Hilbert space
L2(RN ). The Poisson brackets translate to the commutation relations of these oper-
ators acting on functions from L2(RN ) :

xi → x̂i, pj → p̂j = −i~∂xj , [x̂i, p̂j ] = i~δij .

As for the L degrees of freedom, we again may promote the functions on the phase
space to Hermitian operators acting on some Hilbert space V, with the commutation
relations preserved:

Lij → L̂ij ,
[
L̂ij , L̂kl

]
= i~

∑
mn

fmnij,klL̂mn

and the only decision to make is what should these operators act on. In other words
we need to choose a representation of the algebra spanned by the L operators. This
is the su(N) or so(N), and they are known to have finite-dimensional irreducible
representations acting on Vn = Cn. Therefore we may define the quantized system
with a Hamiltonian

Ĥ = − ~2

2m

N∑
i=1

∂2
xi ⊗ 1 +

1
m

∑
(ij)

1
(xi − xj)2 ⊗

L̂ijL̂
†
ij + L̂†ijL̂ij

2
(5.4)

acting on a product H = L2(RN ) ⊗ Cn. Careful examination of the commutation
relations (3.27)-(3.29) shows that there is no ambiguity due to the ordering of oper-
ators. The summation over (ij) pairs means i < j for the orthogonal and i 6= j for
the unitary setting.

5.1.1 The orthogonal setting

I will explore the properties of the above Hamiltonian in the orthogonal setting,
starting with the simplest nontrivial example.

Three-body system and so(3)

In the case of N = 3 we can use the familiar spin operators and obtain

Ĥ(3)
s =

3∑
i=1

− ~2

2m
∂2
xi +

mω2

2
x2
i +

1
m

(
ŝ2
x

(x1 − x2)2 +
ŝ2
y

(x2 − x3)2 +
ŝ2
z

(x1 − x3)2

)
(5.5)

The relevant wavefunctions are (2s+1)-dimensional spinors and the time-independent
Schrödinger equation has the following form:

Ĥ(3)
s Ψs = EΨs, ΨT

s (x1, x2, x3) = (ψs, ψs−1, ..., ψ−s) (x1, x2, x3) (5.6)
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The particles carry a joint internal state, let us call it spin, and its projections onto
orthogonal axes determine the strenght of interactions. The axes are completely
equivalent (as long as we do not add any external field which would distinguish any
of them) and the choice which axis we assign to which pair of particles is arbitrary.
Here we have (1, 2) −→ x, (2, 3) −→ y, (1, 3) −→ z, but permuting them is equivalent
to expressing the matrix operators in a different basis (note that this will no longer
be true for N > 3). As a mater of fact, Uŝx,y,zU †, U ∈ U(3) will be just as good. An
important choice to make is the eigenspace of the ŝ2 operator, where

ŝ2 = ŝ2
x + ŝ2

y + ŝ2
z,

[
Ĥ, ŝ2

]
= 0 (5.7)

The eigenspaces are given by half-integer numbers s = 0, 1/2, 1, ... and each eigen-
value ~2s(s+1) corresponds to a (2s+1)-dimensional matrix representation of so(3).
For s = 0 the representation is trivial and results in the ordinary CM system. For
s = 1

2 we have ŝi = ~
2σi, where σx,y,z are Pauli matrices. They square to identity,

σ2
i = 12×2, which means that (5.5) in this case is the ordinary system as well. The

first nontrivial case is s = 1. Let us express the inverse-square potential part of (5.5)
with ŝ2, ŝ2

z and ŝ± = ŝx ± iŝy:

Ĥ(3)
s =

(∑
i

− ~2

2m
∂2
xi +

mω2

2
x2
i

)
+ (5.8)

+
1
m

[(
1

(x1 − x2)2 +
1

(x2 − x3)2

)
ŝ2 − ŝ2

z

2
+

ŝ2
z

(x1 − x3)2

]
+ (5.9)

+
1
m

(
1

(x1 − x2)2 −
1

(x2 − x3)2

)
ŝ2

+ + ŝ2
−

4
(5.10)

The (5.9) part acts diagonally on Ψ̂s, while (5.10) connects each ψm component with
ψm±2. Changing to R = 1

3(x1 + x2 + x3), x = 1√
2
(x3 − x1), y = 1√

6
(x1 + x3 − 2x2)

and then expressing x = r sinϕ, y = r cosϕ makes the variables in the eigenproblem
(5.6) separate into Ψs(R, r, ϕ) = R(R)ρ(r)Φs(ϕ), where:(

−1
3
d2

dR2 +
3R2

l4

)
R(R) =

2m
~2 ER (5.11)(

− d2

dr2 −
1
r

d

dr
+
r2

l4
+
b2

r2

)
ρ(r) =

2m
~2 Er (5.12)

MsΦs(ϕ) = b2Φs(ϕ) (5.13)

and l2 = ~
mω . The solutions for R(R) and ρ(r) and their discrete eigenvalues are

known:

Rn(R) = Nne−
3R2

2l2 H(n)

(√
3R
l

)
, (5.14)

ρnr(r) = Nnrrbe
− r2

2l2Lbnr

(
r2

l2

)
(5.15)

ER = ~ω
(
n+

1
2

)
, Er = ~ω(2nr + b+ 1), (5.16)

E = ER + Er = ~ω
(
n+ 2nr + b+

3
2

)
(5.17)

The variable R is of course the position of the centre of mass. The definition of
r implies 2r2 = (x1 − x2)2 + (x2 − x3)2 + (x3 − x1)2, which means mr2 can be
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understood as the moment of inertia of the system. In particular r = 0 corresponds
to x1 = x2 = x3 - all particles in one place, so to say, which should not be observed
in a system with singular repulsion. The factor rb with b > 0 ensures that. For
the Calogero-Moser system without the harmonic trap R(R) will be plane waves
and ρ(r) will be given by

√
rJb(kr), where Jb is the Bessel function and k is given

by the energy in the centre of mass reference frame. The angular equation is not
affected by the harmonic potential, but this is the only one which mixes the different
components of Ψs:

Ms = − d2

dϕ2 +
1

4~2

[(
1

sin2(ϕ+ 2π/3)
− 1

sin2(ϕ+ 4π/3)

)
(ŝ2

+ + ŝ2
−)

]

+
1

2~2

[
2ŝ2
z

sin2 ϕ
+

(
1

sin2(ϕ+ 2π/3)
+

1
sin2(ϕ+ 4π/3)

)
(ŝ2 − ŝ2

z)

]

Knowing the matrix elements of ŝ± in the ŝz diagonal basis we can write the resulting
equations (5.13): (

b2 +
d2

dϕ2 +
m2 − s(s+ 1)

2
f+(ϕ)− m2

sin2(ϕ)

)
ψm = (5.18)

=
1
4
f−(ϕ)

√
(s(s+ 1)− (m+ 1)2)2 − (m+ 1)2ψm+2 + (5.19)

+
1
4
f−(ϕ)

√
(s(s+ 1)− (m− 1)2)2 − (m− 1)2ψm−2 (5.20)

f± =
1

sin2(ϕ+ 2π/3)
± 1

sin2(ϕ+ 4π/3)
(5.21)

Before we try to diagonalise this system of 2s+1 equations, we notice thatMs acts
separately on two subspaces of the internal states Hilbert space. Let {em : m = s, ...,−s}
be the orthonormal basis of ŝz eigenstates. Then in case of integer values of s we have
an s + 1 dimensional subspace span(es, es−2, ..., e−s) and a smaller, s-dimensional
span(es−1, ..., e−s+1). When s is half-integer, we have two s + 1

2 dimensional sub-
spaces span(e±s, ..., e∓s+1).

Eigenvectors and eigenvalues of Ms=1

For the smallest nontrivial value of s, that is s = 1 the diagonalisation is very simple.
The set of equations:b2 +

d2

dϕ2 −
1

sin2 ϕ

 1 0 0
0 0 0
0 0 1



 ψ1

ψ0

ψ−1

 = (5.22)

=

f+(ϕ)

 1
2 0 0
0 1 0
0 0 1

2

+ f−(ϕ)

 0 0 1
2

0 0 0
1
2 0 0



 ψ1

ψ0

ψ−1

 (5.23)

separates into three independent equations for ψ0 and ψ±:(
b2 +

d2

dϕ2 − V0(ϕ)

)
ψ0 = 0,

(
b2 +

d2

dϕ2 − V±(ϕ)

)
ψ± = 0 (5.24)

where V±(ϕ) = V±(ϕ+π) = 1
sin2 ϕ

+ 1
sin2(π/3∓ϕ) and V0(ϕ) = 1

sin2(π/3−ϕ) + 1
sin2(π/3+ϕ) .

Since V0(ϕ) = V+(ϕ− π/3) and V−(ϕ) = V+(ϕ+ π/3), it is enough to find ψ+, and
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the other two are functions will be shifted accordingly: ψ0(ϕ) = ψ+(ϕ − π/3) and
ψ−(ϕ) = ψ+(ϕ+ π/3). The equations (5.24) are special instances of− d2

dϕ2 +
g1

sin2 ϕ
+

g2

sin2
(
ϕ+ 2

3π
) +

g3

sin2
(
ϕ+ 4

3π
)
ψ(ϕ) = b2ψ(ϕ) (5.25)

derived in [3] for the three body ordinary quantum Calogero system. It was solved
analytically in two cases: g1 = g, g2 = g3 = 0 and g1 = g2 = g3 = g. The equation
for ψ+ corresponds to g1 = g2 = 1, g3 = 0 and it does not admitt a solution in a
closed form. Yet, since the singular points of V+(ϕ) are regular, the eigenfunctions
can be found in a form of a power series up to as many terms as we wish with the
Frobenius method. As it is shown in Figure 5.1, for ϕ ∈ [0, π] V+(ϕ) has the form of
a double, asymmetric and infinite potential well. Thus there are two orthogonal sets
of solutions: ψHl (ϕ) localised in the higher potential region and ψLl (ϕ) in the lower
potential region. The eigenvalues are obtained from the symmetry or antisymmetry
conditions. The solutions presented in Figure 5.1(a) are ψ+, and after a shift by
±π/3 we have the eigenfunctions ψ0 and ψ− as well. The full solution of the (5.13)
equation expanded in the eigenbasis of the matrix system reads:

ΦH/L
s=1,l(ϕ) = αψ

H/L
+,l (ϕ)ê+ + βψ

H/L
−,l (ϕ)ê− + γψ

H/L
0,l (ϕ)ê0 (5.26)

ê± = (1/
√

2, 0,±1/
√

2)T , ê0 = (0, 1, 0)T (5.27)

For fixed values of r and R the ϕ variable encodes the relative distances between
particles, as shown in the bottom of Figure 5.1(b), and we can interpret the ϕ
dependent eigenfunctions from the x1,2,3 perspective. First of all, the ground state
components: |ψL0,l=0|2 is concentrated arround x1 = x3 and maximal |x2 − x1,3|,
while it vanishes whenever x2 is in between x1 and x3. This is understandable, since
ŝ2
z(0, ψ0, 0)T = 0 and does not contribute to the repulsion between x1 and x3, while
ŝ2
x,y(0, ψ0, 0)T 6= 0. Likewise, |ψL±,l=0|2 present the same behaviour, but with x1,2,3

variables cyclically permuted. The lowest energy H-type eigenfunctions, ψH0,l=0 and
ψH±,l=0 are localised in regions of distinct ordering (and its reverse), maximize for
xi−xj = xj −xk, that is when the particles are most evenly distributed, and vanish
when any two positions coincide. Last but not least, we notice, that the symmetric ψL

states (the ground state in particular) are allowed only in case of bosonic statistics.

N particles and the N-dimensional representation of so(N)

One of the key conclusions from the study of the N = 2s + 1 = 3 case is that the
observables governing the interparticle repulsion have a common eigenbasis, that is
the ê±, ê0 basis. In fact we would obtain the eigenvector of M̂s=1 in the form of
(ψ+, ψ0, ψ−),if we expressed ŝx,y,z in this basis in the first place. The interpretation
of the components in straightforward: ψ+ contributes to the repulsion of x1 from
x2,3 (but not between x2 and x3),ψ0 - to the repulsion of x2 with the others, but not
between x1 and x3, and finally ψ− - to the repulsion of x3 with the others, but not
x1 and x2. This can be extended to N particle systems:

Ĥ(N) = − ~2

2m

N∑
i=1

∂2
xi +

mω2

2

N∑
i=1

x2
i +

1
m

∑
1¬i<j¬N

L̂2
ij

(xi − xj)2 (5.28)

If we choose N -dimensional Hermitian matrices (L̂ij)ab = i~(δiaδjb − δibδja), that is
the defining representation of so(N), their squares will be (L̂2

ij)ab = ~2(δiaδib+δjaδjb),
that is diagonal with 1 in the ith and jth row and 0 in the others. The set of equations
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(a) Eigenfunctions ψH+,l(ϕ) (red) in the narrow, higher potential region and ψL+,l(ϕ)
(blue) in the broad, lower potential region together with discrete values of bl.

(b) Potential functions V+, V−, V0 are mutually shifted and eigenfunctions ψH,L−,l (ϕ) =
ψH,L+,l (ϕ − π/3), ψH,L0,l (ϕ) = ψH,L+,l (ϕ + π/3) are shifted accordingly. The squares of
ψH,L0,±,l=0 are presented together with x1,2,3(ϕ) values for fixed (R, r).

Figure 5.1: Eigenfunctions ψ+(ϕ) divide into two orhtogonal subsets: ψH+,l(ϕ) which
contribute to the energy whith bHl ≈ 4.75+3l and ψL+,l(ϕ) with bLl ≈ 2.5+1.5l. Note
that the eigenvalues of (5.24) are actually b2l .
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for the N components is the following:− ~2

2m

N∑
i=1

∂2
xi +

mω2

2

N∑
i=1

x2
i +

~2

m

∑
i 6=I

1
(xi − xI)2

ψI(x̄) = EψI(x̄) (5.29)

Each eigenfunction ψI can be interpreted as a wavefunction of a system of N − 1
mutually noninteracticn particles, all repelled by a single particle. The only difference
between them is the choice of the repulsive variable, which is xI . We postulate the
energy eigenstates in a form:

Ψ̂(R, r, ϕ̄) = R(R)ρ(r)ΦN (ϕ̄) (5.30)

ΦN (ϕ̄) = (α1φ1, α2φ2, ...., αNφN )T (ϕ̄) (5.31)

where R = (x1 + ... + xN )/N is the centre of mass, Nr2 = (x1 − x2)2 + .... +
(xN−1−xN )2 as in [4]. The angles ϕ̄ = (ϕ1, ϕ2, ..., ϕN−2) are the spherical coordinates
on SN−2 and encode the relations between xi variables for fixed R and r. The
eigenequations for the R,r and ϕ̄-dependent components read:(

− 1
N

d2

dR2 +
NR2

l4

)
R(R) =

2m
~2 ER (5.32)(

− d2

dr2 −
N − 2
r

d

dr
+
r2

l4
+
b2

r2

)
ρ(r) =

2m
~2 Er (5.33)

MNΦN (ϕ̄) = b2ΦN (ϕ̄) (5.34)

The R and r dependent eigenfunctions and eigenenergies are:

Rn(R) = e−
NR2

2l2 H(n)

(√
NR

l

)
, ER = ~ω

(
n+

1
2

)
(5.35)

ρnr(r) = rβe−
r2

2l2Lγnr

(
r2

l2

)
, Er = ~ω (2nr + γ + 1) (5.36)

β =

√
b2 +

(
N − 3

2

)2
− N − 3

2
, γ =

√
b2 +

(
N − 3

2

)2
(5.37)

E = ER + Er = ~ω

n+ 2nr +

√
b2 +

(
N − 3

2

)2
+

3
2

 (5.38)

For N = 3 the expressions for β and γ simplify to b > 0, and the solution coin-
cides with the results from 5.1.1. The difficult part is the eigenequation for the ψI
components of Ψ̂N (ϕ̄):

(−∆SN−2 + fI(ϕ̄))φI(ϕ̄) = b2φI(ϕ̄), fI(ϕ̄) =

∑
j 6=I

2r2

(xj − xI)2

 (ϕ̄) (5.39)

Solving the above eigenproblem as we did in section 5.1.1 for a general value of N
is a hard task because of the multiple variables at play, but the general form of the
solutions is predictable an has a clear interpretation. The configuration space of N
particles on a line is divided into N ! sectors of a fixed ordering. Yet in case of a
potential given by fI the only important distinction between regions is the ordering
with respect to the repulsive variable: xj1 , xj2 , ..., xjk < xI < xjk+1 , ..., xjN−1 . In
fact, the ordering and even the choice of the xj ,j 6= I variables below and above

xI does not matter, the only difference between regions is k ∈
{

0, 1, ....,
[
N−1

2

]}
-

the number of particles on one side of xI . In 5.1.1 we have identified two distinct
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regions, where the subspaces of solutions were (ψL, bL) corresponding to k = 0
and (ψH , bH) corresponding to k = 1. The potential fI is symmetric with resprect
to the xj 6=I variables and has a unique minimum in each region. It is located at
xj1 = xj2 , ... = xjk < xI < xjk+1 = ... = xjN−1 . The general form of the solutions
will be oscillatory functions, symmetric or antisymmetric at the minimum of fI ,
vanishing at the xI = xj 6=I bounadries and outside the region of fixed ordering and
the eigenvalues are expected to be bkl = bk0 + l∆k ± δk,l. The physical interpretation
of the minima is straightforward: it is energetically favorable for the N −1 mutually
noninteracting particles to be localised as far as possible from the repulsive one and
depending on the partition given by k, the distances |xI −xj 6=I | allowed by the fixed
r will be different. In particular there is a unique bosonic ground state for k = 0
with all particles other than the Ith localised around the same point.

Solving (5.24) as an eigenproblem in l2 Hilbert space

The most systematic and reliable approach towards (5.39) would be to expand the
eigenfunction in an orthonormal basis of functions which are supported only in
the selected region of the configuration space and respect its boundaries given by
the singularities of fI at xj = xI . It is still a challenge in the presence of many
variables, but it certainly can be applied to the example of N = 3 and the V±(ϕ)
potentials shown in Figure 5.1. For simplicity, in case of k = 0 (that is the lower
energy subspace) we will take the V−, since then the ψL functions are supported on
(0, 2π/3) and we can expand:

ψL(x) =
∞∑
n=1

ψLn sin
(

3
2
nx

)
, ψLn =

3
π

∫ 2π/3

0
ψL(x) sin

(
3
2
nx

)
dx. (5.40)

Next, we insert the expanded ψL to (5.24):

∞∑
n=1

ψLn sin
(

3
2
nx

)[(
3
2
n

)2
− b2 +

1
sin2 x

+
1

sin2(x+ π/3)

]
= 0 (5.41)

and integrate both sides of this equation with another function from the basis:∫ 2π/3

0
sin
(

3
2
px

){ ∞∑
n=1

ψLn sin
(

3
2
nx

)[(
3
2
n

)2
− b2 +

1
sin2 x

+
1

sin2(x+ π/3)

]}
dx = 0

ψLp

[(
3
2
p

)2
− b2

]
+
∞∑
n=1

ψLn

∫ 2π/3

0
sin
(

3
2
px

)
sin
(

3
2
nx

)[
1

sin2 x
+

1
sin2(x+ π/3)

]
dx = 0

and obtain an eigenproblem in l2 Hilbert space:

ψLp

[(
3
2
p

)2
− b2

]
+

3
π

∞∑
n=1

ψLn Inp = 0 (5.42)

Since Inp = 0 if n and p have different parity, the eigenfunctions with odd and
even components form separate subspaces. The integrals Inp are finite and can be
calculated analytically:

In,n =
n

2

[
3π +

√
3
(
Ψ0

(
n

2
+

2
3

)
− Ψ0

(
n

2
+

1
3

))]
(5.43)

≈ 3nπ
2

+

√
3

3
− |δn| (5.44)

In,n+2m = In+m,n+m − Im,m ≈
3nπ

2
+ |δm| − |δn+m| (5.45)
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where Ψ0(z) = dΓ(z)
dz is the digamma function, and δn = 8

√
3

81n2 + O(n−4). Once we
have the full Inm matrix, we can solve the eigenequation numerically by using a finite
cut-off at a dimension big enough so that it does not affect the result (for example
dimension p+20 for the pth eigenstate). The final form of the eigenequation:[(

3
2
n

)2
+

3πn
2

+

√
3

3
− δn

]
ψLn +

∑
m 6=n

(
3π
2

min(n,m) + δ |m−n|
2
− δm+n

2

)
ψLm = b2ψLn

(5.46)
(where n and m are both odd or both even) justifies the intuitive prediction that
asymptotically the eigenfunctions and eigenvalues will tend to those of a flat, infi-
nite potential well: as n increases, the quadratic term will dominate the linear and
constant terms. Moreover, it becomes clear why the level spacing is ≈ 3

2
An identical procedure for the k = 1 subspace leads to a similar equation:

((3n)2 − b2)ψHn +
6
π

∞∑
m=1

Jnmψ
H
m = 0 (5.47)

where

Jn,n = n

[
3π −

√
3
(
Ψ0

(
n+

2
3

)
− Ψ0

(
n+

1
3

))]
= (5.48)

= 6nπ − I2n,2n (5.49)

Jn,n+2m = Jn+m,n+m − Jm,m (5.50)

The eigenvectors and eigenvalues of (5.42) and (5.47) coincide with the results ob-
tained via the Frobenius method.

5.1.2 Quantum vectorial model

The classical results suggest another possible realisation of the quantum CM Hamil-
tonian. Let us recall the conclusion of section 4.1, that the vectorial degrees of free-
dom assigned to each particle turn out to be equivalent to the apparently two-particle
Lij variables. This motivated me to search for quantum two-particle operators L̂ij
in a form of tensor products λ̂i⊗ λ̂j of single-particle operators acting on subspaces
of internal states: [

x̂i, λ̂k
]

=
[
p̂i, λ̂k

]
= 0 (5.51)

The crucial condition is the set of commutation relations:[
L̂ij , L̂mn

]
= i~(δjmL̂in − δinL̂mj) (5.52)

By analogy to the classical relation Lij = i(ei|ej) we postulate:

L̂ij = i~l̂†i ⊗ l̂j , L̂†ij = −i~l̂i ⊗ l̂†j = −L̂ji (5.53)

If the l̂ operators obey the bosonic creation and anililation commutation rules:[
l̂m, l̂

†
n

]
= δmn, (5.54)

the commutation relation (5.52) holds:[
L̂ij , L̂mn

]
=

[
i~l̂†i ⊗ l̂j , i~l̂

†
m ⊗ l̂n

]
= (5.55)

= i~
([
l̂j , l̂
†
m

]
i~l̂†i ⊗ l̂n + i~

[
l̂†i , l̂n

]
i~l̂j ⊗ l̂†m

)
= (5.56)

= i~
(
δjmL̂in − δinL̂mj

)
(5.57)
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Applying such L̂ operators such that −L̂ijL̂ji = L̂ijL̂
†
ij to the CM Hamiltoian, and

making use of the n̂k = l̂†k l̂k excitation number operator, leads to:

Ĥ = − ~2

2m

∑
i

∂2
xi +

mω2

2

∑
i

x2
i +

~2

m

∑
i<j

(n̂i + 1
2)⊗ (n̂j + 1

2)− 1
4

(xi − xj)2 (5.58)

We notice that nk are good quantum numbers, since[
n̂k, Ĥ

]
= 0 (5.59)

which is even more interesting because of the classical Lii = i(ei|ei) being constants
of motion. The interaction depends on the excitation numbers in a very simple way,
yet this model contains a wide class of interactions. For all nk = n we obtain an
ordinary CM system with g = n(n + 1), in particular a noninteracting system if
n = 0. Otherwise the system is repulsive with gij = (ni + 1/2)(nj + 1/2)− 1/4. The
the classical limit of this system can be found with the use of coherent states of the
internal oscillators. Taking the eigenstates of l̂ operators |ᾱ〉 such that l̂i|ᾱ〉 = αi|ᾱ〉
with large values of |αi| we obtain the ordinary CM system with gij ≈ ~2

m |αi|
2|αj |2

and no room for time evolution.

5.2 Canonical quantization in Hermitian matrix phase
space

The classical generalisation of the N -particle Calogero-Moser model reviewed in
section 3.1.1 made use of the configuration space of Hermitian matrices: M ={
X ∈MN×N (C) : X† = X

}
. The phase space which is generally a cotangend bun-

dle T ∗M here will be simply M =M×M consisting of pairs (X,Y ) of Hermitian
matrices. Each such pair of matrices can be identified with a point in R2N2

, where
1 ¬ i < j ¬ N in the following way:

X =



x11 ... ... ... ...

... xii ...
xRij+ix

I
ij√

2
...

... ... ... ... ...

...
xRij−ix

I
ij√

2
... xjj ...

... ... ... ... xNN


, (5.60)

Y =



y11 ... ... ... ...

... yii ...
yRij+iy

I
ij√

2
...

... ... ... ... ...

...
yRij−iy

I
ij√

2
... yjj ...

... ... ... ... yNN


(5.61)

The symplectic form in a (xii, xRij , x
I
ij , yii, y

R
ij , y

I
ij) ∈ R2N2

phase space:

ωR =
N∑
i=1

dxii ∧ dyii +
∑
i<j

dxRij ∧ dyRij + dxIij ∧ dyIij (5.62)

coindices with ω = Tr(dX ∧ dY ) for (X,Y ) defined with (5.60) and (5.61) (all the
imaginary terms cancel). The Poisson brackets for i < j, k < l:

{xii, yjj} = δij ,
{
xR,Iij , yR,Ikl

}
= δikδjl (5.63){

xRij , x
I
kl

}
= 0,

{
yRij , y

I
kl

}
= 0 (5.64){

xRij , y
I
kl

}
= 0,

{
xIij , y

R
kl

}
= 0 (5.65)
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are equivalent to {Xij , Ylk} = δikδjl in the matrix formulation. The variables (x̄, ȳ) ∈
R2N2

form a familiar ground for canonical quantisation. To each phase space variable
we assign an operator acting on the Hilbert space L2(RN

2
):

xii −→ x̂ii, yii −→ −i~∂xii (5.66)

xRij −→ x̂Rij , yRij −→ −i~∂xRij (5.67)

xIij −→ x̂Iij , yIij −→ −i~∂xIij (5.68)

{..., ...} −→ 1
i~

[..., ...] (5.69)

5.2.1 Quantum reduction of a free system: preliminaries and out-
line

The operators x̂R,Iij and their canonical conjugates can be organised into matrices X̂

and Ŷ just as in (5.60),(5.60). Using such operator-valued matrices we can efficiently
define free Hamiltonian together with its eigenfunctions:

ĤF =
1

2m
Tr
(
Ŷ 2
)
, ψK(X) = eiTr(KX), (5.70)

ĤFψK(X) = EKψK(X), EK =
~2

2m
Tr
(
K2
)
, (5.71)

where K is a Hermitian matrix. Following the idea of classical reduction presented in
section 3.1.1 I introduce new variables (D, ā) ∈ RN+d where D is a diagonal matrix,
U = exp(ā · τ̄) is unitary and τ̄ = (τ1, τ2, ..., τd) are the anti-Hermitian basis vectors
of the Lie algebra su(N):

X = U †DU = exp(−ā · τ̄)D exp(ā · τ̄). (5.72)

The Hamiltonian and the wavefunction (5.70) can be reexpressed in these variables:

ψK(D, ā) = exp(iTr(exp(ā · τ̄)K exp(−ā · τ̄)D)) = eiTr(K(a)D), (5.73)

ĤD,ā = − ~2

2m

N∑
i,j,k=1

d∑
l=1

(
∂Dk

∂Xij

∂

∂Dk
+

∂al
∂Xij

∂

∂al

)2

, (5.74)

I will prove that HD,ā differs only by a similarity transformation from a Calogero-
Moser Hamiltonian with (Di−Dj)−2λ̂2

ij interacting terms, where λ̂ij =
∑d
k=1 l

k
ij∂ak ,

and the commutators are the exact counterparts of the classical Poisson brackets
(3.25). The last step of the reduction procedure will consist of projecting ψK(D, ā) on
the ∂al eigenspaces in a way that will result in eigenfunctions of the CM Hamiltonian.

Before carrying out this programme I need to make two remarks. Firstly, the
procedure is identical as outlined above if we start with real, symmetric matrices X
and K. Then U ∈ SO(N) and (τ1, τ2, ..., τd) span the so(N) Lie algebra. In this case

the configuration space M ≡ RN+(N2 ), N + d = N +
(N

2

)
, and there are as many

generators and corresponding (a1, ..., ad) variables as needed. On the other hand in
the unitary case M ≡ RN

2
while the dimension of su(N) is equal to N2 − 1, so it

seems we have N + d = N2 +N − 1 and X −→ (D, a1, ..., ad) would not be a valid
coordinate transformation. Fortunately we can restrict ourselves to unitary matrices
with real diagonal entries due to gauge equivalence: if some matrix U diagonalises a
given X, so does U ′ = diag(eiφ1 , ..., eiφN )U , and if U ′ii ∈ R, U ′ can be generated by
N2 −N off-diagonal generators only. Therefore we can set d = N2 −N and stay in
the off-diagonal su(N) subspace.
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5.2.2 The free Hamiltonian in (D, a) variables

The Xij variables can be eliminated from (5.74) via the following expressions:

Xij(D, ā) = (U †(ā)DU(ā))ij , U = U(ā) = eāτ̄ . (5.75)

The derivatives ∂XijDk and ∂Xijal can be found as the elements of the inverted
Jacobian matrix:

∂(D, ā)
∂X

=
(

∂X

∂(D, ā)

)−1

=

(
∂(U †(ā)DU(ā)))

∂(D, ā)

)−1

. (5.76)

The elements of the Jacobian:

∂X

∂(D, ā)
=



∂Xii
∂Dk

= |Uki|2 ∂Xii
∂al

= (U †ΩlU)ii

∂Xij
∂Dk

= U∗kiUkj
∂Xij
∂al

= (U †ΩlU)ij

 , (5.77)

where

Ωl =
[
D, (∂alU)U †

]
= Ω†l , (5.78)

(∂alU)U † = u(A)lkτk ∈ g, (5.79)

u(A) =
∞∑
n=0

An

(n+ 1)!
, Aij = ak · f jki (5.80)

Now the challenging part is to invert this matrix. We can also use it to calculate the
metric tensor, as shown in the appendix B.1:

g =

 1N×N 0N×d

0d×N Tr(ΩlΩk)

 , (5.81)

and then, due to the block structure of g = 1N ⊕ g, we clearly see that the Hamil-
tonian splits into two parts:

Ĥ = − ~2

2m
1√
|detg|

 N∑
k=1

∂Dk

√
|detg|∂Dk +

d∑
k,l=1

∂al

√
|detg|(g−1)lm∂am


= − ~2

2m
(∆D + ∆a) (5.82)

For both orthogonal and unitary matrices we prove in (B.1) that:

g = 2uD2uT , D = diag(Di −Dj , (ij) ∈ I) ∈Md×d (5.83)

where I is the set of indices appropriate for each setting. In the orthogonal case
I = {(ij) : 1 ¬ i < j ¬ N} and in the unitary case I = {(ij) : 1 ¬ i 6= j ¬ N}.
From this it automatically follows that:

detg = 2dD2|detu|2, D =
∏
i<j

|Di −Dj |α, (5.84)

g−1 =
1
2

(uT )−1D−2u−1 (5.85)
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where α = 2d
N(N−1) , which means α = 1 corresponds to the orthogonal and α = 2 to

the unitary case. The factorisation of g and detg into a purely D and ā-dependent
parts allows us to simplify ∆D (appendix B.2):

∆D =
1
D

N∑
i=1

∂

∂Di

(
D ∂

∂Di

)
(5.86)

√
D∆D

1√
D

=
N∑
i=1

∂2

∂2Di
+
α(2− α)

2

N∑
i<j

1
D2
ij

, (5.87)

where (5.87) is a similarity transformation which eliminates the 1st order derivatives
from ∆D (and leaves the ∆a part unchanged). The result is a free N particle system
for the unitary and an ordinary CM for the orthogonal case1.

Before I move on to ∆a, let me recall that the indices of the algebra degrees of
freedom are ordered pairs (ij), (pq), (rs) ∈ I, where I = {(pq) : 1 ¬ p < q ¬ N} in
the orthogonal case and I = {(pq) : 1 ¬ p 6= q ¬ N} in the unitary case. Moreover,
let ā · τ̄ =

∑
i<j aijτij +

∑
i>j aijσji where τij and σij are the off-diagonal basis

elements of su(N) from the definition 18. In the orthogonal setting of course aij = 0
for i > j. Now we can write ∆a explicitly:

∆a =
1

2|detu|
∑

(ij)∈I

∑
(pq)∈I

∑
(rs)∈I

∂

∂apq

|detu|
u−1

(ij)(pq)u
−1
(ij)(rs)

(Di −Dj)2
∂

∂ars

 (5.88)

=
1
2

∑
(ij)∈I

Λ̂ij
(Di −Dj)2 (5.89)

The free Hamiltonian, after similarity transformation, in the (D, a) variables:

Ĥ ′F =
√
DĤF

1√
D

= − ~2

2m

 N∑
i=1

∂2

∂D2
i

+
1
2

∑
(ij)∈I

Λ̂ij + (2− α)
(Di −Dj)2

 , (5.90)

has a form of a generalised Calogero-Moser Hamiltonian, where:

Λ̂ij = λ̂2
ij + Fij λ̂ij (5.91)

λ̂ij =
∑

(pq)∈I
u−1

(ij)(pq)
∂

∂apq
(5.92)

Fij =
1

|detu|
∑

(pq)∈I

∂

∂apq

(
|detu|u−1

(ij)(pq)

)
=

1
|detu|

∑
(pq)∈I

(
∂C(u)
∂apq

)
(pq)(ij)

,(5.93)

where C(u) is the cofactor matrix of u, and the determinant detu is positive, so the
absolute value is redundant. Using the definition of a divergence of a tensor field,
we can rewrite (5.93) as:

Fij =
1

detu

(
∇ · C(uT )

)
ij
. (5.94)

In the appendix B.3 I prove that Fij vanishes identically. This means that indeed

Λ̂ij = λ̂2
ij (5.95)

1We notice that the interaction term is attractive in this case, but this is not the full Hamiltonian,
and further 1/D2

ij repulsive terms will appear.
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and the last step is to calculate the commutation relations between the λ̂ij operators.
As shown in B.3, they turn out to be the following:[

λ̂ij , λ̂kl
]

= −
∑

(mn)∈I
f

(mn)
(ij)(kl)λ̂mn, (5.96)

which means that they form a representation of the Lie algebra so(N) or su(N)
depending on the setting. This result is probably as elegant and as close to quantizing
the generalized Calogero-Moser model as one can get. The next step is to find the
eigenfunctions through appropriate integration of the plane waves (5.73).

The harmonic case

Following the same line of thought as in sections 5.2.1 and 5.2.2 for a system of N2

or N(N+1)
2 noninteracting particles in an external harmonic potential we obtain:

ĤH = Tr

(
1

2m
Ŷ 2 +

mω2

2
X̂2

)
= ~ω

(
Tr(â†â) +

N + d

2

)
, (5.97)

â =
1√
2

(
i√
m~ω

Ŷ +
√
mω

~
X̂

)
, (5.98)

|ψn〉 = |nii, nRij , nIij〉 = |n〉 (5.99)

(5.100)

ĤH |ψn〉 = ~ω

∑
i,j

nij +
N + d

2

 |ψn〉, (5.101)

where the eigenstates are of course expressed with Fock states of individual oscilla-
tors. In the position representation we will have:

ψn(X) =
(
mω

π~

) (N+d)
4 ∏

i,j

e−
mω
2~2 xij√

2nij (nij)!
Hnij

(√
mω

~
xij

)
(5.102)

where xij = XR
ij or XI

ij for i < j and i > j respectively, and Hn(z) are the Hermite
polynomials. Since Tr(X2) = Tr(D2), the Hamiltonian in the (D, a) variables differs
from (5.90) by a harmonic term, resulting in a generalised Calogero Hamiltonian:

Ĥ ′H =
√
DĤH

1√
D

=
N∑
i=1

(
− ~2

2m
∂2

∂D2
i

+
mω2

2
D2
i

)
− ~2

4m

 ∑
(ij)∈I

Λ̂ij + (2− α)
(Di −Dj)2

 .
(5.103)

5.2.3 The Hamiltonian and the reduced wave functions for N=2

We expect the case of N = 2 particles to be equivalent to the ordinary CM system.
With only one pair of interacting particles, there is by default only one operator L̂12

whose eigenvalue should yield a constant coupling in the interaction term g2

(D1−D2)2 .
This is why we will treat the N = 2 (orthogonal and unitary) case separately. We
shall apply the results from 5.2.2 and calculate the reduced wave functions in the
orthogonal and unitary case.

Example: SO(2)

This example is not entirely an original contribution, similar considerations can be
found in [64]. The SO(2) group has only one generator and it is known that its every
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element can be expressed as:

U(φ) = exp

(
φ

(
0 −1
1 0

))
=

(
cosφ − sinφ
sinφ cosφ

)
. (5.104)

Since there is only one generator, there are no nonvanishing structure constants, and
therefore in the adjoint representation A = 0 and u(A) = u−1(A) = 1. The single Λ
operator at hand is Λ̂12 = ∂2

∂φ2 , and the Hamiltonian (5.90) has a simple form:

Ĥ ′ = − ~2

2m

[
∂2

∂D2
1

+
∂2

∂D2
2

+
1

2(D1 −D2)2

(
∂2

∂φ2 + 1

)]
(5.105)

which easily translates to centre of mass and relative distance variables R = D1+D2
2 ,

r = D1 −D2 and a doubled angle Φ = 2φ:

Ĥ ′(R, r,Φ) = − ~2

4m
∂2

∂R2 −
~2

m

[
∂2

∂r2 +
1
r2

(
∂2

∂Φ2 +
1
4

)]
. (5.106)

Now we need to express the eigenfinction of the unreduced, free system in these
variables:

ψK(X) = exp(iTr(KX)) = exp
[
iTr

(
KUT (φ)DU(φ)

)]
= ψK(D,φ)

= exp

[
iTr

((
K1

K12√
2

K12√
2

K2

)
U(φ)T

(
R+ r

2 0
0 R− r

2

)
U(φ)

)]
ψK(R, r,Φ) = exp[[iTr(KR)] exp[iκ cos(Φ + φk)r], (5.107)

κ =
1
2

√
(K1 −K2)2 + 2K2

12 =
√

Tr(k2), (5.108)

k = K − 1
2

Tr(K) (5.109)

cosφk =
K1 −K2

2κ
. (5.110)

Now we make use of the fact, that ĤψK = EKψK holds no matter in which variables
we express the equation in, and also if we reverse the similarity transformation
Ĥ ′ =

√
rĤ 1√

r
, we get:

Ĥ ′(R, r,Φ)(
√
rψK(R, r,Φ)) = EK

√
rψK(R, r,Φ). (5.111)

The crucial step of the procedure is the integration over the Φ variable which projects
ψK(R, r,Φ) onto an eigenspace of Λ̂12 = ∂2

Φ. We perform the integration of both sides
of (5.111):

−~2

m

∫
e−iνΦ

[
1
4
∂2

∂R2 +
∂2

∂r2 +
1
r2

(
∂2

∂Φ2 +
1
4

)]
(
√
rψK)dΦ = EK

√
r

∫
e−iνΦψKdΦ

where the integration cuts out a Fourier component of ψK(R, r,Φ) =
∑
ν∈Z e

iνΦψn,K(R, r).
The integral

∫ 2π
0 e−iνφψK(R, r,Φ)dΦ = ψν,K(R, r) commutes with the R and r-

dependent terms of Ĥ, thus:

−~2

m

(
1
4
∂2

∂R2 +
∂2

∂r2 +
1

4r2

)
(
√
rψν,K)− ~2

mr2

√
r

∫ 2π

0
e−iνΦ∂

2ψK
∂Φ2 dΦ = EK

√
rψν,K ,

where the only nontrivial term can be calculated by parts as for ν ∈ Z the boundary
terms cancel:∫ 2π

0
e−iνΦ∂2

Φ (ψK(R, r,Φ)) dΦ = −ν2
∫ 2π

0
e−iνΦψK(R, r,Φ)dΦ = −ν2ψν,K(R, r).

(5.112)
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Finally, we discover that the function
√
rψν,K(R, r) is the eigenfunction od an ordi-

nary 2-particle Calogero-Moser Hamiltonian with g = ν2 − 1
4 :

−~2

m

[
1
4
∂2

∂R2 +
∂2

∂r2 +
1
r2

(
1
4
− ν2

)]
(
√
rψν,K(R, r)) = EK

√
rψν,K(R, r). (5.113)

In the final step we need to compute the integral:

ψν,K(R, r) = eiTr(K)R√r
∫ 2π

0
e−iνΦeiκ cos(Φ+φK)rdΦ = (5.114)

= eiνφKeiTr(K)R
∫ 2π

0
ei(κr cos Φ−νφ)dΦ =

= eiνφKeiTr(K)Riν
√
rJν(

√
Tr(k2)r). (5.115)

As expected [3], the Calogero-Moser wave function, apart from the trivial center of
mass component and some phase factors, has the form

√
rJν(κr), where Jν is the

Bessel function. Moreover, the trace of K contributes to the energy of center of mass

motion, ECM = ~2Tr(K)2

4m , while the traceless part k = K − 1
2Tr(K) contributes to

the relative motion Erel = ~2

mTr(k2), ECM + Erel = EK .
In the harmonic case, whenever it is convenient, we will rescale all the variables

in a standard way: x̃ =
√

mω
~ x = x

l (x stands for all Xij ,R and r) and drop all the
normalisation constants. The reduction procedure can be summarised as follows:

ψn̄(X) = 〈X|n〉 = e−
1
2Tr(X̃2)Hn11(X̃11)Hn12(X̃12)Hn22(X̃22) (5.116)

〈R, r,Φ|X〉 = δ(X11 −R−
1
2
r cos Φ, X22 −R+

1
2
r cos Φ, X12 +

√
2

2
r sin Φ)

ψn̄(R, r,Φ) =
∫
〈R, r,Φ|X〉〈X|n〉dX (5.117)

Ĥ ′H
√
rψn̄(R, r,Φ) = En̄

√
rψn̄(R, r,Φ), (5.118)

En̄ = ~ω
(
n11 + n22 + n12 +

3
2

)
= ~ωεn̄. (5.119)

Again, we apply the integration over Φ:∫
e−iνφ

[
−1

4
∂2

∂R̃2
+ R̃2 − ∂2

∂r̃2 +
1
4
r̃2 − 1

r2

(
∂2

∂Φ2 +
1
4

)]
(
√
r̃ψn̄)dΦ = εn̄

∫
e−iνΦ(

√
r̃ψn̄)dΦ,

and obtain the Calogero Hamiltonian with the eigenfunction
√
r̃ψν,n̄(R̃, r̃) =

√
r̃
∫ 2π

0 e−iνΦψn̄(R̃, r̃,Φ):

[
−1

4
∂2

∂R̃2
+ R̃2 − ∂2

∂r̃2 +
1
4
r̃2 +

1
r̃2

(
ν2 − 1

4

)]
(
√
r̃ψν,n̄(R̃, r̃)) = εn̄

√
r̃ψν,n̄(R̃, r̃).

(5.120)
The last step is to compute ψν,n̄(R̃, r̃) , which should coincide with the predic-

tions of [3]. And for this calculation we may use the result for the free system and
the overlaps between the plane waves and oscillator eigenstates of the N2-particle
system:

ψν,n(R, r) =
∫
ψν,K(R, r)〈K|n〉dK (5.121)

Example: SU(2)

In the unitary case two parameters are necessary to define a diagonalising matrix
(the third parameter is redundant as stated in 5.2.1):

U (θ, φ) =

(
cos θ − sin θe−iφ

sin θeiφ cos θ

)
, (5.122)
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where θ ∈ [0, π/2] is a sufficient set, due to gauge symmetry. In order to find the
metric tensor we need to calculate:

(∂θU)U † =

(
0 −e−iφ
eiφ 0

)
, (∂φU)U † =

(
−i sin2 θ i sin θ cos θe−iφ

i sin θ cos θeiφ i sin2 θ

)

Ωθ = r

(
0 −e−iφ
−eiφ 0

)
, Ωφ = r

(
0 −i sin θ cos θe−iφ

i sin θ cos θeiφ 0

)

where r = D1 −D2. The nontrivial block of the metric tensor, its determinant and
in:verse have the following form:

g =

(
2r2 0
0 1

2r
2 sin2(2θ)

)
, g−1 =

(
1

2r2 0
0 2

r2 sin2(2θ)

)
,

√
|det(g)| = r2 sin(2θ).

(5.123)
The (θ, φ) dependent part of the Laplacian, after all the simplifications,and substi-
tution 2θ −→ θ ∈ [0, π]:

∆θ,φ =
1

r2 sin(2θ)

[
∂

∂θ

(
sin(2θ)

2
∂

∂θ

)
+

2
sin(2θ)

∂2

∂φ2

]
=

=
2
r2

[
1

sin θ
∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2

]
=

2
r2 ∆S2 (5.124)

turns out to be proportional to a familiar Laplace operator on the two-dimensional
sphere. The eigenfunction ψK(X) = ψK(R, r, θ, φ) in the new variables:

ψK(R, r, θ, φ) = e(iTr(KU†DU)) = ei(K1+K2)R exp [i (κ1 cos θ − κ2 sin θ) r]

K =

(
K1

KR+iKI√
2

KR−iKI√
2

K2

)
(5.125)

κ1 =
K1 −K2

2
(5.126)

κ2 =
KR cosφ−KI sinφ√

2
= |K12| cos(φ+ φk) (5.127)

cosφk =
KR√

K2
R +K2

I

(5.128)

decomposes into spherical harmonics:

ψK(R, r, θ, φ) =
∑
l,m

Yl,m(θ, φ)ψl,m,K(R, r) (5.129)

ψl,m,K(R, r) =
∫
S2
Y ∗l,m(θ, φ)ψK(R, r, θ, φ) sin θdθdφ. (5.130)

We use this decomposition in a similar way as in the orthogonal case, only this time√
D = r:

ĤψK = EKψK , Ĥ ′(rψK) = EK(rψK),
∫
Y ∗l,mĤ

′(rψK) = EK

∫
Y ∗l,m(rψK),

(5.131)
and since we can integrate by parts:

∫
Y ∗l,m(∆S2ψK) =

∫
(∆S2Y ∗l,m)ψK = −l(l +

1)
∫
Y ∗l,mψK , we obtain a Calgero-Moser Hamiltonian with a coupling constant l(l+

1): [
− ~2

4m
∂2

∂R2 +
~2

m

(
− ∂2

∂r2 +
l(l + 1)
r2

)]
rψl,m,K = EKrψl,m,K . (5.132)
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As previously, the final step is to calculate the reduced function:

ψl,m,K(R, r) =
∫ ∫

Y ∗l,m(θ, φ)ψK(R, r, θ, φ) sin θdθdφ =

= eiTr(K)R
∫ ∫

Pml (cos θ)e−imφ exp [i (κ1 cos θ − κ2 sin θ) r] sin θdθdφ =

= eiTr(K)R
∫
Pml (cos θ)eiκ1 cos θr

(∫
e−imφ−i|K12| sin θ cos(φ+φk)rdφ

)
sin θdθ =

= eiTr(K)R+imφk
∫
Pml (cos θ)eiκ1 cos θJm(|K12|r sin θ) sin θdθ

The relative contains the Bessel function which arises from the integration over φ.
It looks complicated, but an analytical solution exists [79], and has the form:

Iml (K, r) ∝ Pml
(

2κ1

κ

)
jl(κr), (5.133)

where κ =
√

Tr(k2) and k is the traceless part of K, just like in the orthogonal case,
and jl(x) is the spherical Bessel function defined as:

jl(x) =
√
π

2x
Jl+ 1

2
(x). (5.134)

This means that the inverse square root from jl and the r factor from the similarity
transformation simplify, and as it should be expected from the two-particle Calogero-
Moser system with g = ~2

4m l(l + 1), the relative wavefunction is
√
rJl+ 1

2
(r).

To summarize, for N = 2 the reduction of a free system results in ordinary
Calogero-Moser systems with quantized values of coupling constants. The orthogo-
nal setting recovers the case of g = ~2

4m

(
l2 − 1

4

)
and the relative wavefunctions in

the form of ψl(r) =
√
rJl(κr), and the unitary one recovers g = ~2

4m l (l + 1) and
ψl+ 1

2
(r) =

√
rJl+ 1

2
(κr).

5.2.4 The Hamiltonian and reduced wavefunctions for N ­ 3

For the simplest case of N = 2 it was possible to compute the metric tensor and the
Laplace operator directly. For N ­ 3 we have the general Hamiltonian:

Ĥ ′F = − ~2

2m

N∑
i=1

∂2

∂D2
i

+
1

4m

∑
(ij)∈I

L̂2
ij + ~2(α− 2)

(Di −Dj)2 (5.135)

L̂ij = −i~λ̂ij ,
[
L̂ij , L̂kl

]
=
∑

(mn)

i~f (mn)
(ij)(kl)L̂mn (5.136)

L̂†ij = (−i~λ̂ij)† = i(−~λ̂ij) = L̂ij (5.137)

Having more than one interacting pair of particles and more than a single L̂ operator
makes it difficult to produce eigenfunctions of the above Hamiltonian from plane
waves defined in the X variables. The reason for this is that L̂2

ij operators generally
do not commute thus are impossible to diagonalize simultaneously. The solution is to
seek for representations of the algebra of L̂ operators in which their squares commute,
such as the defining representation studied in the direct approach presented in 5.1.1.
The wave-function, which had the form:

√
DψK(D, a) =

√∏
i<j

(Di −Dj)α · eiTr(K(a)D), (5.138)

Ĥ ′F (
√
DψK(D, a)) = EK(

√
DψK(D, a)) (5.139)
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prior to the reduction, now will be a spinor of the appropriate dimension. Still, the
resulting probability distribution,

|
√
DψK(D, a)|2 =

∏
i<j

(Di −Dj)α,

where α = 1, 2 in the orthogonal and unitary setting respectively, resembles the
predictions for level repulsion in random matrix theory, and indicates that in the
symplectic setting there would be α = 4 contributing to stronger repulsion.

Example: SO(3)

As a final example I will show the orthogonal 3× 3 case. The matrices used in this
case can be parametrised as follows:

U(āτ̄) = exp(āτ̄) = exp

 0 −a12 a13

a12 0 −a23

−a13 a23 0

 = 1 + sin a(n̄τ̄) + (1− cos a)(n̄τ̄)2,

(5.140)
where a ∈ (−π, π), n̄ ∈ S2, ā = (a12, a13, a23) = an̄ and the aij notation emphasises
the link between the (ij)th off-diagonal matrix elements in the big phase space and
the interaction between the ith and jth particle in the reduced phase space. In the
case of SO(3) the N = 3 dimensional defining representation and the

(N
2

)
= 3

dimensional adjoint representation coincide, thus A = āf̄ = āτ̄ and:

u(ā · τ̄) = 1 +
1− cos a

a
(n̄τ̄) +

a− sin a
a

(n̄τ̄) (5.141)

u−1(ā · τ̄) = 1− a

2
(n̄τ̄) +

(
1− a

2
ctg

(
a

2

))
(n̄τ̄)2 (5.142)

detu =
2(1− cos a)

a2 . (5.143)

With the above results the operators λ̂ij can be directly calculated:

λ̂ij = f(a)∇̄ij +
1
2
(
ā× ∇̄

)
ij + (1− f(a)))nij(n̄ · ∇̄) (5.144)

Fij =
1

|detu|
∑
(kl)

(
∂C(ω)
∂akl

)
(ij)(kl)

= 0 (5.145)

Λ̂ij = λ̂2
ij , (5.146)

where f(a) = a
2 ctg

(
a
2

)
. The commutation relations are known for the general N×N

case, but in this smallest nontrivial example it can be checked that indeed:[
λ̂ij , λ̂kl

]
= −ε(ij)(kl)(mn)λ̂mn (5.147)

which means that they span an algebra which is isomorphic to so(3), and there are
representations in which all Λ̂ij = λ̂2

ij commute with each other, namely:

• the 2× 2 Pauli matrices (up to a proportionality constant) which lead to the
ordinary CM system,

• the 3 × 3 generators of the defining representation, which lead to the case
similar to the one solved in 5.1.1, only shifted due to the α(α−2) = −1 terms.
This shift, as its contribution is attractive, may lead to interesting effects which
need to be studied.
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Chapter 6

Conclusion and outlook

The key motivations of this thesis were:

• the potential application of the known relationships of the classical Calogero-
Moser system with random matrices and chaotic dynamics to the quantum
setting

• the possible influence of additional degrees of freedom on the relationship of
the quantum Calogero-Moser system with the Quantum Hall Effect, in a form
of possible topological effects and further applications in condensed matter
physics.

The necessary step towards these goals was to find a reliable quantization scheme
for the generalized Calogero-Moser system. This in turn required a closer look at the
dynamics of the classical degrees of freedom. What may have looked like taking two
steps backwards, in fact turned out to be fruitful for the study of this many-body
interacting system. The results I have obtained may be summarized in a broader
perspective, together with an outlook on further further research:

• I have shown the equivalence between the classical su(N) matrix variables of
the generalized Calogero-Moser model and vectorial degrees of freedom carried
by each particle. The equivalence is given by the relation Lij(t) = i(ei|ej)(t),
which means that the Lij variables are functions of one-particle functions on
phase space. This property transfered directly onto the quantum operators
L̂ij = i~l̂†i ⊗ l̂j results in a system which has a different classical limit, namely
a system with coupling constants gij in stead of dynamic variables Lij(t). This
fact leads to the conclusion, that the quantum operators L̂ij which will be still
dynamical variables in the classical limit, must not factorize into one-particle
operators.

• The trajectories of L(t) matrices fall into separate classes given by the dimen-
sion of the space spanned by the initial vectors d = span{|ei(0))}. I have proven
that the matrices which give rise to stationary coupling constants belong to
the class of d = 1, which implies all the coupling constants to coincide: gij = g.
The models with distinct coupling constants do not admit corresponding ma-
trix models. In the light of the derivation of integrable many-body systems
with interactions by Olshanetsky and Perelomov [12] it can be concluded that
such systems are not integrable.

• Nevertheless, the dynamics of a Calogero-Moser system with distinct coupling
constants gij can be approximated by a matrix model with the same initial
positions and momenta. The optimal matrix L ∈ su(N) for this approximation
is purely imaginary: Lij = igij . The study of reachable sets of the L matrices
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is compatible with this result. The purely imaginary matrices are in fact the
most restricted in terms of the reachable values of |Lij |.

• I have combined the matrix and vector degrees of freedom in an augmented
phase space as hinted by Gibbons [45]. A Hamilton function which mimics
the one of a charged particle in a magnetic field gave rise to an integrable
dynamical system with spiral trajectories in the matrix space. The unitary
reduction along the lines presented in section 3.1.1 led to an unexpected result:
the reduced Hamilton function contained 1

xij
interactions, so far unseen in

completely integrable systems. The dynamical variables in the numerators of
these ”Coulombic” terms do not have stationary points, unless they vanish.

• The canonical quantization of the classically reduced degrees of freedom (x, p, L)
and the quantum reduction of a canonically quantized free (or harmonic) sys-
tem almost coincide. The only difference is the attractive term− ~2

4m
∑
i<j

1
(xi−xj)2 ,

which arises for the latter scheme in the real symmetric case. In the case of
N = 2 this additional term results in two distinct sets of wavefunctions for
l = 0, 1, 2...: ψl(r) =

√
rJl(κr) in the orthogonal and ψl+ 1

2
(r) =

√
rJl+ 1

2
(κr) in

the unitary case. Without this modification, the orthogonal case would yield a
different set of functions,

√
rJal(r), where al =

√
l2 + 1

4 . This off-course makes
no difference for large values of l (as expected in the classical limit). Yet if we
consider the system in a harmonic trap, the energy (3.63) contains a term

Ea = ~ω
(
N

2

)(
a+

1
2

)
.

This means that the ground state is significantly affected, as the a = 0 case is
excluded in favour of a = 1

2 recovered in both orthogonal and unitary setting.
This suggests, that the attractive term is crucial at the quantum level and the
reduction of a canonically quantized matrix system (considered in section 5.2)
is expected to have a richer set of solutions than the canonically quantized
reduced system (section 5.1) for a general value of N .

• The Hamiltonian which I diagonalized in the case of N = 3 and the 2s+ 1 =
N = 3 dimensional representation of so(3) can be thought of as a toy model
and needs to be corrected with the attractive term discussed above. First and
foremost it has to be checked if such a Hamiltonian is bounded from below. The
defining representation of su(3) needs to be considered as well. The expected
result is a rescaled version of the solutions obtained in 5.1.1. The next step
will be to generalize the results to N > 3.

• The common trait of the quantum models reviewed in section 3.2.1 and the
ones I have considered in sections 5.1 and 5.2 is that two variables, namely
the centre of mass R = 1

N

∑
xi and r2 = 1

N

∑
x2
ij , separate easily. The diffi-

culty lies in the remaining angular differential equation on SN−2. The case of
N = 3 reduces to an ordinary differential equation on a circle and is manage-
able through the Fourier Transform, as shown in section 5.1.1. The challenge
of generalizing this result to N > 3 lies in finding an orthonormal basis of
functions on SN−2, which will satisfy the boundary conditions imposed by the
repulsive potential.

• The attractive term in the quantum orthogonal setting, and its expected influ-
ence on the eigenstates as opposed to the purely repulsive unitary setting (as
well as the ordinary CM system) shows the correspondence with the classical
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dynamics. In both cases the L ∈ so(N) degrees of freedom have more impact
than the L ∈ su(N) on the spatial evolution of the system.

• The prefactors
∏
i<j(Di −Dj)α in the probability distribution of positions in

the reduced free system, with α = 1, 2 in the orthogonal and unitary setting
respectively, are not really surprising. Just as in the case of level repulsion pre-
dicted by random matrix theory, we are considering a probability distribution
of eigenvalues of a matrix, only its interpretation is different. Still, this suggest
that the procedure should be repeated for a symplectic case, and the exponent
is expected to be α = 4 and a positive repulsive term should appear in the
Hamiltonian.

To summarize, the study of the dynamics of classical degrees of freedom of the
generalized CM systems has not only provided a sufficient foundation for the quan-
tum considerations but also resulted in unexpected additional result in the form of
an integrable system with 1

xij
interactions. One of the possible extensions of this re-

sult would be to quantize the matrix and vector degrees of freedom in the augmented
phase space.

Moreover, as the classical Lij degrees of freedom govern the energy level repulsion
for quantum systems defined by H(λ) = H0 + λV , the properties of the purely
imaginary L matrices (the stationary |Lij | and minimal reachable sets) are expected
to have an impact on the statistics of level repulsion for large values of N . The
possible next step is to study the statistics of energy levels for an ensemble of purely
imaginary V matrices. The downside is that this subset of Hermitian matrices does
not form a universality class, but the resulting probability distribution could be
interpreted as a conditional one (i.e. the random matrices V are drawn from a
unitary ensemble and the imposed condition is that the matrix is purely imaginary).
The expectation is that the level repulsion will be stronger than in the case of the
full unitary ensemble, meaning P (s) ∝ s2+δ, where δ > 0, and the level spacing
s→ 0.

The study of quantization schemes, on the other hand, with the reliable deriva-
tion of a quantum generalized CM Hamiltonian from a canonically quantized free
(or harmonic) system, opens a plethora of exciting paths for further research. Apart
from the direct continuation outlined above, there is the problem of quantum in-
tegrability, and the diagonalization (if possible) of the system obtained in section
5.2 for other representations of the underlying Lie algebra. Moreover, the finite-
dimensional component of the Hilbert space, on which the L̂ij operators act may
be treated as a synthetic second dimension [80], which yields the system fit for the
study of topological effects, such as edge states.

89



90



Appendix A

Details of the proofs in 4.2

A.1 Necessary conditions for (4.21)

We assume that a rational function of N − 1 independent relative positions xi =
xi1, xi2, .., xi,i−1, xi,i+1, ..xij , ..., xiN :

f(xi) =
∑
k 6=i,j

(
1
x2
ik

− 1
(xik − xij)2

)
aijk (A.1)

is identically equal to zero. This means that for any k 6= i, j:

∂xikf =

(
− 2
x3
ik

+
2

(xik − xij)3

)
aijk = 2aijk

[
x3
ik − (xik − xij)3

x3
ik(xik − xij)3

]
= 0 (A.2)

∂xikf = 0 ⇐⇒ aijk = 0 ∨ xik = xik − xij (A.3)

It is forbidden for xij to vanish, which means aijk = 0, and this applies to all k 6= i, j.
In case of (4.21) aijk = (εi|[Pj , Pk]|εi), therefore it means that (4.23) is the necessary
condition for (4.21) to vanish.

A.2 Necessary conditions for (4.23)

The imaginary part of (εi|εj)(εj |εk)(εk|εi) will vanish if all the vectors point in the
same direction: if |εi) = eiφi |e) then Im((εi|εj)(εj |εk)(εk|εi)) = Im|e|6 = 0. If all the
vectors point in one of two directions, and for the chosen triple i, j, k we have for
example e−iφi |εi) = e−iφj |εj) = |e) and e−iφk |εk) = |f), Im((εi|εj)(εj |εk)(εk|εi)) =
Im(|e|2|(e|f)|2) = 0. Three distinct directions |ε1,2,3) can be expressed as follows:

(ε1| = (1, 0, 0, ...),

(ε2| = (ē1
2, ē

2
2, 0, 0, 0...),

(ε3| = (ē1
3, ē

2
3, ē

3
3, 0, 0...),

and e1
2,3 can be made real by a correct choice of gauge. The basis independent value

of (4.23) reads:

Im(e1
2(e1

2e
1
3 + ē2

2e
2
3)e1

3) = 0 (A.4)

which is equivalent to Im(ē2
2e

2
3) = 0, meaning that e2

2 and e2
3 have a common phase

factor. Applying the same procedure to all tripples of vectors, but expressing every-
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thing in the initial basis, we find out that

(ε1| = (1, 0, 0, ...),

(ε2| = (e1
2, e

iφ2e2
2, 0, 0, 0...),

(ε3| = (e1
3, e

iφ2e2
3, e

iφ3e3
3, 0, 0...)

(ε4| = (e1
4, e

iφ2e2
4, e

iφ3e3
4, e

iφ4e4
4, 0...),

..

(εN | = (e1
N , e

iφ2e2
N , e

iφ3e3
N , ..., e

iφN eNN ),

where all the elk ∈ R, and the resulting Lij = i(εi|εj) matrix is equal to the one given
by purely real vectors without the phase factors.

A.3 Necessary conditions for (4.25)

Let us find the necessary condition for:

∑
k 6=i,j

(
1
x2
ik

− 1
x2
jk

)
(εi|

∑
l 6=i

[Pl, [Pk, Pj ]]
x2
il

+
∑
l 6=j

[Pk, [Pj , Pl]]
x2
jl

+
∑
l 6=k

[Pj , [Pl, Pk]]
x2
kl

|εi) = 0.

provided that the vectors are real |εi) = |ei) ∈ Rr, and as a concequence (ea|eb) =
(eb|ea). First of all we shall introduce convenient shorthands:

[abc] = −[acb] = (ei|[Pa, [Pb, Pc]]|ei) =

= 2(ei|ea)(eb|ec)((ea|eb)(ec|ei)− (ea|ec)(eb|ei)), (A.5)

0 = [abc] + [bca] + [cab] (A.6)

(ea|eb) = (ab) = (ba). (A.7)

The sums over l exclude just one index each, for example i, but allow j, k, and
therefore we have:

0 =
∑
k 6=i,j

(
1
x2
ik

− 1
x2
jk

) ∑
l 6=i,j,k

aijkl + bijk

 (A.8)

aijkl =
[lkj]
x2
il

+
[kjl]
x2
jl

+
[jlk]
x2
kl

(A.9)

bijk =
[jkj] + [kji]

x2
ij

+
[kkj] + [jik]

x2
ik

+
[kjk] + [jjk]

x2
jk

(A.10)

We use the righthand side of (A.5) to express the [abc] commutators in the (A.10)
part of the equation:

bijk = 2

(
(ij)2((jk)2 − (ik)2)

x2
ij

+
(ik)2((ij)2 − (jk)2)

x2
ik

+
(jk)2((ik)2 − (ij)2

x2
jk

)
(A.11)

The terms which are proportional to x−4
ik , k = i+1 are dominant in the colliding pair

approximation. Here it is visible how the (4.27) condition arises from the equation
for general x̄ = (xi,1, xi,2, ..., xi,N ). The (A.10) part will vanish for (ab) = (ea|eb) =
g(−1)nab . Now we have to check the conditions for the (A.9) part in this case (using
the Jacobi identity [jkl] = −[lkj]− [kjl]):

(ea|eb) = g(−1)nab , Φiabc = (−1)nia+nab+nbc+nci , (A.12)

[abc] = 2g4(−1)nia+nbc((−1)nab+nic − (−1)nac+nib) = 2g4(Φiabc − Φiacb), (A.13)

0 = 2
∑

k 6=l 6=i,j

(
1
x2
ik

− 1
x2
jk

)((
1
x2
il

− 1
x2
kl

)
(Φilkj − Φiljk) +

(
1
x2
jl

− 1
x2
kl

)
(Φikjl − Φiklj)

)
.
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In the next step we modifying the sum so that we have all k, l dependent terms
grouped together:

0 =
∑

k<l 6=i,j

(
1
x2
ik

− 1
x2
jk

)((
1
x2
il

− 1
x2
kl

)
(Φilkj − Φiljk) +

(
1
x2
jl

− 1
x2
kl

)
(Φikjl − Φiklj)

)
+

+

(
1
x2
il

− 1
x2
jl

)((
1
x2
ik

− 1
x2
kl

)
(Φiklj − Φikjl) +

(
1
x2
jk

− 1
x2
kl

)
(Φiljk − Φilkj)

)
=

=
∑

k<l 6=i,j
Aijkl

[(
1
x2
ik

− 1
x2
jk

)(
1
x2
il

− 1
x2
kl

)
−
(

1
x2
il

− 1
x2
jl

)(
1
x2
jk

− 1
x2
kl

)]
+

+ Bijkl

[(
1
x2
ik

− 1
x2
jk

)(
1
x2
jl

− 1
x2
kl

)
−
(

1
x2
il

− 1
x2
jl

)(
1
x2
ik

− 1
x2
kl

)]
,

where Aijkl = Φilkj −Φiljk and Bijkl = Φikjl−Φiklj . If we parmetrise the expression
with N − 1 independent distances xi1, xi2, ...xi,i−1, xi,i+1, ..., xij , ..xiN , we can write:

0 =
∑
k<l

AijklF (xij , xik, xil) +BijklG(xij , xik, xil), (A.14)

where

F (x, y, z) = f(y, y − x)f(z, y − z)− f(z, z − x)f(y − x, z − y), (A.15)

G(x, y, z) = f(y, y − x)f(z − x, y − z)− f(z, z − x)f(y, y − z), (A.16)

f(a, b) =
1
a2 −

1
b2
. (A.17)

In case of i = 1, j = 2 and N = 4 this sum has only one term corresponding to
k = 3, l = 4 and it gives us the condition

AF (x12, x13, x14) +BG(x12, x13, x14) = 0 (A.18)

for all (x12, x13, x14) ∈ R3 such that 0 < x12 < x13 < x14, where A = A1234, B =
B1234. Choosing any two linearly independent configurations, for example (1, 2, 3)
and (1, 2, 4) results in a system of equations satisfied solely by A = B = 0. This
means that (e1|[P4, [P3, P2]]|e1) = (e1|[P3, [P4, P2]]|e1) = 0, and n13 + n24 = (n14 +
n23) mod 2. By choosing another (i, j) pair we obtain the equality of n12 + n34 =
n13 + n24 = (n14 + n23) mod 2. To extend this result to N > 4 without dealing
with multiple terms,we notice that for four fixed values of i, j,m, n only one term in
(A.14) depends on both xim and xin. We can therefore keep the distances xij , xim
and xin finite, and take all the others to infinity. This leaves us with

AijmnF (xij , xim, xin) +BijmnG(xij , xim, xin) = 0 (A.19)

and the same argument as for N = 4 leads to the conclusion that Aijmn = Bijmn = 0
for any quadruple of indices. This means (4.36) is satisfied.
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Appendix B

Details of proofs in 5.2

B.1 Derivation of the formulae (5.77)-(5.83)

Let us start with the entries of the Jacobian matrix (5.77):

∂Xij

Dk
=

∂

∂Dk

(
U †DU

)
ij

=
∂

∂Dk

(
N∑
m=1

U †imDmUmj

)
= U∗kiUkj

∂Xij

al
=

∂

∂al

(
U †(ā)DU(ā)

)
ij

=
(
∂alU

†DU + U †D∂alU
)
ij

=
(
U †D∂alU − U

†(∂alU)U †DU
)
ij

=

=
[
U †
(
D(∂alU)U † − (∂alU)U †D

)
U
]
ij

=
(
U †
[
D, (∂alU)U †

]
U
)
ij

=
(
U †ΩlU

)
ij

Next, we derive the expression for (∂alU)U † stated in (5.78):

(∂alU)U † = −U∂alU
† = −eā·τ̄∂ale

−ā·τ̄ = −eā·τ̄e−ā·τ̄
(

1− e−(−adā·τ̄ )

−adā·τ̄

)
∂al(−ā · τ̄) =

=

(
eadā·τ̄ − 1
adā·τ̄

)
τl =

∞∑
n=0

(adā·τ̄ )n

(n+ 1)!
τl =

=
∞∑
n=0

1
(n+ 1)!

[ā · τ̄ , [ā · τ̄ , ..., [ā · τ̄ , τl] ...]]︸ ︷︷ ︸
n

=

=
∞∑
n=0

1
(n+ 1)!

aknf
mn
kn,mn−1

....ak2f
m2
k2,m1

ak1f
m1
k1,l
τmn =

=
∞∑
n=0

(akfk)nlm
(n+ 1)!

τm =
∞∑
n=0

(An)lm
(n+ 1)!

τm = u(A)lmτm ∈ g

(Ωl)ij = u(A)lm [D, τm]ij = u(A)lm(Di −Dj)(τm)ij ,

where we make use of a general formula found for instance in [56] for a smooth
matrix valued function X(t):

deX(t)

dt
= eX(t)

[
1− e−adX(t)

adX(t)

(
dX(t)
dt

)]
. (B.1)

Importantly, since we use anti-Hermitian generators, the structure constants fkij ∈ R,
thus u(A) is a real matrix in both unitary and orthogonal case. Now we calculate
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the entries of the metric tensor (5.81):

gDk,Dm =
∑
i,j

∂Xij

Dk

∂Xji

Dm
=
∑
i,j

U∗kiUkjU
∗
mjUmi = δkm (B.2)

gDk,al =
∑
i,j

∂Xij

Dk

∂Xji

al
=
∑
ij

U∗kiUkj
(
U †ΩlU

)
ji

= (Ωl)kk = 0 (B.3)

gal,am =
∑
i,j

∂Xij

al

∂Xji

am
=
∑
i,j

(
U †ΩlU

)
ij

(
U †ΩmU

)
ji

=

= Tr(ΩlΩm) (B.4)

We notice that the nontrivial block glm = Tr(ΩlΩm) of the metric tensor is in fact a
Gram matrix of Ω1,2,...,d treated as vectors in the vector space of Hermitian matrices.
This means that the determinant can be expressed with the exterior product of the
vectors:

detg = ||Ω1 ∧ Ω2 ∧ ... ∧ Ωd||2, (B.5)

but to make use of this structure in the proofs of (5.83)-(5.85), we need to switch to
ordered pair indices, as in the main text, (ij), (pq), (rs) ∈ I, where I = {(pq) : 1 ¬
p < q ¬ N} in the orthogonal case and I = {(pq) : 1 ¬ p 6= q ¬ N} in the unitary
case, and express the Ω vectors in an orthogonal basis:

êij =

{
|i〉〈j|+ |j〉〈i| = −iτji, i < j
i (|i〉〈j|+ |j〉〈i|) = σji, i > j

, Tr(êij êkl) = 2δikδjl. (B.6)

The expressions for Ωij and g(ij)(kl) are as follows:

Ωij =
∑

(pq)∈I
u(ij)(pq) [D, τpq] =

∑
(pq)∈I

u(ij)(pq)(Dp −Dq)êpq

g(ij)(kl) = Tr(ΩijΩkl) =
∑

(pq)∈I

∑
(rs)∈I

u(ij)(pq)(Dp −Dq)u(kl)(rs)(Dr −Ds)Tr(êpq êrs) =

= 2
∑

(pq)∈I

∑
(rs)∈I

u(ij)(pq)(Dp −Dq)u(kl)(rs)(Dr −Ds)δprδqs =

= 2
∑

(pq)∈I
u(ij)(pq)u(kl)(pq)(Dp −Dq)2 =

∑
(pq)∈I

u(ij)(pq)(Dp −Dq)2(uT )(pq)(kl) =

= 2(uD2uT )(ij)(kl).

The factorised form of g given by (5.83) leads automatically to (5.84),(5.85) and the
expressions for ∆a and Λ̂ij .

B.2 Derivation of (5.87)

The action of the similarity transformation (5.87) can be demonstrated with the use
of a C2 class test function f = f(D1, D2, ..., DN ), and the fact that:

∂D
∂Di

=
∂

∂Di

∏
k<l

(Dk −Dl)α
 = αD

∑
k 6=i

1
Di −Dk

 . (B.7)
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The calculations are as follows:

√
D∆D

(
f√
D

)
=

1√
D

N∑
i=1

∂

∂Di

[
D ∂

∂Di

(
f√
D

)]
=
N∑
i=1

{
∂2f

∂D2i
+ ai(D)

(
∂f

∂Di

)}
+ b(D)f

√
Dai(D) =

∂
√
D

∂Di
+D ∂

∂Di

(
1√
D

)
=

1

2
√
D
∂D
∂Di

−D 1

2
√
D3

∂D
∂Di

= 0

b(D) =
N∑
i=1

1√
D

∂

∂Di

[
D ∂

∂Di

(
1√
D

)]
=
N∑
i=1

1√
D

∂

∂Di

[
−D

(
1

2
√
D3

∂D
∂Di

)]
=

= − α

2
√
D

N∑
i=1

∂

∂Di

√D∑
k 6=i

1
Di −Dk

 =

= − α

2
√
D

N∑
i=1

 1

2
√
D
∂D
∂Di

∑
k 6=i

1
Di −Dk

−
√
D
∑
k 6=i

1
(Di −Dk)2

 =

=
α

2

∑
1¬i6=j¬N

1
(Di −Dj)2

− α2

4

 ∑
1¬i 6=j¬N

1
(Di −Dj)

2 =

=
α

2

(
1− α

2

) ∑
1¬i 6=j¬N

1
(Di −Dj)2

− α2

4

∑
i<j<k

[
Dk −Dj +Di −Dk +Dj −Di
(Di −Dj)(Dj −Dk)(Dk −Di)

]

=
α (2− α)

2

∑
1¬i¬j¬N

1
(Di −Dj)2

=
1
2

∑
(ij)

2− α
(Di −Dj)2

B.3 Derivation of (5.95) and (5.96)

Let M be a d×d matrix of real functions: Mij : Rd → R. At every point (x1, .., xd) ∈
Rd where M is invertible, we may say that:

M−1 =
C(M)T

detM

where C(M) is the matrix of cofactors of M . This means that:

detMδij =
d∑
l=1

MilC(M)jl

∂i(detM) =
d∑
j=1

∂j(detM)δij =
d∑

j,l=1

∂j(MilC(M)jl)

=
d∑

j,l=1

∂j(Mil)C(M)jl +Mil∂j(C(M)jl).

On the other hand:

∂i(detM) =
d∑

j,l=1

∂detM
∂Mjl

∂Mjl

∂xi
=

d∑
j,l=1

C(M)jl∂i(Mjl), (B.8)

which means that

d∑
l=1

Mil

d∑
j=1

∂j(C(M)jl) =
d∑

j,l=1

C(M)jl(∂iMjl − ∂jMil). (B.9)
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If MT happens to be a Jacobian matrix of some map m : Rd → Rd, the right-hand
side of the above equation vanishes identically:

∂iMjl − ∂jMil = ∂2
ijml − ∂2

jiml = 0. (B.10)

For the left-hand side to vanish, the sum Fl =
∑d
j=1 ∂j(C(M)jl) must vanish iden-

tically as well. This is so, because wherever detM 6= 0, Mi = (Mi1,Mi2, ...,Mid) can
be treated as d linearly independent vectors and for the scalar product (Mi, F ) =∑
lMilFl to vanish for all of them F = 0 identically. This proof can be found for

example in [81].
Let us now translate the equation (B.9) to the language of the u matrix and aij

variables. The indices change in the following way: j → pq, l→ ij, i→ ab:

(detu)
∑

(ij)∈I
u(ab)(ij)Fij =

∑
(ij),(pq)∈I

C(u)(pq)(ij)

(
∂u(pq)(ij)

∂aab
−
∂u(ab)(ij)

∂apq

)
. (B.11)

The matrix elements of u can be derived from the definition:

∂U

∂apq
U † =

∑
(ij)∈I

u(pq)(ij)τij =⇒ u(pq)(ij) = −1
2

Tr

[
∂U

∂apq
U †τij

]
(B.12)

and its derivatives have the following form:

∂u(rs)(mn)

∂apq
= −1

2
Tr

[(
∂2U

∂apq∂ars

)
U †τmn

]
− 1

2
Tr

(
∂U

∂ars

∂U †

∂apq
τmn

)
=

= −1
2

Tr

[(
∂2U

∂apq∂ars

)
U †τmn

]
− 1

2
Tr

(
∂U

∂ars
U †U

∂U †

∂apq
τmn

)
=

= −1
2

Tr

[(
∂2U

∂apq∂ars

)
U †τmn

]
+

1
2

Tr

(
∂U

∂ars
U †

∂U

∂apq
U †τmn

)
=

= −1
2

Tr

[(
∂2U

∂apq∂ars

)
U †τmn

]
+ (B.13)

+
1
2

∑
(ab),(cd)∈I

u(rs)(ab)u(pq)(cd)Tr(τabτcdτmn) (B.14)

where we again use the definition of u and the fact that (∂U)U † = −U∂U †. The
symmetric parts cancel in the difference of derivatives:

∂u(pq)(ij)

∂aab
−
∂u(ab)(ij)

∂apq
=

∑
(mn),(rs)∈I

1
2
u(pq)(mn)u(ab)(rs)Tr([τmn, τrs]τij) =

= −
∑

(mn),(rs)∈I
u(pq)(mn)u(ab)(rs)f

(ij)
(mn)(rs) =

= (ufijuT )(ab)(pq),

This difference does not vanish identically, which means uT is not a Jacobian
matrix of any map, nevertheless we may apply it to the right-hand side of (B.11):∑
(ij),(pq)∈I

(ufijuT )(ab)(pq)C(u)(pq)(ij) =
∑

(ij),(pq)∈I
(ufijuT )(ab)(pq)(u

T )−1
(pq)(ij)detu =

= detu
∑

(ij)∈I
(ufij)(ab)(ij) = 0.

It turns out to be 0 due to the fact that the structure constants are antisymmetric
in every pair of indices and f (ij)

(ij)(kl) = 0. Using the same arguments as for the general
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matrix M I conclude that for the left-hand side of (B.11) to vanish, the functions
Fij must vanish as well.

The commutator of λ̂ operators can be calculated in the following way:[
λ̂ij , λ̂kl

]
=

∑
(pq),(rs)∈I

[
u−1

(ij)(pq)∂pq, u
−1
(kl)(rs)∂rs

]
=

∑
(rs)∈I

µ
(rs)
(ij)(kl)∂rs =

=
∑

(mn)

ν
(mn)
(ij)(kl)λ̂mn

µ
(rs)
(ij)(kl) =

∑
(pq)∈I

u−1
(ij)(pq)(∂pqu

−1
(kl)(rs))− u

−1
(kl)(pq)(∂pqu

−1
(ij)(rs))∑

(rs)

µ
(rs)
(ij)(kl)∂rs =

∑
(rs)(mn),(uv)

µ
(rs)
(ij)(kl)u(rs)(mn)u

−1
(mn)(uv)∂uv =

∑
(mn)

ν
(mn)
(ij)(kl)λ̂mn

ν
(mn)
(ij)(kl) =

∑
(rs)∈I

µ
(rs)
(ij)(kl)u(rs)(mn)

where ∂pq stands for ∂
∂apq

and for the final calculation of ν we use the formulae
(B.13) and (B.14):

ν
(mn)
(ij)(kl) =

∑
(rs)(pq)

u−1
(ij)(pq)(∂pqu

−1
(kl)(rs))− u

−1
(kl)(pq)(∂pqu

−1
(ij)(rs))u(rs)(mn) =

=
∑

(rs)(pq)

u−1
(ij)(pq)

[
∂pq(u−1

(kl)(rs)u(rs)(mn))− u−1
(kl)(rs)∂pqu(rs)(mn)

]
+

−
∑

(rs)(pq)

u−1
(kl)(pq)

[
∂pq(u−1

(ij)(rs)u(rs)(mn))− u−1
(ij)(rs)∂pqu(rs)(mn)

]
=

=
∑

(pq),(rs)

(
u−1

(kl)(pq)u
−1
(ij)(rs) − u

−1
(ij)(pq)u

−1
(kl)(rs)

)
∂pqu(rs)(mn) =

=
1
2

∑
(pq),(rs)

(
u−1

(ij)(pq)u
−1
(kl)(rs) − u

−1
(kl)(pq)u

−1
(ij)(rs)

)
Tr
[
(∂2
pq,rsU)U †τmn

]
+

+
1
2

∑
(pq)(rs)

∑
(ab)(cd)

u−1
(kl)(pq)u

−1
(ij)(rs)u(rs)(ab)u(pq)(cd)Tr(τabτcdτmn) +

− 1
2

∑
(pq)(rs)

∑
(ab)(cd)

u−1
(ij)(pq)u

−1
(kl)(rs)u(rs)(ab)u(pq)(cd)Tr(τabτcdτmn) =

=
1
2

∑
(ab)(cd)

(δ(ij)(ab)δ(kl)(cd) − δ(kl)(ab)δ(ij)(cd))Tr(τabτcdτmn) =

=
1
2

Tr([τij , τkl]τmn) = −f (mn)
(ij)(kl)

99



100



Bibliography

[1] M. Toda. Vibration of a chain with nonlinear interaction. Journal of the
Physical Society of Japan, 22:431–436, 1967.

[2] P.D. Lax. Integrals of nonlinear equations and solitary waves. Communications
on Pure and Applied Mathematics, 21:467–490, 1968.

[3] F. Calogero. Solution of a Three-Body problem in one dimension. Journal of
Mathematical Physics, 10(12):2191–2196, 1969.

[4] F. Calogero. Ground state of a One-Dimensional N-Body system. Journal of
Mathematical Physics, 10(12):2197–2200, 1969.

[5] F. Calogero. Solution of the One-Dimensional N-Body problems with quadratic
and or inversely quadratic pair potentials. Journal of Mathematical Physics,
12(3):419–436, 1971.

[6] F. Calogero, O. Ragnisco, and C. Marchioro. Exact solution of the classical
and quantal one-dimensional many-body problems with the two-body potential
va(x) = g2a2/sh2(ax). Lettere al Nuovo Cimento, 13:383–387, 1975.

[7] B. Sutherland. Exact results for a quantum many-body problem in one dimen-
sion. Physical Review A, 4:2019–2021, 1971.

[8] B. Sutherland. Exact results for a quantum many-body problem in one dimen-
sion. ii. Physical Review A, 5:1372–1376, 1972.

[9] M. Adler. Some finite dimensional integrable systems and their scattering be-
havior. Communications in Mathematical Physics, 55:195–230, 1977.

[10] J Moser. Three integrable Hamiltonian systems connected with isospectral
deformations. Advances in Mathematics, 16(2):197 – 220, 1975.

[11] D. Kazhdan, B. Kostant, and S. Sternberg. Hamiltonian group actions and
dynamical systems of Calogero type. Communications on Pure and Applied
Mathematics, 31(4):481–507, 1978.

[12] M.A. Olshanetsky and A.M. Perelomov. Classical integrable finite-dimensional
systems related to Lie algebras. Physics Reports, 71(5):313 – 400, 1981.

[13] M.A. Olshanetsky and A.M. Perelomov. Quantum integrable systems related
to Lie algebras. Physics Reports, 94(6):313 – 404, 1983.

[14] H. Airault, H. P. McKean, and J. Moser. Rational and elliptic solutions of the
Korteweg-de Vries equation and a related many-body problem. Communica-
tions on Pure and Applied Mathematics, 30(1):95–148, 1977.

[15] F. Calogero. Motion of poles and zeros of special solutions of nonlinear and
linear partial differential equations and related «solvable» many-body problems.
Il Nuovo Cimento B (1971-1996), 43(2):177–241, 1978.

101



[16] H. Chen, Y. Lee, and N. Pereira. Algebraic internal wave solitons and the
integrable Calogero-–Moser-–Sutherland N-body problem. Physics of Fluids,
22(1):187-188, 1979.

[17] S.N.M Ruijsenaars and H Schneider. A new class of integrable systems and its
relation to solitons. Annals of Physics, 170(2):370–405, 1986.

[18] T. Shiota. Calogero—Moser hierarchy and KP hierarchy. Journal of Mathe-
matical Physics, 35(11):5844–5849, 1994.

[19] P. Iliev. Q–KP hierarchy, bispectrality and Calogero-–Moser systems. Journal
of Geometry and Physics, 35(2):157–182, 2000.

[20] Y. Matsuno. Calogero—Moser–Sutherland dynamical systems associated with
nonlocal nonlinear Schrödinger equation for envelope waves. Journal of the
Physical Society of Japan, 71(6):1415–1418, 2002.

[21] F. Gesztesy, K. Unterkofler, and R. Weikard. An explicit characterization of
Calogero–Moser systems. Transactions of the American Mathematical Society,
358(2):603–656, 2006.

[22] M. Stone, I. Anduaga, and L. Xing. The classical hydrodynamics of the
Calogero–Sutherland model. Journal of Physics A: Mathematical and Theo-
retical, 41(27):275401, 2008.

[23] P. Pechukas. Distribution of energy eigenvalues in the irregular spectrum. Phys-
ical Review Letters, 51(11):943-946, 1983.

[24] K. Nakamura and M. Lakshmanan. Complete integrability in a quantum de-
scription of chaotic systems. Physical Review Letters, 57:1661–1664, Oct 1986.

[25] M. Kuś, F.Haake, D. Zaitsev, and A. Huckleberry. Level dynamics for conser-
vative and dissipative quantum systems. Journal of Physics A: Mathematical
and General, 30(24):8635–8651, 1997.

[26] A. Huckleberry, D. Zaitsev, M. Kuś, and F. Haake. A symplectic context for
level dynamics. Journal of Geometry and Physics, 37:156–168, 2001.

[27] M. Hardej, C. Kus, M.and Gonera, and P. Kosinski. On determination of
statistical properties of spectra from parametric level dynamics. Journal of
Physics A Mathematical and General, 40(3):423–431, 2007.
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