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Abstract

This manuscript presents a comprehensive exploration of the space-time finite element
method (STFEM) as it pertains to solving problems governed by hyperbolic differential
equations, with a particular focus on wave propagation and structural dynamics. The
STFEM is distinguished by its unique capabilities that allow for continuous adapta-
tion of the spatial mesh in real-time, which significantly enhances the accuracy and
efficiency of numerical simulations. A key innovation of this method is its ability to
separate the resulting equations within the algebraic system during the formulation
of characteristic matrices, effectively omitting the traditional triangulation step. The
primary objective of this research is to design and implement advanced software op-
timized for rapid, massively parallel computing. Ultimately, it will serve as a crucial
tool for identifying and optimizing critical parameters influencing structural behavior,
thereby contributing to the advancement of adaptive engineering solutions in the face
of dynamic stresses. Through this study, we seek to significantly enhance the fields of
computational mechanics and structural engineering, offering both theoretical insights
and practical applications that address contemporary challenges in these domains.

Keywords: Space-time approach; Finite element method, Structural dynamics, Vi-
brations, Parallelisation.
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Chapter 1

Introduction

Reliable simulation of dynamic systems, especially for large or deformable structures,
poses significant computational challenges. Accurate simulations involve solving many
interrelated equations simultaneously, requiring extensive computational power. Float-
ing point calculations are crucial for accuracy but are more demanding compared to in-
teger calculations used in graphics processing. Multi-core graphics cards excel in paral-
lel processing for graphics but struggle with the heavy floating-point operations needed
in precise simulations. Current computational packages use multi-core CPUs but of-
ten don’t exploit full parallel processing capabilities, limiting efficiency. Fully explicit
methods can speed computation through simplifications but often sacrifice accuracy
and stability. Optimizing algorithms for parallel tasks can significantly enhance per-
formance in simulations. Domain decomposition methods and parallel iterative solvers
are examples of algorithms that can be efficiently executed on multi-core systems. Hy-
brid computing architectures, combining CPUs and GPUs, can balance the precision
floating-point capabilities of CPUs with the parallel power of GPUs. Modern GPUs are
improving in handling floating-point operations, allowing optimized algorithms to boost
performance. Ensuring the algorithms are suited for parallel execution is essential for
effective simulations. Efficient workload distribution across multiple cores or processors
prevents bottlenecks and enhances performance. Precision and performance trade-offs
need careful consideration to maintain essential accuracy while improving computation
speed. Understanding the acceptable trade-offs for specific applications can guide the
simplifications used. Efficient simulation requires advanced computational techniques
and architectures. By leveraging optimized algorithms, hybrid computing solutions,
and managing trade-offs, accurate simulations can be achieved more swiftly. Compu-
tational efficiency is essential for simulating large and deformable systems. The focus
must be on algorithm optimization, hybrid architectures, and suitable trade-offs to
enhance performance. This approach ensures that simulations are both accurate and
fast, meeting the demands of dynamic system modeling.
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1.1 Background

In the realm of structural dynamics, various numerical techniques are employed to
solve second-order differential equations over time. One commonly utilized method is
the central difference method, valued for its capacity to isolate algebraic equations,
especially when a diagonal inertia matrix is implemented. To preserve the possibility
of system equation diagonalization, matrices involving time derivative vectors must be
also diagonal. Despite its benefits, this method is constrained by conditional stability,
necessitating users to adhere to specific time step criteria, typically dictated by the most
rigid finite element present. As a consequence, its application is predominantly limited
to scenarios where inertial effects are predominant and concerns regarding vibrations
or wave phenomena are minimal, such as in crashworthiness analyses. However, de-
spite these restrictions, the central difference method can be harnessed efficiently on
massively parallel processors for certain practical problems.

Commonly used methods from the Newmark group (the method of central differ-
ences is a particular representative of this group) are characterized by good conver-
gence and possible unconditional stability, but they require cost solutions of systems of
equations with full or band matrices. There appeared also methods that separate the
system of algebraic equations, such as the Park or Trujillo method, but convergence
and effectiveness, including accuracy, in general, have not been demonstrated. Let us
also note that present dynamical numerical solutions have parabolic properties, ie. the
infinite velocity of information propagation, instead of physical properties, that are
hyperbolical.

Currently, several ways of speeding up calculations using parallel processors are
used. The first one, the simplest, is the use of compilers that in the process of creation of
the binary code can extract computational threads that can be executed independently
of each other. They are sent to separate processors and executed in parallel. The
disadvantage of this solution is a relatively small increase in performance. Separated
threads are usually short and sparse.

The second way requires the programmer to be familiar with the methodology and
well-thought separation of source code parts that can be implemented in parallel. In
this case, the programmers most often modify classical algorithms, which can ultimately
be called „parallel” in a sense. In computational methods in structural mechanics,
eg. the finite element method, it is easiest to subject to parallel calculations the
stage of creation of global structure matrices. Since elemental matrices are computed
independently of each other, in principle one can build each of them on a separate
processor. In non-linear tasks or tasks with variable coefficients, this process must be
repeated many times. The second stage, which is heavily burdening the calculation
process, is the solution of the system of algebraic equations. In this case, for example,
methods of solving systems of equations are used in a block way.
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It is also worth mentioning here the iterative methods, which constitute a separate
branch of algorithms, and which are more suitable for use in multiprocessor computa-
tions. However, people are still dealing with methods known for a long time and with
algorithms known for sequential calculations, which are only adapted to the needs of
parallel computing.

The implementation of parallel calculations in structural mechanics applied nowa-
days, particularly in dynamics, can be called the adaptation of known methods rather
than the use of new, innovative solutions. The obtained acceleration of calculations
now reaches several to several dozen times, but in the overwhelming majority of tasks,
these are realizations far from real-time calculations. According to the data provided
by the manufacturer of commercial Ansys software, the machine using CUDA technol-
ogy is characterized by several times higher efficiency compared with a computer using
only the CPU for the calculation.

Therefore, developing effective tools for simulating the dynamics of structures on
an average computer at a speed currently reserved only for extremely expensive su-
percomputers seems to be an interesting research topic. Calculations in many cases
will be able to be performed in real time. It is important in planning and perform-
ing surgery operations. Numerical modelling in structural dynamics is important both
for researchers investigating the vibrating systems, as well as for engineers working
on industrial problems. To accomplish engineering goals, high-performance software
is needed to allow rapid simulations of structural dynamics. The method of space-
time finite elements with elements of simplex shapes is naturally suitable for massively
parallel processing.

Graphic processors GPU is specialized for performing repetitive operations when
rendering (imaging) three-dimensional graphics. Behind such a visualisation compli-
cated geometrical calculations are placed. So a concept was created to transfer some of
the duties of the central processor to the graphics card. This idea became the basis of
the technology "General Purpose computation on GPUs", that is, the implementation
of general calculations by a graphics processor, in short GPGPU. The existence of much
faster tools for computer simulations also enables efficient multi-criterial optimization
in structural dynamics. As a consequence, dynamic inverse problems are within the
scope of computational possibilities. The use of GPU in scientific and engineering cal-
culations is not a new idea. Currently, many commercial computing packages use this
technology: Ansys, LS-DYNA, MSC Nastran, Matlab, and many more.

Modern methods of computer structure analysis require discretization of the area
of the examined object. The finite element method along with other similar methods,
most often used, is based on the integral approach. In the second group differential
methods in which the derivatives are replaced by approximate difference quotients are
placed. The boundary element method is less frequently used. In a certain period, a
group of meshless methods has become popular among researchers. Even a cursory
analysis of the meshless approach shows that its accuracy depends on the regularity
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of the distribution of nodes in the test area. Increasing the number of nodes causes
them to be more evenly distributed, and thus, the solution is smoother and seems
more accurate. The convergence, however, is not satisfactory and has not been proven.
Unfortunately, elementary tests of the application of this method to wave problems
show a significant divergence with an accurate solution or a rapid growth of error in
subsequent steps of integration over time. As a result, such solutions are useless for
structural dynamics. Researchers who use this method for elliptical problems limited
the demonstration of its effectiveness to relatively regular and well-developed examples.
All other effective methods practically used by scientists and engineers are based on
the representation of the solution in nodes, resulting from the classical discretization
based on the Galerkin method.

1.2 Thesis

The space-time finite element approach, utilizing simplex-shaped elements, allows for
highly efficient, massively parallelized linear and nonlinear dynamic computations that
surpass the efficiency of traditional computational parallelization techniques.

The goal was achieved by designing and implementing an advanced algorithm opti-
mized for fast, massively parallel calculations in the field of structure dynamics. The
manuscript presents a highly efficient parallelized version of the continuous space-time
finite element method, tailored for structural dynamics and wave propagation simula-
tions. This innovative method enables the execution of time-dependent mathematical
physics tasks across multiple processor cores without compromising the accuracy of
sequential computations. Typically, in conventional approaches, the finite element
method is used for spatial discretization, while a different technique is employed for
the time dimension in solving differential equations of motion. Contrarily, the space-
time finite element method extends this by treating time as an interpolated variable
akin to a spatial variable. This unification allows for a more seamless and holistic
approach to time-dependent problems. By distributing different parts of the task to
individual processor cores, the proposed method harnesses parallel computation, sig-
nificantly boosting efficiency. It ensures that simulations of structural dynamics, or
broader physical phenomena with a temporal component, are executed more rapidly
yet with the same precision as traditional sequential methods. One of the core advan-
tages of this approach is maintaining identical accuracy in the parallelized simulation
as would be achieved in a single-core, sequential computation. It reflects an extension
and an improvement over conventional finite element methods, particularly in handling
time as an integral part of the interpolation process. The method’s novelty lies in its
ability to apply space-time interpolation in a parallelized environment. It addresses the
limitations of commonly used approaches where time is treated separately from space
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in the approximation process. This dual interpolation not only improves computational
efficiency but also simplifies the treatment of time-dependent tasks. The manuscript
emphasizes the method’s capability to handle structural dynamics and wave propa-
gation with enhanced computational performance. By leveraging multiple processors,
it achieves faster simulations without any sacrifice in accuracy. The space-time fi-
nite element method’s parallel implementation represents a substantial advancement
in computational modeling. The results underscore the method’s proficiency in deliv-
ering accurate simulations akin to those obtained through sequential calculations. The
approach is particularly beneficial in scenarios requiring intensive computation and
high precision over extended temporal domains. Overall, the parallelized space-time
finite element method marks a significant step forward in the efficient and accurate
modeling of dynamic structural and physical systems.

1.3 Overview of Thesis

This dissertation presents the development and application of the space-time finite el-
ement method (STFEM) to enhance the accuracy and efficiency of solving complex
differential equations. The first two chapters introduce the thesis’s goals and current
research, focusing on the decoupling of systems of equations to allow for parallel com-
putations. This process involves calculating unknowns in sequential steps, facilitating
parallel processing and progressive movement in computations. The simplex-shaped
space-time finite element method is described as a technique for solving differential
equations, utilizing simplex-shaped functions to define space-time coordinates within
subelements, which is crucial for addressing wave problems and structural dynamics
without necessitating triangulation.

Chapter 3 provides a detailed introduction to STFEM, discussing the flow within
the mesh and deriving relevant mathematical expressions. The chapter presents es-
sential matrices, such as the stiffness matrix and the inertia matrix, which are critical
for accurately modeling dynamic behavior. The properties of simplex elements are
explored, highlighting the lower triangular nature of the strain displacement matrix,
which simplifies the computational process. A brief overview of the nonlinear iteration
process within subdomains is also included to ensure solution accuracy.

Chapter 4 presents selected engineering problems. First, a one-dimensional rod
model is constructed to perform force analysis and derive the governing partial differ-
ential equation of motion. The space-time finite element method is applied to create
stiffness and inertia matrices using simplex elements. The chapter demonstrates the
method’s capability by comparing results from traditional finite element methods with
those from STFEM. Then, large deformations in plane-stress problems, deriving key
relationships between stress and strain were presented. Nonlinear terms are introduced
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to maintain accuracy when the system experiences significant displacements. The chap-
ter derives shape functions for tetrahedral elements in two dimensions within STFEM
and provides numerical solutions for various scenarios, highlighting the importance of
incorporating nonlinear terms. The derived characteristic matrices for the nonlinear
case are presented for the first time.

Chapter 5 explores the practical implementation of STFEM in a two-dimensional
model, detailing the characteristic matrices and the iterative process managed through
parallel computing. The algorithm of the solution was presented. The chapter high-
lights enhanced computational speed and efficiency through benchmarking. Finally,
the main conclusions resulting from the proposed method of discretization of the dif-
ferential equation of motion are presented.

In Chapter 6, the application of STFEM is illustrated through two examples cen-
tered on developing advanced impact protection materials. The first example focuses
on a smart elastic material that adapts properties in response to mechanical wave
propagation, while the second models a viscoplastic material. The findings confirm
the advantages of using STFEM in both parallel processing capabilities and complex
material modeling.

Chapters 7 and 8 summarize the manuscript, present conclusions, and plans for
further research on the presented issue.
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Chapter 2

Literature survey

2.1 Parallel Computing in Structural Dynamics

Numerical engineering computations are applied in various fields, including structural
analysis [86, 61, 2, 62, 81, 3], fluid dynamics [100, 57, 101, 38, 23, 60], electromag-
netism [27, 88, 30, 102, 28, 92], and thermal analysis [99, 24, 73, 42, 106, 72], to solve
highly complex problems that often involve non-linear equations and multi-physics in-
teractions. These methods enable engineers to simulate and predict how systems will
behave under real-world conditions, often eliminating the need for expensive physical
prototypes. For example, in structural analysis, numerical methods allow for detailed
assessments of stress and strain in materials under various loads, ensuring safety and
reliability in bridges, buildings, and other constructions. In fluid dynamics, they help
model airflow over airplane wings or water flow in hydraulic systems, providing critical
insights into efficiency and performance.

Computer simulations offer unparalleled flexibility, enabling engineers to test vari-
ous design scenarios and parameters before physical implementation. For instance, in
the automotive industry, simulations are used to analyze crash safety, optimize fuel
efficiency, and enhance the structural integrity of vehicles. Additionally, in electromag-
netism, numerical methods facilitate the design of advanced electrical components,
such as motors, transformers, and wireless communication devices, by predicting elec-
tromagnetic fields and power losses.

However, due to the immense data sets and complex algorithms involved, tradi-
tional computers may struggle to process such computations efficiently. As a result,
high-performance computing systems, including powerful clusters and supercomputers,
are often required to handle these demanding tasks. These systems leverage parallel
processing across multiple cores, employing both multicore CPUs and GPUs to divide
computations into smaller, manageable parts that can be executed simultaneously.
This parallelization significantly speeds up the computational process, allowing engi-
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neers to obtain accurate results in a fraction of the time it would take on conventional
hardware.

Fast and accurate numerical computations are vital not only for reducing product
development time but also for minimizing the risks associated with faulty designs or
incorrect assumptions. For example, in aerospace engineering, even minor miscalcula-
tions can lead to catastrophic failures. Numerical simulations allow for the exploration
of "what-if" scenarios, testing the limits of materials and systems in ways that are
impractical or too dangerous to experiment with in real life. Modern computational
technologies have revolutionized the engineering process, enabling rapid innovation and
more sustainable, safer designs across industries. Without these tools, many cutting-
edge developments in fields like renewable energy, biotechnology, and advanced manu-
facturing would be far more difficult, costly, and time-consuming to achieve.

Parallel computing has become a critical technique for addressing complex com-
putational problems in structural dynamics. The ability to distribute tasks across
multiple processors allows for significant reductions in computation time, enabling the
analysis of larger and more complex structures. This literature review explores the
development, application, and impact of parallel computing in the field of structural
dynamics, drawing from a variety of scholarly sources.

The early applications of parallel computing in structural dynamics began in the
1980s, driven by the need to handle increasingly complex structural analysis tasks.
Storaasli et al. (1987) were among the pioneers, documenting their experiences with
parallel computing systems and demonstrating that significant improvements in com-
putational efficiency could be achieved [96]. They highlighted the potential of parallel
algorithms to reduce the time required for large-scale structural computations, mark-
ing a significant step forward in the field. Following this, Hajjar and Abel (1988)
explored the use of domain decomposition techniques for transient nonlinear structural
dynamics. This approach allowed the division of a large computational domain into
smaller subdomains, which could be processed concurrently [48]. This work demon-
strated the feasibility and efficiency of parallel processing in handling the complexi-
ties of three-dimensional framed structures. These early efforts laid the groundwork
for subsequent advancements by proving that parallel computing could significantly
enhance the performance of structural dynamics simulations. The focus during this
period was primarily on exploiting the available parallel computing architectures, such
as vector processors and early multiprocessor systems, to handle the computational
load more effectively. Researchers also began to develop and refine parallel algorithms
specifically designed for structural dynamics applications. The success of these early
implementations encouraged further research and development in the field, leading to
more sophisticated techniques and broader applications. These foundational works es-
tablished the importance of parallel computing in structural dynamics and highlighted
the potential for continued innovation and improvement. The early developments in
parallel computing set the stage for the extensive use of these methods in modern
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structural analysis, paving the way for more complex and accurate simulations.
An interesting thread related to computation parallelization is time-parallel meth-

ods. The concept of time-parallel methods, which distribute the computation across dif-
ferent time steps, was introduced to improve the efficiency of solving dynamic problems.
Time-parallel methods, also known as parallel-in-time (PinT) methods, are advanced
computational techniques designed to solve time-dependent problems more efficiently
by distributing the computation of different time intervals across multiple processors
simultaneously. Traditional time integration methods, such as the finite difference or
finite element methods, solve the problem sequentially in time, which can be computa-
tionally expensive for large-scale structural dynamics problems. Time-parallel methods
address this limitation by allowing time steps to be computed in parallel, significantly
reducing the overall computation time. One of the pioneering works in this area was
the development of the Parareal algorithm. This method divides the time domain into
several sub-intervals and solves them iteratively. The Parareal algorithm uses a coarse
solver to provide an initial approximation over the entire time domain and a fine solver
to refine the solution within each sub-interval. This iterative approach ensures that
the computational effort is distributed across multiple processors, achieving parallelism.
Cortial and Farhat (2009) [29] proposed a time-parallel implicit method that specif-
ically targets non-linear structural dynamics problems. Their method demonstrated
substantial speed-ups by leveraging parallel computing resources to solve implicit time
integration schemes, which are commonly used in structural dynamics due to their
stability properties. The method efficiently handles the non-linearities and complex-
ities associated with structural dynamics by parallelizing the time domain. Farhat
et al. (2006) [35] revisited this framework in the context of linear structural dynam-
ics and near-real-time computing. They developed parallel implicit time-integration
algorithms (PITA) that aimed to deliver near-real-time predictions of structural re-
sponses. This was particularly useful for applications requiring rapid computations,
such as earthquake engineering and real-time monitoring of structures. Another sig-
nificant contribution to time-parallel methods is the multiple-shooting method. This
approach splits the time domain into smaller intervals, solves the initial value problem
independently within each interval, and then iteratively adjusts the solutions to ensure
continuity and consistency across the intervals. This technique is particularly benefi-
cial for stiff problems where traditional methods may struggle with stability and con-
vergence issues. Implementing time-parallel methods in structural dynamics requires
careful consideration of the problem’s characteristics, such as non-linearity, stiffness,
and boundary conditions. Domain decomposition techniques are often employed in
conjunction with time-parallel methods to partition the spatial domain, further en-
hancing parallelism. This combined approach ensures that both spatial and temporal
components of the problem are efficiently distributed across available computational
resources. The performance of time-parallel methods heavily depends on the communi-
cation overhead between processors. Efficient algorithms must minimize this overhead
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to fully exploit the benefits of parallelism. Techniques such as pipelining and asyn-
chronous communication are often used to achieve this goal. Recent advancements
in hardware, particularly the availability of high-performance GPUs, have further ac-
celerated the adoption of time-parallel methods. GPUs offer massive parallelism at a
relatively low cost, making them ideal for implementing PinT algorithms. Researchers
have reported significant speed-ups by leveraging GPU acceleration for time-parallel
computations in structural dynamics. Despite their advantages, time-parallel methods
also face challenges. Ensuring stability and convergence across multiple time inter-
vals can be difficult, particularly for highly non-linear problems. Developing robust
and scalable algorithms that can handle these challenges remains an active area of
research.

The field of structural dynamics has significantly benefited from advancements in
domain decomposition and finite element methods (FEM). These techniques have en-
abled the efficient analysis of complex structural systems by partitioning computational
tasks across multiple processors, reducing computation time, and enhancing accuracy.
Domain decomposition has been a popular strategy for parallelizing structural dynam-
ics computations. Sotelino (2003) [93] reviewed various parallel processing techniques
and their applications in structural engineering, highlighting the importance of domain
decomposition for handling large-scale structural dynamics problems. Yaghoubi et al.
(2015) [104] explored the integration of domain decomposition with model reduction
techniques to further enhance computational efficiency. Non-overlapping domain de-
composition methods have been effectively applied in structural mechanics, as discussed
by Gosselet and Rey (2006) [43]. Their work emphasizes the integration of finite and
discrete element methods to improve computational efficiency. Similarly, Kwak et al.
(2014) [63] presented a domain decomposition approach for simulating the dynamics
of flexible multibody systems, demonstrating the effectiveness of finite element tearing
and interconnecting methods. In the realm of nonlinear analysis, Jahromi et al. (2009)
[55] introduced a domain decomposition method for soil-structure interaction. This
method employs staggered time-marching schemes to handle complex coupling, signif-
icantly improving computational performance. Yagawa et al. (1991) [103] explored
large-scale finite element analysis using domain decomposition on parallel computers,
highlighting the benefits of this approach in handling extensive structural dynamics
problems. Adaptive finite element methods have also seen advancements, as shown
by Abas and Abdul-Rahman (2016) [1]. They integrated domain decomposition with
adaptive FEM for fluid-structure interaction, achieving better computational efficiency
and accuracy. Rao et al. (2003) [85] proposed a parallel overlapped domain decompo-
sition method specifically for nonlinear dynamic finite element analysis, enhancing the
efficiency of structural computations. Gravouil and Combescure (2003) [44] developed
a multi-time-step and two-scale domain decomposition method for non-linear struc-
tural dynamics, providing a robust framework for solving complex dynamic problems.
Stavroulakis et al. (2017) [94] leveraged GPU acceleration to enhance the perfor-
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mance of the spectral stochastic finite element method using domain decomposition,
demonstrating significant computational speed-ups. Rodrigues and Correa (2007) [87]
applied implicit domain decomposition methods to the coupled analysis of offshore
platforms, addressing the challenges posed by the marine environment on structural
dynamics. Farhat and Li (2005) [36] focused on iterative domain decomposition meth-
ods for solving indefinite problems in computational structural dynamics, improving
the efficiency of structural analysis through advanced iterative techniques. Overall,
these studies underscore the critical role of domain decomposition and finite element
methods in advancing the field of structural dynamics. By efficiently distributing com-
putational loads and integrating advanced numerical techniques, these methods have
paved the way for more accurate and faster analyses of complex structural systems.
The continuous development and integration of these methods with modern computa-
tional resources, such as GPUs, promise further enhancements in the capabilities and
applications of structural dynamics simulations.

The advent of more powerful computational resources, particularly high-performance
computing (HPC) systems and graphical processing units (GPUs), has significantly ac-
celerated research and applications in structural dynamics. These advancements have
enabled the implementation of highly parallel algorithms, which distribute computa-
tional tasks across many processors simultaneously, drastically reducing computation
times. GPUs have been particularly impactful due to their massive parallelism ca-
pabilities. Unlike traditional central processing units (CPUs), which may have a few
cores optimized for sequential processing, GPUs contain thousands of smaller cores
designed for handling multiple tasks concurrently. This architecture is ideal for the
repetitive and parallelizable nature of finite element analysis in structural dynamics.
Fazanaro et al. (2016) [37] demonstrated the role of GPUs in the numerical char-
acterization of nonlinear dynamical systems. By leveraging GPU acceleration, they
achieved significant performance gains compared to CPU-based computations. Sim-
ilarly, Kang et al. (2014) [59] proposed a GPU-based parallel computation method
for structural dynamic response analysis, using CUDA, a parallel computing platform
and application programming interface (API) model created by NVIDIA. CUDA al-
lows developers to harness the power of NVIDIA GPUs for general-purpose computing,
enabling the efficient execution of parallel algorithms. This capability has been widely
adopted in structural dynamics to accelerate finite element method (FEM) computa-
tions. The use of CUDA has demonstrated substantial reductions in computation time
for dynamic response analysis of large-scale structures. In addition to GPUs, other
HPC architectures, such as distributed computing clusters and supercomputers, have
facilitated advancements in structural dynamics. These systems consist of numerous
interconnected processors that work together to solve large-scale computational prob-
lems. The parallel nature of domain decomposition and time-parallel methods aligns
well with the architecture of HPC systems, enabling significant scalability and effi-
ciency improvements. Supercomputers, in particular, have played a crucial role in
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enabling researchers to tackle complex structural dynamics problems that were previ-
ously infeasible. The use of supercomputers allows for the simulation of highly detailed
models with millions of degrees of freedom, providing deeper insights into the behavior
of structures under various dynamic loads. The integration of advanced computational
resources with sophisticated numerical methods has also led to the development of
hybrid approaches. For instance, combining domain decomposition with model reduc-
tion techniques further enhances computational efficiency. Model reduction simplifies
the computational model by reducing the number of degrees of freedom while preserv-
ing essential system characteristics. Furthermore, advances in software development
have complemented hardware improvements. The creation of specialized libraries and
frameworks, such as PETSc (Portable, Extensible Toolkit for Scientific Computation)
and Trilinos, has provided researchers with powerful tools to implement parallel al-
gorithms more effectively. These libraries offer optimized routines for linear algebra
operations, solvers, and preconditioners, which are critical components in finite element
analysis. The continuous evolution of both hardware and software resources has also
driven advancements in multiscale modeling. This approach involves simulating phe-
nomena at multiple scales, from the microscopic to the macroscopic level, providing a
comprehensive understanding of structural behavior. High-performance computational
resources are essential for managing the enormous computational demands of multi-
scale models. Despite these advancements, challenges remain in fully exploiting the
capabilities of modern computational resources. Efficiently partitioning computational
tasks, minimizing communication overhead between processors, and developing scal-
able algorithms are ongoing areas of research. Additionally, the adoption of machine
learning techniques in structural dynamics presents new opportunities and challenges
for leveraging computational resources. Advances in computational resources, partic-
ularly GPUs and HPC systems, have revolutionized the field of structural dynamics.
By enabling highly parallel computations and integrating advanced numerical methods,
these resources have significantly improved the efficiency and accuracy of structural dy-
namics simulations. Ongoing research and development promise further enhancements,
paving the way for even more complex and detailed analyses in the future.

While parallel computing has brought substantial benefits to structural dynamics,
several challenges remain. The efficient partitioning of computational tasks and the
management of communication overhead between processors are critical for achieving
optimal performance. Additionally, the development of algorithms that can fully ex-
ploit the capabilities of modern parallel architectures continues to be an area of active
research. Negrut et al. (2014) [79] discussed the potential and limitations of parallel
computing in multibody system dynamics, arguing that it represents the main source
of performance improvement in the near future. Parallel computing has revolutionized
the field of structural dynamics by enabling the efficient analysis of complex structures
that were previously infeasible to study. From early implementations using domain
decomposition techniques to modern approaches leveraging GPUs, the field has seen
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substantial advancements. Continued research and development in parallel algorithms
and computational resources promise to further enhance the capabilities and applica-
tions of structural dynamics analysis.

2.2 Space-time finite element method

The number of works describing physical phenomena in space-time is enormous. Space-
time is considered a concept that allows for a more flexible description of phenomena
in various ranges. The proposed space-time way of formulation of dynamic tasks was
developed by many researchers and numerous publications on the subject can be found
in literature. However, the overwhelming majority of the work concerned mathematical
formulations, assumptions, proofs of existence, and uniqueness of solutions, and less
was devoted to algorithmic and computational aspects of solutions. Below we will
present only a few publications from a vast group to outline the scientific background
in which we will operate.

The evolution of space-time modeling in physical tasks has a rich history, beginning
with foundational work in the 1960s and progressing through significant methodological
advancements and diverse applications. The earliest attempts were made in 1964 by
Gurtin [46, 47] and Herrera [51], who introduced models that elucidated the relationship
between time and spatial variables using the theory of convolutions. These initial efforts
established the concept of space-time finite elements, a framework that allows for the
simultaneous consideration of temporal and spatial dimensions in modeling physical
phenomena. In 1969, Oden [83] expanded this framework by generalizing the finite
element method to include space-time considerations. Fried [41], along with Argyriss,
Scharpf, and Chan [5, 6, 7], contributed by treating spatial and temporal variables
with equal importance in physical problem formulations. Kączkowski [64, 65, 66, 68]
applied the space-time finite element method in the dynamics of structures.

Traditionally, the space-time finite element method used a fixed spatial division
of structures and assumed that each space-time element covered a rectangular region
within the time-space domain, leading to algorithms similar to direct numerical inte-
gration methods. However, Kączkowski identified limitations in this approach, arguing
that it restricted the method’s potential. To address this, he proposed the use of
non-rectangular, specifically triangular, elements. This modification offers several ad-
vantages. First, triangular elements provide greater flexibility, allowing them to adapt
more effectively to complex geometries and dynamic phenomena that result in non-
uniform deformation. Second, they offer improved accuracy by capturing the dynamic
behavior of structures more precisely, especially in cases involving concentrated forces
or abrupt geometric changes. Kączkowski demonstrated the efficacy of triangular el-
ements through examples of dynamic problems [69, 67, 70], showing that they can
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produce accurate results even when forces introduce discontinuities in the structure’s
shape.

The practical applications of space-time finite element methods have been diverse.
These methods have been effectively employed in wave propagation studies [53, 40, 4],
acoustics [98], and fluid mechanics [50]. Additionally, they have been explored for
mesh adaptation in dynamic problems [12]. In the realm of moving mass problems,
continuous task transitions facilitated by STFEM have been studied [14, 15, 31, 17],
and dynamic simulations in train-track interactions have demonstrated their practical
utility [33].

One of the critical aspects of space-time modeling is the selection of virtual func-
tions, which significantly influence the accuracy and stability of the solutions. Different
time-dependent functions result in various solution schemes, as highlighted in a review
by [16]. Despite these advancements, classical stationary discretizations remain the
dominant approach in engineering practice, with space-time elements being less fre-
quently used.

Innovations such as the introduction of symplectic elements for non-stationary spa-
tial divisions marked significant progress in the field. Initially proposed by Oden [83],
these elements have been successfully applied in various contexts, including beams
[10, 9, 13, 17]. Simplex-shaped elements have also been used in contact problems [11]
and tested within the context of advection-diffusion equations [20].

Further developments include the study of numerical information flow in space-time
meshes [32] and non-continuous formulations in time-space by Hulbert and Hughes
[53, 52]. Research has also addressed Stefan problems [26, 76], parabolic evolution
problems [95, 75], and Navier–Stokes equations [49], which involve lower-order time
derivatives. Approaches to moving boundary problems [25, 97] and mesh evolution
in vibration problems [12, 18] have further expanded the application of space-time
methods.

The application of the generalized Maxwell model to a 2D slab, which refined space-
time discretization, is another notable advancement [54]. Schafelner [91] provided a
comprehensive formulation of space-time methods for parabolic evolution problems
using unstructured decompositions. Behr [21] presented detailed formulations and
algorithmic considerations for these methods, and Kacprzyk [58] proposed special in-
terpolation functions to enhance their effectiveness.
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Chapter 3

The simplex-shaped space-time finite
element method

3.1 Information flow in mesh

In mainstream literature, numerical simulations of dynamic systems often rely on ex-
plicit and implicit integration methods to model the behavior of such systems over
time. These methods have distinct approaches to handling the inertia matrix, which
plays a critical role in wave propagation problems within dynamic systems. The in-
ertia matrix’s structure can significantly impact how information flows through the
space-time mesh during calculations. When the inertia matrix is consistent or band-
shaped, information transfers between nodes at a rapid pace in successive time steps,
almost instantly reaching all nodes in the system. This phenomenon, depicted in
Fig. 3.1, demonstrates a unique characteristic of how information spreads through
the mesh, akin to a wave, despite not being directly related to the physical system
being simulated. In cases where the inertia matrix is diagonal, the calculation scheme
is simplified into a system of separated algebraic equations. This simplification al-
ters the way information propagates through the mesh. An impulse or disturbance
at one node now propagates gradually to neighboring nodes in subsequent time steps,
rather than instantaneously reaching all nodes, as depicted in Fig. 3.2. The choice
of space-time mesh type and time integration scheme influences the speed at which
information propagates. The limitations or infinite speed of information flow in these
meshes can have implications on the accuracy of simulation results. For instance, lim-
ited information velocity is more suitable for hyperbolic problems, while infinite speed
is typical for parabolic problems. The latter may lead to issues such as wave reflections
from mesh boundaries affecting results significantly. To address these drawbacks, the
simplex-shaped space-time finite element method is introduced. This method enables
controlled one-way information flow at a limited speed, resulting in triangular matrices
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Figure 3.1: Information flow in methods with full inertia matrix

of algebraic equations. It permits the movement of numerical data in a single direction
at a restricted rate (Fig. 3.3). By allowing information propagation in a specified
direction at a reduced velocity, this method proves beneficial in scenarios like moving
load problems [32], where maintaining a smooth flow of information is crucial to avoid
non-physical disturbances in the mesh. The above properties can also be used in the
parallelization of calculations, which is the subject of this dissertation.

3.2 Mathematical background

Let us consider a continuum closed in a domain V , being a subdomain in Euclidean
space E3. V denotes the interior of this subspace and ∂V its boundary, being the sum
of ∂Vt and ∂Vu. Stress and displacement boundary conditions are assumed on ∂V . The
motion of the body in time interval [0, T ] is considered. Displacement vector u, velocity
vector v, inertial forces ρf , symmetric tensor of stresses σ and strains ε are determined
on Cartesian product of sets V × [0, T ]. Vector of surface forces t̂ is determined on
the product ∂V × [0, T ]. A set of kinematic and physical equations with boundary and
initial conditions describes the problem. Equations of motion are as follows

divσT + ρf = ρ
∂v

∂t
, (x, t) ∈ V × [0, T ]. (3.1)

The respective system of equations formulates the problem locally. The transition to
the global formulation is obtained by multiplication of (3.1) by the virtual displacement
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Figure 3.2: Information flow in explicit methods with diagonal inertia matrix

function δu(x, t). After integration we obtain∫ t1

t0

∫
V

(
divσT + ρf − ρv̇

)
δu dV dt+

∫ t1

t0

∫
∂Vt

t̂ δu d(∂V ) dt = 0 . (3.2)

Integration by parts yields∫ t1

t0

∫
V

ρ (fδu+ u̇ δu̇) dV dt+
∫ t1

t0

∫
∂Vt

t̂ δu d(∂V ) dt =
∫ t1

t0

∫
V

σδε dV dt . (3.3)

The domain {V , 0 ≤ t ≤ T} must be discretised. In this initial boundary problem, the
half-infinite space-time band can be split into various space-time finite elements. The
straightforward partition into rectangular elements in time (generally into multiplex
shape elements) makes this method similar to the classical FEM, with time integration
carried out with the Newmark family method.

The simplest space-time elements can be cut out of the time layer limited by planes
t = ti and t = ti+1 in forms of prisms. Thus final objects can be considered as finite
spatial elements extended over a time interval (Figure 3.4). The unknown parameters
like real and virtual displacements u and δu, respectively, and their derivatives u̇, ε,
σ etc. are interpolated from nodal displacements q and δq

u(x, t) = N(x, t) q, δu(x, t) = N∗(x, t) δq,

u̇(x, t) = Ṅ(x, t) q, δu̇(x, t) = Ṅ∗(x, t) δq, (3.4)
ε(x, t) = B(x, t) q, δε(x, t) = B∗(x, t) δq,

σ(x, t) = EB(x, t) q.
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Figure 3.3: Information flow in a simplex-shaped space-time finite element mesh.

Matrix B can be obtained by acting with a differential operator D on the shape func-
tions N: B = DN, where D = 1

2

(
grad + gradT

)
. Symbol (.)∗ refers to the virtual

state. The Kelvin-Voigt model of viscoelasticity defined by the Young modulus E and
viscous damping coefficient ηw is assumed. The above interpolation is applied to each
space-time subdomain. The set of local equations is then obtained.

Considering (3.4) in (3.3) the quadratic form of the equilibrium of the energy in
the time interval [t0, t1] can be written

NE∑
e=1

(
(ΠT

e δqe)
TΠT

e K̃eΠe ·ΠT
e qe − (ΠT

e δqe)
TΠT

e Qe

)
= 0. (3.5)

NE is the number of space-time elements in the space-time layer. Matrices Πe are
zero-one tables assigning degrees of freedom of the element to the global set of degrees
of freedom. These matrices determine the way of summation of local matrices into
a global matrix. The same process is carried on in a classical finite element approach.
The elemental space-time stiffness matrix K̃e can be considered in a similar way to the
equivalent stiffness matrix in the Newmark algorithm

K̃e = Ke +Me . (3.6)

Ke contributes the stiffness effect and is proportional to physical stiffness k multiplied
by time step h, while Me contributes the inertia effect and is proportional to physical
mass m divided by time step h.

If the Kelvin-Voigt model is assumed and damping forces are included in (3.1), two
additional terms We and Ze must be added to (3.6)

K̃e = Ke +Me +We + Ze . (3.7)
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Figure 3.4: Continuous time evolution of the 2D domain.

Final forms of stiffness Ke, inertia Me, internal We and external Ze element damping
matrices are given below

Ke =

∫ t1

t0

∫
V

(DN)T EDN dV dt ,

Me = −
∫ t1

t0

∫
V

(
∂N

∂t

)T

R
∂N

∂t
dV dt , (3.8)

We =

∫ t1

t0

∫
V

(DN)TηwD
∂N

∂t
dV dt ,

Ze =

∫ t1

t0

∫
V

NTηz
∂

∂t
N dV dt ,

where R is the matrix of inertia and ηz is the external damping coefficient.
The vector of external forces acting on the space-time element is denoted by Qe

Qe =

∫ t1

t0

∫
V

Ne(x, t) t̂(x, t) dV dt . (3.9)

Let us denote the initial displacement vector by q0 and initial velocities by q̇0

q0 =
NE∑
e=1

ΠT
e

∫
Ve

Ne(x, 0) u(x, 0) dVe , q̇0 =
NE∑
e=1

ΠT
e

∫
Ve

Ne(x, 0) u̇(x, 0) dVe . (3.10)

Finally, the equilibrium of the i-th time layer bounded by ti and ti+1 is described by
the equation [

K̃i(1,1) K̃i(1,2)

K̃i(2,1) K̃i(2,2)

]{
qi

qi+1

}
=

{
Qi

Qi+1

}
. (3.11)
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The above submatrices of the space-time finite element K̃i(1,1), K̃i(1,2), K̃i(2,1), and
K̃i(2,2), containing the influence of classical stiffness, inertia, and damping, are combined
into global matrices denoted simply as Ai, Bi, Ci, and Di, respectively, where i is the
time layer, in a commonly known way dependent on the topology of the mesh. The
space-time element matrices and resulting global matrices overlap in a common zone
for a given time step. The same happens when forming global matrices in space in the
classical finite element method.

3.3 Properties of space-time approximation with sim-
plex elements

Properties of simplex shape space-time elements used in the parallelization of the com-
putational process in subsequent time steps will be presented below.

The first feature is the possibility of a half-decoupling of the system of algebraic
equations. It locates this method of space-time elements between methods with diago-
nal matrices of coefficients of the system of equations and full or band matrices. Let’s
look at the topology of the spatial mesh, supplemented mentally by several successive
space-time layers. We must note in advance that in each case we finally get to solve
a system of algebraic equations with the number of unknowns equal to the number
of degrees of freedom in a spatial problem. It happens that the reader, observing
the presented schematic diagrams, misreads the computational cost of the presented
method. 

A0 B0 0 0 ...

C0 D0+A1 B1 0 ...

0 C1 D1+A2 B2 ...

0 0 C2 D2 ...

... ... ... ... ∞





q0

q1

q2

q3

...


=



F0

F1

F2

F3

...


. (3.12)

Figure 3.5: Matrix equation for one-time layer.
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Each space-time layer generates a matrix equation of equilibrium, binding the state
of the system in two moments limiting this layer, i.e. in moments ti and ti+∆t. Knowing
the previous state allows you to move to the next state in a stepwise procedure.

Figure 3.5 shows the idea of building a matrix equation

Ci−1qi−1 + (Di−1 +Ai)qi +Biqi+1 = Fi . (3.13)

The initial conditions or solutions from the previous steps reduce (3.13) to a simple
equation

Biqi+1 = Fi −Ci−1qi−1 − (Di−1 +Ai)qi (3.14)
where on the right we have all the known members. The matrix Bi with the given
below node numbering strategy is a lower triangular matrix.

Decoupling of the system of equations
In Figure 3.6 the example of a 1D structure composed of 4 spatial elements modeled
with triangular space-time elements is depicted. The resulting matrix B is a lower
triangular one. Different numbering of nodes and correspondingly different schemes of

Figure 3.6: Triangular matrix and the information flow between nodes in the exem-
plary 1-D structure.

diagonal edges of space-time simplex elements allow us to obtain an upper triangular
matrix. In yet another case, we will get the coefficients on both sides of the diagonals,
but in each case it will be the same system of equations, differing only in the permu-
tation of the unknowns and can be solved equation by equation.
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Before we move on to the actual algorithm, there are some more noteworthy features
of the method. The first one is the possibility of breaking down the task into classic
sub-tasks described, for example, with the usual finite element method or the method
of space-time elements in the shape of multiplexes, joined by a space-time layer of
symplectic elements. This is shown in the Figure 3.7. The global coefficient matrix in

Figure 3.7: Division of the structure into sub-systems solved sequentially.

this case has the form shown in Figure 3.8. Subsystem I can be solved without the
need to set the unknowns 5–12. Next, subsystem II is resolved. At the same time,
subsystem I can be solved, provided that new values of the coefficients of submatrix
I can be determined. In other words, the matrix in Figure 3.8 is a block-triangular
matrix. Propagation of the calculation zone is shown in Figure 3.9. Real-time is the

Figure 3.8: Sequential solution of subsystems I, II, and III depicted in Figure 3.7.

astronomical time in which calculations on the computer run. Model time is the time
during which the simulated phenomena are observed. Physical space is the Euclidean
space of the structure as seen by the observer.

It is possible to draw an identical scheme when instead of three subsystems we place
many symplectic elements in the scheme. The computational front will move vertically
and the time front will move diagonally. Of course, the scheme is artificially arranged.
In order to obtain an image of the entire structure at a certain moment, it would be
necessary to slightly hold down the calculations of lower number subsystems and wait

25



Figure 3.9: Propagation of the calculation zone.

a few or a dozen steps to catch up with the calculations in subsystems with higher
numbers.

Successive systems of equations with a triangular matrix can be solved in batches.
After solving the initial part of the first set of equations and completing the topology-
required unknowns, one can go back to solving the first unknowns of the next set of
equations without solving the remaining unknowns of the first set, unless the initial
equations are still dependent on unsolved unknowns.

Let us focus on the solution performed in parts. After calculating the unknowns
No. 1, 2, 3, 4 in step No. 1, we can return to the solution of the unknown No. 1 in the
2nd step, and calculate the remaining unknowns of the first step in parallel with the
unknown No. 1 of step 2. In this way, the calculations can be carried out in parallel on
portions of systems of equations. When the 4th batch is calculated at time ti−3, the
3rd batch in parallel will be calculated at time ti−2, batch 2 at time ti−1, and batch 1
at the most advanced time, i.e. at time ti. In this way, the computational process will
move in a sloping front.

Numbering of nodes in symplexes
Once we know what solving a task divided into sub-areas is all about, it is necessary to
show how to automate the generation of space-time elements with any spatial dimen-
sionality. One of the simplest ways of assigning the node numbers of the first generated
space-time element is simply adding to the already existing node numbers of the spa-
tial element one node at a time of the next time layer. Nodes of consecutive elements
are numbered by shifting the sequence of numbers to the left and adding in the last
position the number of the first node referred to the moment t+∆t, i.e. increased by
NP. For example, we show a spatial bar element with the numbers i, j, and a one-time
node with the number i+NP, where NP is the number of spatial grid nodes. Space-time
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prism based on space-time element i, j will be filled with space-time elements (Figure
3.10). The final pair of space-time triangles are depicted in Figure 3.11. The addition
of NP to numbers in this figure indicates that the nodes numbered in space i and j are
related to the next time layer.

i j i+NP

j i+NP j +NP

Figure 3.10: Scheme of node numbering in the case of 1D element.

In the case of a three-dimensional element in the shape of a tetrahedron, these will

Figure 3.11: Example of node numbering in space-time triangles.

be four space-time elements (Figure 3.12). For some practical reasons, it is good to
arrange the nodes i,.., l in ascending order.

i j k l i+NP

j k l i+NP j +NP

k l i+ np j +NP k +NP

l i+ np j +NP k +NP l +NP

element 1:

element 2:

element 3:

element 4:

Figure 3.12: Scheme of node numbering in the case of 3D tetrahedral element.

So, starting from a spatial, classic discrete mesh, we can generate geometry se-
quences of space-time elements, determine the matrices of these elements, and we can
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compose global matrices of coefficients. Of course, in that case, we would not yet get
the desired benefits. We need to fill the fragments of the coefficient matrix according to
the appropriate scheme, and then, also according to the appropriate algorithm, solve
the subsystems of equations, free the memory, and fill it again with the coefficients
determined from the variable non-linear terms in advancing time.

Nonlinear iteration in a subdomain
Figure 3.13 illustrates another feature resulting from the possibility of separating the
system of equations. This can be effectively applied in solutions to nonlinear problems,
where nonlinearity affects only a limited spatial region. Proper separation of the struc-
ture into subdomains causes a part of the unknowns located in the central part of the
vector to not affect the solution of the unknowns in the initial and final parts of the vec-
tor. This is achieved by introducing a layer of symplectic elements with appropriately
directed oblique edges. This can be easily obtained by appropriate numbering of nodes
in the spatial grid and then applying the method of numbering symplectic elements
presented in Figures 3.10, 3.12. Thanks to this approach, the iterative solution in a
single time step is limited to iteratively solving a small part of the system, which is
denoted on the structure scheme in Figure 3.13 with a shadow and in the matrix with a
darker background. The arrows in the figure show the flow of information between the

Figure 3.13: The range of influence of non-linear factors on the solution of one-time
step.

nodes at the interface between the regions and between time steps. It can be seen that
the unknown values in the outer zones, calculated in the first iteration, influence the
solutions of the inner zone in the subsequent iterations (nodes 5–8 in t=∆t), not the
other way around. Specifically, the results of the inner zone do not affect the results
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already obtained in the outer zones.
The influence of nonlinearity explicitly affects the solution in the next step and

subsequent steps. The same effect is achieved by using simplex elements throughout
the spatial domain.
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Chapter 4

Selected engineering problems

In this chapter, we focus on selected examples of one- and two-dimensional structures
to demonstrate the application of numerical methods in structural analysis. The first
example explores the small deformations of a rod, a classic one-dimensional problem,
while the second example examines a two-dimensional plane stress state. These two
cases provide a comprehensive framework for understanding the effectiveness of the
numerical approach, particularly in deriving characteristic matrices like stiffness and
inertia matrices, which are essential for structural computations.

For the one-dimensional case, we begin with the problem of small deformations in a
rod under axial loading. The governing equations are derived based on the assumptions
of linear elasticity, allowing us to define the problem in terms of displacements and
external forces. Using these formulations, simplex shape functions were constructed
to approximate the displacement field within the rod. These shape functions form the
foundation for developing the stiffness and inertia matrices, which capture the rod’s
resistance to deformation and its dynamic behavior under external loads.

The two-dimensional example deals with a plane stress state, a common scenario
in structural mechanics, particularly for thin plates and shells. The problem is defined
by considering equilibrium equations in two dimensions, assuming that out-of-plane
stresses are negligible. Similar to the one-dimensional case, simplex shape functions
were derived to represent the displacement fields within the two-dimensional domain.
These shape functions were then used to derive the stiffness and inertia matrices for
the structure, providing a complete representation of its mechanical behavior.

In both cases, the derivation of stiffness and inertia matrices follows from the prin-
ciple of virtual work, ensuring consistency with the underlying physical laws. The use
of simplex shape functions allows for a straightforward and computationally efficient
formulation, making these methods particularly suitable for numerical implementations
such as the finite element method (FEM). The effectiveness of the derived characteristic
matrices is demonstrated through simple examples, where the theoretical predictions
are compared with numerical solutions. These examples serve as a foundation for more
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complex structural problems and highlight the versatility of the numerical approach
in handling both static and dynamic cases. By analyzing the small deformations of
a rod and the plane stress state in two dimensions, we aim to illustrate the broader
applicability of this methodology in structural engineering and its potential for solving
real-world problems with precision and efficiency.

4.1 Small deformation of rod

4.1.1 Problem definition

The study of small deformations in rods is a fundamental problem in structural me-
chanics. The objective is to determine the displacement field within a rod subjected to
external forces and constraints, assuming that the deformations are sufficiently small
such that the linear theory of elasticity applies.

Let us consider a rod of length L, uniform cross-sectional area A, Young’s modulus
E, and mass density ρ, subjected to an external body force f(x, t) per unit length. The
rod undergoes small deformations, which is w(x, t), allowing the use of linear elasticity
theory, where x (0 ≤ x ≤ L) and t represent the location of rod and time. Fig. 4.1
shows the general case for a one-dimensional problem. An infinitesimal segment of the

L

f(x, t)

A

ρ,E w(x, t)

Figure 4.1: General one-dimensional case.

rod between x and x +∆x was presented in Fig. 4.2. According to Newton’s law, the

∆x

F (x, t) F (x+∆x, t)

w(x, t) w(x+∆x, t)

Figure 4.2: The force analysis of an infinitesimal segment in the rod.

forces analysis of this segment can be written in the following form

F (x+∆x, t)− F (x, t) + f(x, t)∆x = ρA∆x
∂2w

∂t2
. (4.1)
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The internal force F within the rod is as follows

F (x, t) = σ(x, t)A , (4.2)

where σ is the stress.
Next, let us consider the relationship between displacement u and strain ϵ. In our

case, the definition of this infinitesimal segment is given by the formula

ϵ(x, t) =
w(x+∆x, t)− w(x, t)

∆x
. (4.3)

According to Taylor series, (4.3) can be written as follows

ϵ(x, t) =
w(x+∆x, t)− w(x, t)

∆x
=

w(x, t) + ∂w(x,t)
∂x

∆x− w(x, t)

∆x
. (4.4)

Therefore, the strain ϵ is related to the displacement w by

ϵ(x, t) =
∂w(x, t)

∂x
. (4.5)

Moreover, Hooke’s Law gives

σ(x, t) = Eϵ(x, t) = E
∂w(x, t)

∂x
. (4.6)

Similarly, using Taylor series expansion and neglecting higher-order terms the stress
can be presented in the following form

σ(x+∆x, t) = σ(x, t) +
∂σ(x, t)

∂x
∆x . (4.7)

Substituting (4.2) to (4.7) into the equilibrium equation (4.1) and simplifying

∂

∂x

(
EA

∂w(x, t)

∂x

)
+ f(x, t) = ρA

∂2w(x, t)

∂t2
. (4.8)

In most instances, assuming E is constant, the one-dimensional solid mechanical dif-
ferential equation is

EA
∂2w(x, t)

∂x2
+ f(x, t) = ρA

∂2w(x, t)

∂t2
. (4.9)
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Figure 4.3: The first type of simplex-shaped discretization.
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Figure 4.4: The second type of simplex-shaped discretization.

Figure 4.5: An arbitrary space-time triangle sub-element.

4.1.2 Simplex-shaped functions

In the case of one-dimensional structures such as a rod, simplex-shaped space-time
discretization is possible in two variants. The first type of discretization is shown in
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Fig. 4.3, while the second type of discretization is shown in Fig. 4.4. Due to the time
variable t, the space-time discretization is of the second dimension.

Figure 4.5 shows an arbitrary space-time triangular sub-element, which will be
the basis for deriving shape functions for single finite elements in two versions. Let
us consider an arbitrary triangular sub-element with vertices at coordinates (x1, t1),
(x2, t2) and (x3, t3). The displacement of every node is described as follows w(x1, t1) =
q1, w(x2, t2) = q2 and w(x3, t3) = q3. Assuming a linear distribution of displacements
in the rod element, we can write

w(x, t) = a1x+ a2t+ a3 . (4.10)

Eq. (4.10) can be written in the following matrix form

w(x, t) = g a , (4.11)

where g = [x, t, 1] and a = [a1, a2, a3]
T . Taking into account (4.11) and using the

notation based on the nodal values in the triangle, the following matrix equation is
presented q1q2

q3

 = Ga , (4.12)

where

G =

x1 t1 1
x2 t2 1
x3 t3 1

 . (4.13)

By performing simple mathematical operations, we obtain a recipe for calculating the
polynomial coefficients (4.10) of the following form

a = G−1

q1q2
q3

 . (4.14)

According to (4.11) and (4.14) the final equation describing the displacements in the
finite element using nodal values can be presented in the following form

w = gG−1

q1q2
q3

 . (4.15)
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Figure 4.6: A single space-time element of the simplex shape in version 1.

4.1.2.1 1st version of simplex-shaped finite element

According to Fig. 4.3, a single space-time element of the simplex shape in version 1 is
shown in Fig. 4.6. The width of elements is b and the height is h. The rod elements are
divided into two triangular sub-elements. Consequently, we need to derive the shape
functions for each triangular separately and then combine them to obtain the shape
function for the entire space-time element.

1st space-time triangular sub-element The coordinates of the first element are
shown in the Table 4.1

node 1 x = 0 t = 0
node 3 x = 0 t = h
node 4 x = b t = h

Table 4.1. Coordinates in 1st type of space-time elements and 1st triangle sub-
element (Fig. 4.6).

Taking into account the data from the table and using (4.13) and (4.15) we can
describe the nodal displacements for the first triangle in the following form

w1 = N11q1 +N13q3 +N14q4 , (4.16)

where the shape functions are given by formulas

N11 = 1− t

h
,

N13 =
t

h
− x

b
,

N14 =
x

b
.

(4.17)
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2nd space-time triangular sub-element The coordinates of the second element
are shown in the Table 4.2

node 1 x = 0 t = 0
node 2 x = b t = 0
node 4 x = b t = h

Table 4.2. Coordinates in 1st type of space-time elements and 2nd triangle sub-
element (Fig. 4.6).

According to (4.13) and (4.15) the nodal displacements for the second triangle can
be given in the following form

w2 = N21q1 +N22q2 +N24q4 , (4.18)

where the shape functions are given by formulas

N21 = 1− x

b
,

N22 =
x

b
− t

h
,

N24 =
t

h
.

(4.19)

4.1.2.2 2nd type of simplex-shaped finite element

According to Fig. 4.4, a single space-time element of the simplex shape in version 1 is
shown in Fig. 4.7.

x

t

h

b1 (0, 0) 2 (b, 0)

3 (0, h)
4 (b, h)

sub-element 1○

sub-element 2○

Figure 4.7: The second type of simplex-shaped discretization.
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1st space-time triangular sub-element The coordinates of the first element are
shown in the Table 4.3

node 1 x = 0 t = 0
node 2 x = b t = 0
node 3 x = 0 t = h

Table 4.3. Coordinates in 2nd type of space-time elements and 1st triangle sub-
element (Fig. 4.7).

According to (4.13) and (4.15) the nodal displacements for the first triangle can be
written as follows

w1 = N11q1 +N12q2 +N13q3 , (4.20)

where formulas give the shape functions

N11 = 1− x

b
− t

h
,

N12 =
x

b
,

N13 =
t

h
.

(4.21)

2nd space-time triangular sub-element The coordinates of the second element
are shown in the Table 4.4 According to (4.13) and (4.15) the nodal displacements for

node 2 x = b t = 0
node 3 x = 0 t = h
node 4 x = b t = h

Table 4.4. Coordinates in 2nd type of space-time elements and 2nd triangle sub-
element (Fig. 4.7).

the second triangle can be given in the following form

w2 = N22q2 +N23q3 +N24q4 , (4.22)

where formulas give the shape functions

N22 = 1− t

h
,

N23 = 1− x

b
,

N24 =
x

b
+

t

h
− 1 .

(4.23)
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4.1.3 Characteristic matrices

This subsection will develop characteristic matrices that provide a space-time repre-
sentation of the rod structure. By multiplying the motion equation (4.9) by virtual
displacements and integrating over the area defined by the space-time triangle, we
derive the time-work equation. This process involves considering how the virtual dis-
placements interact with the equations governing motion. Following this, we apply
classical minimization techniques to optimize the time-work equation with respect to
the virtual values we introduced. As a result of this minimization, we obtain the linear
stiffness matrix K, which reflects the structural response to deformation, and the in-
ertia matrix M , which represents the mass distribution characteristics of the system.
Furthermore, each local characteristic matrix is constructed by summing two matrices
that are calculated using the appropriate shape functions, as depicted in Fig. 4.5.

4.1.3.1 The stiffness matrix

Based on the standard representations of characteristic matrices (3.8), the linear stiff-
ness matrix can be expressed in the following integral form

Kij =

∫
S

BT
i EBj dS . (4.24)

The B matrices characterize the linear component of the strains within the element.
We establish the structure of the matrix B by utilizing differential operators on the
relevant shape functions

BT
i =

∂Ni

∂x
, (4.25)

Bj =
∂Nj

∂x
. (4.26)

If the triangle is defined by 3 points (x1, t1), (x2, t2) and (x3, t3) and the origin of the
coordinates is taken at the centroid, then integration over the area of the triangle can
be calculated as the following determinant

Se =
1

2

∣∣∣∣∣∣∣
x1 t1 1
x2 t2 1
x3 t3 1

∣∣∣∣∣∣∣ . (4.27)

Hence, the process of integration (4.24) can be summarized using the following notation

Kij = ESeB
T
i Bj . (4.28)
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1st type of simplex-shaped finite element Considering the shape functions of
the first triangle (4.17) and the second triangle (4.19), the vectors B in this situation
appears as follows

B1 =
[
0 −1

b
1
b

]
, (4.29)

B2 =
[
−1

b
1
b

0
]
. (4.30)

Substituting (4.29) and (4.30) into (4.28) gave the stiffness matrices of both sub-
elements

K1 =
ESeh

2b

0 0 0
0 1 −1
0 −1 1

 , (4.31)

K2 =
ESeh

2b

 1 −1 0
−1 1 0
0 0 0

 . (4.32)

Finally, the stiffness matrix of the first type of simplex element is the sum of (4.31)
and (4.32)

K =
ESeh

2b


1 −1 0 0
−1 1 0 0
0 0 1 −1
0 0 −1 1

 . (4.33)

2nd type of simplex-shaped finite element Similarly, taking into account the
shape functions of the first triangle (4.21) and the second triangle (4.23), the vectors
B in this context are represented as follows

B1 =
[
−1

b
1
b

0
]
, (4.34)

B2 =
[
0 −1

b
1
b

]
. (4.35)

Substituting (4.34) and (4.35) into (4.28) we obtained the stiffness matrices for both
sub-elements

K1 =
ESeh

2b

 1 −1 0
−1 1 0
0 0 0

 , (4.36)

K2 =
ESeh

2b

0 0 0
0 1 −1
0 −1 1

 . (4.37)
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Ultimately, the stiffness matrix for the second type of simplex element results from the
combination of (4.36) and (4.37)

K =
ESeh

2b


1 −1 0 0
−1 1 0 0
0 0 1 −1
0 0 −1 1

 . (4.38)

The stiffness matrix (4.33) and (4.38) have the same form.

4.1.3.2 The inertia matrix

Considering the standard representations of the characteristic matrices (3.8), the inertia
matrix can be expressed in the following manner

Mij =

∫
S

CT
i ρCj dS , (4.39)

where the matrix C describes the velocities in the finite element and is as follows

CT
i =

∂Ni

∂t
, (4.40)

Cj =
∂Nj

∂t
. (4.41)

Since the derivative of the shape function (4.10) with respect to time is constant, the
integral (4.39) reduces to a matrix product

Mij = ρSeC
T
i Cj , (4.42)

where Se is the space-time area of the triangle and we can calculate it using the deter-
minant (4.27).

1st type of simplex-shaped finite element Taking into account the shape func-
tions of the first triangle (4.17) and the second triangle (4.19), the vectors C in this
context are represented as follows

C1 =
[
− 1

h
1
h

0
]
, (4.43)

C2 =
[
0 − 1

h
1
h

]
. (4.44)
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Replacing (4.43) and (4.44) in (4.42) resulted in the inertia matrices for both sub-
elements

M1 =
ρSeb

2h

 1 −1 0
−1 1 0
0 0 0

 , (4.45)

M2 =
ρSeb

2h

0 0 0
0 1 −1
0 −1 1

 . (4.46)

Finally, the inertia matrix for the first type of simplex element is derived from the
combination of (4.45) and (4.46)

M =
ρSeb

2h


1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

 . (4.47)

2nd type of simplex-shaped finite element Considering the shape functions of
the first triangle (4.21) and the second triangle (4.23), the vectors C in this context
are depicted as follows

C1 =
[
− 1

h
0 1

h

]
, (4.48)

C2 =
[
− 1

h
0 1

h

]
. (4.49)

By inserting (4.48) and (4.49) into (4.42), the inertia matrices for both sub-elements
can be expressed as follows

M1 =
ρSeb

2h

 1 0 −1
0 0 0
−1 0 1

 , (4.50)

M2 =
ρSeb

2h

 1 0 −1
0 0 0
−1 0 1

 . (4.51)

In conclusion, the inertia matrix for the second type of simplex element is derived from
the addition of (4.50) and (4.51)

M =
ρSeb

2h


1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

 . (4.52)
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4.1.4 Example

Let us consider a rod of length L and uniform cross-sectional area A. The rod is
composed of a homogeneous, isotropic material with Young’s modulus E and mass
density ρ. The left end of the rod was fixed and the axial force P was applied to the
right end. The diagram of the example is presented in Fig. 4.8. The following set of

L

Fixed End
Pρ,E,A

Figure 4.8: Scheme of the rod example.

dimensionless data was used:

• Length of rod L = 5

• Cross-Sectional area A = 1

• Young’s modulus E = 1

• Mass density ρ = 0.01

• Axial force P = 1

The rod was divided into 20 finite elements and a time integration step of h = 0.01 was
applied. Own computer programs were developed. The problem was solved using the
characteristic matrices (4.33) and (4.47) describing the dynamics of the rod. The sim-
ulation results were compared with an independent solution obtained by the classical
finite element method. The Newmark method was used for time integration. Fig. 4.9
and 4.10 show the results obtained in two different loading scenarios. In Fig. 4.9 we
can observe the simulation results in the case of the impulse of force. The load marked
as P corresponds to the force which is applied only in the first time step of the calcu-
lation. In the second case, the load P is characterized by a constant force. The results
are presented in Fig.4.10. The examination of these results highlights a significant
and noteworthy finding: regardless of whether the computational model utilizes the
simplex-shaped space-time finite element method or the more traditional finite ele-
ment technique combined with the Newmark method, the resulting data demonstrates
a strong degree of correlation. This correlation suggests that both approaches yield
similar outcomes, which speaks to the robustness of the analysis.
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Figure 4.9: Displacement overtime at the end of a rod (the impulse of force).

Figure 4.10: Displacement overtime at the end of a rod (a constant force).

4.2 Large deformation in plain-stress problem

4.2.1 Plane-stress problem definition

Plane stress is defined to be a state of stress within a specific plane of a material,
assuming that any stress components perpendicular to that plane are effectively zero
or negligible. In-plane stress analysis, we consider the body to be like a thin plate in
which one dimension is much smaller than the others. Any applied loads are distributed
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evenly over the entire thickness of the plate and act in the plane of the plate.
Let us consider a two-dimensional structural model considering large deformations

for plane elasticity, taking into account body forces and inertia. The system of partial
differential equations constituting the system of motion equations can be written in
the following form

∂

∂x
σx(x, y, t) +

∂

∂y
τxy(x, y, t) + fx = ρ

∂2

∂t2
u(x, y, t) ,

∂

∂y
σy(x, y, t) +

∂

∂x
τxy(x, y, t) + fy = ρ

∂2

∂t2
v(x, y, t) ,

(4.53)

where σx and σy are normal stresses and τxy is the shear stress. fx and fy denote the
body forces per unit volume in the x and y directions, respectively, and ρ is the density
of the material.

In a plane stress problem, the elastic constitutive relations refer to the mathematical
equations that define how stress and strain are related in the material. These relations
typically involve Hooke’s Law, which states that stress is proportional to strain within
the elastic limit of the material. The stress-strain relation can be given as σx

σy

τxy

 =
E

1− ν2

 1 ν 0
ν 1 0
0 0 1

2
− ν

2


 ϵx

ϵy
γxy

 , (4.54)

where the constitutive matrix is described by the modulus of elasticity E and Poisson’s
ratio ν. The ϵx, ϵy and γxy strains are the longitudinal strains along the x-axis, the
longitudinal strains along the y-axis, and the shear strains, respectively.

The general two-dimensional state of strain at some point in a structure is repre-
sented by the infinitesimal element. Fig. 4.11 shows the geometric deformation of an
element AOB. Point O is the original position, and after deformation, the shape arrives
at A′O′B′. We assume the length of OA is dx, and the length of OB is dy. Therefore,
the coordinate of points are A(x0+dx, y0) and B(x0, y+dy). After deformation, points
A and B move to A′ and B′. Furthermore, we assume the displacement of x direction
and y direction of point arbitrary are u(x, y) and v(x, y){

u = u(x0, y0) ,

v = v(x0, y0) .
(4.55)

According to the Taylor series, the deformations of points A and B can be presented
in the following forms

A :

{
u(x0 + dx, y0) = u(x0, y0) +

∂u(x0,y0)
∂x

dx ,
v(x0 + dx, y0) = v(x0, y0) +

∂v(x0,y0)
∂x

dx ,
(4.56)
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O(x0, y0)
A(x0 + dx, y0)

B(x0, y0 + dy)

O′(x, y)

A′

B′

dx

dy

Figure 4.11: The general two-dimensional state of strain represented by infinitesimal
element dxdy.

B :

{
u(x0, y0 + dy) = u(x0, y0) +

∂u(x0,y0)
∂y

dy ,
v(x0, y0 + dy) = v(x0, y0) +

∂v(x0,y0)
∂y

dy .
(4.57)

The coordinates of points O′, A′, B′ are

O′(x0 + u(x0, y0), y0 + v(x0, y0)),

A′
(
x0 + dx+ u(x0, y0) +

∂u(x0, y0)

∂x
dx, y0 + v(x0, y0) +

∂v(x0, y0)

∂x
dx
)
,

B′
(
x0 + u(x0, y0) +

∂u(x0, y0)

∂y
dy, y0 + dy + v(x0, y0) +

∂v(x0, y0)

∂y
dy
)
.

(4.58)

Now, we can calculate the length of O′A′ and O′B′. It is worth noting that since dx
and dy are infinitesimal, some approximate calculations will be used in the following
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calculations

O′A′ =

√(
dx+

∂u(x0, y0)

∂x
dx
)2

+

(
∂v(x0, y0)

∂x
dx
)2

= dx

√(
1 +

∂u(x0, y0)

∂x

)2

+

(
∂v(x0, y0)

∂x

)2

= dx

√
1 + 2

∂u(x0, y0)

∂x
+

(
∂v(x0, y0)

∂x

)2

= dx

(
1 +

∂u(x0, y0)

∂x
+

1

2

(
∂v(x0, y0)

∂x

)2
)

,

(4.59)

O′B′ =

√(
∂u(x0, y0)

∂y
dy
)2

+

(
dy +

∂v(x0, y0)

∂y
dy
)2

= dy

√(
∂u(x0, y0)

∂y

)2

+

(
1 +

∂v(x0, y0)

∂y

)2

= dy

√
1 + 2

∂v(x0, y0)

∂y
+

(
∂u(x0, y0)

∂y

)2

= dy

(
1 +

∂v(x0, y0)

∂y
+

1

2

(
∂u(x0, y0)

∂y

)2
)

.

(4.60)

Taking into account (4.59) and (4.60), the longitudinal strains in the x and y directions
can be written as follows

ϵx =
O′A′ −OA

OA
=

∂u(x0, y0)

∂x
+

1

2

(
∂v(x0, y0)

∂x

)2

, (4.61)

ϵy =
O′B′ −OB

OB
=

∂v(x0, y0)

∂y
+

1

2

(
∂u(x0, y0)

∂y

)2

. (4.62)

Finally, the relationship between displacements and strains can be written in the fol-
lowing form

ϵx =
∂u

∂x
+

1

2

(
∂v

∂x

)2

,

ϵy =
∂v

∂y
+

1

2

(
∂u

∂y

)2

,

τxy =
∂u

∂y
+

∂v

∂x
.

(4.63)
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The system of motion equations (4.53), the stress-strain relation (4.54), and the displacements-
strains relation (4.63) provide a complete description of the problem.

4.2.2 Simplex-shaped functions

According to Chapter 3, the space-time description of a considered structure is always
one dimension larger than space. Therefore, a spatial two-dimensional structure is
represented by a three-dimensional space-time element (Fig. 4.12). Additionally, in the

Figure 4.12: A 2-dimensional problem.

case of three-dimensional symplectic elements, space-time is divided into 3 tetrahedral-
shaped elements as shown in Fig. 4.13.

1 2

4 5

6

3

1st element
1 2

4 5

6

3

2nd element
1 2

3

4 5

6

3rd element

a

bh

Figure 4.13: Simplex-shaped space-time sub-elements in a two-dimensional space
problem.

Due to the displacement as the function of x, y and t, if we define u as the dis-
placement along the x-axis, and v is the displacement along the y-axis. In linear
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interpolations, they can be written as

u(x, y, t) = a1x+ a2y + a3t+ a4 ,

v(x, y, t) = b1x+ b2y + b3t+ b4 .
(4.64)

The above Eq (4.64) also can be written as matrix form

u(x, y, t) = g a ,

v(x, y, t) = g b ,
(4.65)

where g = [x, y, t, 1], a = [a1, a2, a3, a4]
T and b = [b1, b2, b3, b4]

T . In fact, the coefficients
a1, a2, a3, a4 and b1, b2, b3, b4 are the desired shape functions.

Let denote gi as a value of vector g at point xi, yi and ti(i = 1, 2, 3, 4)
u1

u2

u3

u4

 =


g1 a
g2 a
g3 a
g4 a

 , (4.66)

and 
v1
v2
v3
v4

 =


g1 b
g2 b
g3 b
g4 b

 . (4.67)

New symbols of nodal displacements that simplify the algorithmization of calculations
will be introduced. Fig. 4.14 shows an arbitrary tetrahedral element. Nodes 1, 2, 3
and 4 have the appropriate (x1, y1, t1), (x2, y2, t2), (x3, y3, t3) and (x4, y4, t4) coordinates.
We assume that the corresponding displacements of these nodes are q1, q2, q3, q4, q5,
q6, q7 and q8. The displacements q1, q3, q5, q7 are located along the x axis, and the
displacements q2, q4, q6, q8 are along the y axis. For the four nodes of this tetrahedron
element, the equation (4.64) is satisfied and is u(x1, y1, t1) = q1, v(x1, y1, t1) = q2,
u(x2, y2, t2) = q3, v(x2, y2, t2) = q4, u(x3, y3, t3) = q5, v(x3, y3, t3) = q6, u(x4, y4, t4) = q7
and v(x4, y4, t4) = q8. In accordance with (4.66) and (4.67) and the introduced notation,
we obtain the following linear distribution of nodal values in the direction of the x and
y axes in the following form 

q1
q3
q5
q7

 = Ga , (4.68)
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Figure 4.14: An arbitrary tetrahedral element
q2
q4
q6
q8

 = Gb , (4.69)

where

G =


x1 y1 t1 1
x2 y2 t2 1
x3 y3 t3 1
x4 y4 t4 1

 . (4.70)

As a result of simple matrix operations, (4.68) and (4.69) can be presented in the
following form

a = G−1


q1
q3
q5
q7

 , (4.71)

b = G−1


q2
q4
q6
q8

 . (4.72)

Determining the shape function requires only inverting the G matrix for a selected
set of element nodal coordinates. Finally, taking into account (4.71) and (4.72), the
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displacements relative to the x-axis and the y-axis of the tetrahedral element can be
described by nodal values as follows

u = gG−1


q1
q3
q5
q7

 , (4.73)

v = gG−1


q2
q4
q6
q8

 . (4.74)

Now we can explicitly compute the form of the shape functions for each of the three
elements in Fig. 4.13.

1st tetrahedral element According to Fig. 4.13, the first tetrahedral element has
the vertex coordinates as in Table 4.5. Based on (4.70), the matrix G is given as follows

node 1 x = 0 y = 0 t = 0
node 2 x = 0 y = b t = 0
node 3 x = a y = b t = 0
node 4 x = 0 y = 0 t = h

Table 4.5. Space-time coordinates in 1st subelement (Fig. 4.13).

G =


0 0 0 1
0 b 0 1
a b 0 1
0 0 h 1

 . (4.75)

The inverse matrix takes the following form

G−1 =


0 −1/a 1/a 0
−1/b 1/b 0 0
−1/h 0 0 1/h
1 0 0 0

 . (4.76)

Taking into account (4.73) and (4.74), the linear distribution of nodal displacements
in the first tetrahedron element is as follows

u1 = N11 q1 +N12 q3 +N13 q5 +N14 q7 ,

v1 = N11 q2 +N12 q4 +N13 q6 +N14 q8 ,
(4.77)
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where, the shape functions are given by formulas

N11 = 1− y

b
− t

h
,

N12 =
y

b
− x

a
,

N13 =
y

b
,

N14 =
y

b
+

t

h
.

(4.78)

2nd tetrahedral element According to Fig. 4.13, the second tetrahedral element
has the vertex coordinates as in Table 4.6. Based on (4.70), the matrix G is given as

node 2 x = 0 y = b t = 0
node 3 x = a y = b t = 0
node 4 x = 0 y = 0 t = h
node 5 x = 0 y = b t = h

Table 4.6. Space-time coordinates in 2nd subelement (Fig. 4.13).

follows

G =


0 b 0 1
a b 0 1
0 0 h 1
0 b h 1

 . (4.79)

The inverse matrix takes the following form

G−1 =


−1/a 1/a 0 0
0 0 −1/b 1/b
−1/h 0 0 1/h
1 0 1 −1

 . (4.80)

Taking into account (4.73) and (4.74), the linear distribution of nodal displacements
in the second tetrahedron element is as follows

u2 = N21 q1 +N22 q3 +N23 q5 +N24 q7 ,

v2 = N21 q2 +N22 q4 +N23 q6 +N24 q8 ,
(4.81)
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where, the shape functions are given by formulas

N21 = 1− t

h
− x

a
,

N22 =
x

a
,

N23 = 1− y

b
,

N24 =
y

b
+

t

h
− 1 .

(4.82)

3rd tetrahedral element According to Fig. 4.13, the third tetrahedral element has
the vertex coordinates as in Table 4.7. Based on (4.70), the matrix G is given as follows

node 3 x = a y = b t = 0
node 4 x = 0 y = 0 t = h
node 5 x = 0 y = b t = h
node 6 x = a y = b t = h

Table 4.7. Space-time coordinates in 3rd subelement (Fig. 4.13).

G =


a b 0 1
0 0 h 1
0 b h 1
a b h 1

 . (4.83)

The inverse matrix takes the following form

G−1 =


0 0 −1/a 1/a
0 −1/b 1/b 0
−1/h 0 0 1/h
1 1 0 −1

 . (4.84)

Taking into account (4.73) and (4.74), the linear distribution of nodal displacements
in the second tetrahedron element is as follows

u(3) = N31 q1 +N32 q3 +N33 q5 +N34 q7 ,

v(3) = N31 q2 +N32 q4 +N33 q6 +N34 q8 ,
(4.85)
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where, the shape functions are given by formulas

N31 = 1− t

h
,

N32 = 1− y

b
,

N33 =
y

b
− x

a
,

N34 =
x

a
+

t

h
− 1 .

(4.86)

4.2.3 Characteristic matrices

In this subsection, characteristic matrices will be derived, which constitute a space-
time description of the plane stress state problem. By multiplying the system of mo-
tion equations (4.53) by virtual displacements and integrating them into the volume
of the space-time tetrahedron, the time-work equation was obtained. As a result of
classical minimization of time-work with respect to virtual values, we obtain a linear
stiffness matrix K, a non-linear stiffness matrix KN and an inertia matrix M , respec-
tively. Each local characteristic matrix is the sum of 3 matrices calculated using the
appropriate shape functions according to Fig. 4.13.

4.2.3.1 The linear stiffness matrix

According to general forms of the characteristic matrices (3.8), the linear stiffness
matrix takes the following integral form

Kij =

∫
V

BT
i DBj dV . (4.87)

The B matrices represent the linear part of the strains in the element. We determine
the form of the matrix B by applying differential operators to the appropriate shape
functions

BT
i =

∂Ni

∂x
0 ∂Ni

∂y

0 ∂Ni

∂y
∂Ni

∂x

 , (4.88)

Bj =


∂Nj

∂x
0

0
∂Nj

∂y

∂Nj

∂y

∂Nj

∂x

 . (4.89)
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Taking into account the stress-strain relation (4.54) the constitutive matrix D can be
written in the following form

D =
E

1− ν2

1 ν 0

ν 1 0

0 0 1
2
− ν

2

 . (4.90)

Since we are considering linear shape functions (4.64), the matrices (4.88) and (4.89)
are constant.

If the tetrahedron is defined by 4 points (x1, y1, t1), (x2, y2, t2), (x3, y3, t3) and (
x4, y4, t4) and the origin of the coordinates is taken at the centroid, then integration
over the volume of the tetrahedron can be calculated as the following determinant

Ve =
1

6

∣∣∣∣∣∣∣∣∣
x1 y1 t1 1
x2 y2 t2 1
x3 y3 t3 1
x4 y4 t4 1

∣∣∣∣∣∣∣∣∣ . (4.91)

Therefore, integration (4.87) comes down to the following notation

Kij = VeB
T
i DBj . (4.92)

Details on tetrahedron integration can be found in the book [108].

1st tetrahedral element Taking into account the shape functions (4.78), the matrix
B in this case looks as follows

B1 =

 0 0 − 1
a

0 1
a

0 0 0
0 −1

b
0 1

b
0 0 0 0

−1
b

0 1
b
− 1

a
0 1

a
0 0

 . (4.93)
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According to (4.92), the stiffness matrix of the linear part corresponding to the first
space-time tetrahedron (Fig. 4.13) can be presented in the following form

K1 = V1B
T
1DB1 =

V1



E ah ( ν
2
− 1

2)
6 b (ν2−1)

0 −E ah ( ν
2
− 1

2)
6 b (ν2−1)

E h ( ν
2
− 1

2)
6 (ν2−1)

0 − E ah

6 b (ν2−1)
− E hν

6 (ν2−1)
E ah

6 b (ν2−1)

−E ah ( ν
2
− 1

2)
6 b (ν2−1)

− E hν

6 (ν2−1)
E ah ( ν

2
− 1

2)
6 b (ν2−1)

− E bh

6 a (ν2−1)
E hν

6 (ν2−1)
− E h ( ν

2
− 1

2)
6 (ν2−1)

E h ( ν
2
− 1

2)
6 (ν2−1)

E ah

6 b (ν2−1)
E hν

6 (ν2−1)
− E h ( ν

2
− 1

2)
6 (ν2−1)

E bh ( ν
2
− 1

2)
6 a (ν2−1)

− E ah

6 b (ν2−1)
0 E hν

6 (ν2−1)
E bh

6 a (ν2−1)
− E hν

6 (ν2−1)

−E h ( ν
2
− 1

2)
6 (ν2−1)

0
E h ( ν

2
− 1

2)
6 (ν2−1)

−E bh ( ν
2
− 1

2)
6 a (ν2−1)

0 0 0 0
0 0 0 0

0 −E h ( ν
2
− 1

2)
6 (ν2−1)

E hν

6 (ν2−1)
0

E bh

6 a (ν2−1)
E h ( ν

2
− 1

2)
6 (ν2−1)

− E hν

6 (ν2−1)
−E bh ( ν

2
− 1

2)
6 a (ν2−1)

− E bh

6 a (ν2−1)
0

0
E bh ( ν

2
− 1

2)
6 a (ν2−1)

0 0
0 0



.

(4.94)

2nd tetrahedral element Taking into account the shape functions (4.82), the ma-
trix B in this case looks as follows

B2 =

 − 1
a

0 1
a

0 0 0 0 0
0 0 0 0 0 −1

b
0 1

b

0 − 1
a

0 1
a
−1

b
0 1

b
0

 . (4.95)
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According to (4.92), the stiffness matrix of the linear part corresponding to the second
space-time tetrahedron (Fig. 4.13) can be presented in the following form

K2 = V2B
T
2DB2 =

V2



− E bh

6 a (ν2−1)
0 E bh

6 a (ν2−1)
0

0
E bh ( ν

2
− 1

2)
6 a (ν2−1)

0 −E bh ( ν
2
− 1

2)
6 a (ν2−1)

E bh

6 a (ν2−1)
0 − E bh

6 a (ν2−1)
0

0 −E bh ( ν
2
− 1

2)
6 a (ν2−1)

0
E bh ( ν

2
− 1

2)
6 a (ν2−1)

0
E h ( ν

2
− 1

2)
6 (ν2−1)

0 −E h ( ν
2
− 1

2)
6 (ν2−1)

− E hν

6 (ν2−1)
0 E hν

6 (ν2−1)
0

0 −E h ( ν
2
− 1

2)
6 (ν2−1)

0
E h ( ν

2
− 1

2)
6 (ν2−1)

E hν

6 (ν2−1)
0 − E hν

6 (ν2−1)
0

0 − E hν

6 (ν2−1)
E h ( ν

2
− 1

2)
6 (ν2−1)

0

0 E hν

6 (ν2−1)

−E h ( ν
2
− 1

2)
6 (ν2−1)

0

E ah ( ν
2
− 1

2)
6 b (ν2−1)

0

0 − E ah

6 b (ν2−1)

−E ah ( ν
2
− 1

2)
6 b (ν2−1)

0

0 E ah

6 b (ν2−1)



.

(4.96)

3rd tetrahedral element Taking into account the shape functions (4.86), the matrix
B in this case looks as follows

B3 =

 0 0 0 0 − 1
a

0 1
a

0
0 0 0 −1

b
0 1

b
0 0

0 0 −1
b

0 1
b
− 1

a
0 1

a

 . (4.97)
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According to (4.92), the stiffness matrix of the linear part corresponding to the third
space-time tetrahedron (Fig. 4.13) can be presented in the following form

K3 = V3B
T
3DB3 =

V3



0 0 0 0
0 0 0 0

0 0
E ah ( ν

2
− 1

2)
6 b (ν2−1)

0

0 0 0 − E ah

6 b (ν2−1)

0 0 −E ah ( ν
2
− 1

2)
6 b (ν2−1)

− E hν

6 (ν2−1)

0 0
E h ( ν

2
− 1

2)
6 (ν2−1)

E ah

6 b (ν2−1)
0 0 0 E hν

6 (ν2−1)

0 0 −E h ( ν
2
− 1

2)
6 (ν2−1)

0

0 0
0 0

−E ah ( ν
2
− 1

2)
6 b (ν2−1)

E h ( ν
2
− 1

2)
6 (ν2−1)

− E hν

6 (ν2−1)
E ah

6 b (ν2−1)
E ah ( ν

2
− 1

2)
6 b (ν2−1)

− E bh

6 a (ν2−1)
E hν

6 (ν2−1)
− E h ( ν

2
− 1

2)
6 (ν2−1)

E hν

6 (ν2−1)
− E h ( ν

2
− 1

2)
6 (ν2−1)

E bh ( ν
2
− 1

2)
6 a (ν2−1)

− E ah

6 b (ν2−1)
E bh

6 a (ν2−1)
− E hν

6 (ν2−1)
E h ( ν

2
− 1

2)
6 (ν2−1)

−E bh ( ν
2
− 1

2)
6 a (ν2−1)



.

(4.98)

The matrices (4.94), (4.96) and (4.98) are the components of the local space-time
stiffness matrix K. The matrix K is the sum of these matrices. The summation is
carried out in accordance with the numbering of the degrees of freedom in the nodes of
the space-time finite element. Taking into account the notation of the matrix equation
(3.13), matrix K can be represented using sub-matrices Ak, Bk, Ck and Dk in the
following form

K =

[
Ak Bk

Ck Dk

]
, (4.99)
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where
Ak =

E ah ( ν
2
− 1

2)
6 b (ν2−1)

0 −E ah ( ν
2
− 1

2)
6 b (ν2−1)

E h ( ν
2
− 1

2)
6 (ν2−1)

0 − E ah

6 b (ν2−1)
− E hν

6 (ν2−1)
E ah

6 b (ν2−1)

−E ah ( ν
2
− 1

2)
6 b (ν2−1)

− E hν

6 (ν2−1)
E ah ( ν

2
− 1

2)
6 b (ν2−1)

− E bh

3 a (ν2−1)
E hν

6 (ν2−1)
− E h ( ν

2
− 1

2)
6 (ν2−1)

E h ( ν
2
− 1

2)
6 (ν2−1)

E ah

6 b (ν2−1)
E hν

6 (ν2−1)
− E h ( ν

2
− 1

2)
6 (ν2−1)

E bh ( ν
2
− 1

2)
3 a (ν2−1)

− E ah

6 b (ν2−1)
0 E hν

6 (ν2−1)
E bh

3 a (ν2−1)
− E hν

6 (ν2−1)

−E h ( ν
2
− 1

2)
6 (ν2−1)

0
E h ( ν

2
− 1

2)
6 (ν2−1)

−E bh ( ν
2
− 1

2)
3 a (ν2−1)

0 −E h ( ν
2
− 1

2)
6 (ν2−1)

E hν

6 (ν2−1)
0

E bh

3 a (ν2−1)
E h ( ν

2
− 1

2)
6 (ν2−1)

− E hν

6 (ν2−1)
−E bh ( ν

2
− 1

2)
3 a (ν2−1)

− E bh

3 a (ν2−1)
0

0
E bh ( ν

2
− 1

2)
3 a (ν2−1)


,

(4.100)

Bk =



0 0 0 0 0 0
0 0 0 0 0 0
0 − E hν

6 (ν2−1)
0 E hν

6 (ν2−1)
0 0

E h ( ν
2
− 1

2)
6 (ν2−1)

0 −E h ( ν
2
− 1

2)
6 (ν2−1)

0 0 0

0 E hν

6 (ν2−1)
0 − E hν

6 (ν2−1)
0 0

−E h ( ν
2
− 1

2)
6 (ν2−1)

0
E h ( ν

2
− 1

2)
6 (ν2−1)

0 0 0


, (4.101)

Ck =



0 0 0 0 0 0
0 0 0 0 0 0
0 − E hν

6 (ν2−1)
0 E hν

6 (ν2−1)
0 0

E h ( ν
2
− 1

2)
6 (ν2−1)

0 −E h ( ν
2
− 1

2)
6 (ν2−1)

0 0 0

0 E hν

6 (ν2−1)
0 − E hν

6 (ν2−1)
0 0

−E h ( ν
2
− 1

2)
6 (ν2−1)

0
E h ( ν

2
− 1

2)
6 (ν2−1)

0 0 0


, (4.102)
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Dk =

E ah ( ν
2
− 1

2)
3 b (ν2−1)

0 −E ah ( ν
2
− 1

2)
3 b (ν2−1)

0 − E ah

3 b (ν2−1)
− E hν

6 (ν2−1)

−E ah ( ν
2
− 1

2)
3 b (ν2−1)

− E hν

6 (ν2−1)
E ah ( ν

2
− 1

2)
3 b (ν2−1)

− E bh

6 a (ν2−1)
E h ( ν

2
− 1

2)
6 (ν2−1)

E ah

3 b (ν2−1)
E hν

6 (ν2−1)
− E h ( ν

2
− 1

2)
6 (ν2−1)

0 E hν

6 (ν2−1)
E bh

6 a (ν2−1)

−E h ( ν
2
− 1

2)
6 (ν2−1)

0
E h ( ν

2
− 1

2)
6 (ν2−1)

E h ( ν
2
− 1

2)
6 (ν2−1)

0 −E h ( ν
2
− 1

2)
6 (ν2−1)

E ah

3 b (ν2−1)
E hν

6 (ν2−1)
0

E hν

6 (ν2−1)
− E h ( ν

2
− 1

2)
6 (ν2−1)

E bh

6 a (ν2−1)
E h ( ν

2
− 1

2)
6 (ν2−1)

E bh ( ν
2
− 1

2)
6 a (ν2−1)

− E ah

3 b (ν2−1)
− E hν

6 (ν2−1)
−E bh ( ν

2
− 1

2)
6 a (ν2−1)

− E hν

6 (ν2−1)
− E bh

6 a (ν2−1)
0

−E bh ( ν
2
− 1

2)
6 a (ν2−1)

0
E bh ( ν

2
− 1

2)
6 a (ν2−1)


.

(4.103)

4.2.3.2 The non-linear stiffness matrix

Similarly to the linear stiffness matrix (4.87), the local stiffness matrix associated with
the non-linear terms takes the following form

KN
ij =

∫
V

B̂
T

i DB̂j dV . (4.104)

Matrix B̂ describes the nonlinear components of elastic strains. According to the
displacements-strains relationship (4.63) and notations (4.68) and (4.69) we obtain

B̂
T

i =
1

2

[
0 ∂Ni

∂y
∂Ni

∂y
q2i−1 0

∂Ni

∂x
∂Ni

∂x
q2i 0 0

]
, (4.105)

and

B̂j =
1

2


0

∂Nj

∂x

∂Nj

∂x
q2j

∂Nj

∂y

∂Nj

∂y
q2j−1 0

0 0

 . (4.106)
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Taking into account the assumptions made earlier regarding the integration of a con-
stant matrix in a volume defined by 4 points, the integral (4.104) can be written in the
following form

KN
ij = Ve B̂

T

i DB̂j , (4.107)

where the space-time volume Ve can be calculated using the determinant (4.91).

1st tetrahedral element Based on the shape function (4.78), the matrix (4.106)
describing the 4 nodes of the first space-time tetrahedron looks as follows

B̂1 =

 0 0 0 q4−q6
a2

0 −q4−q6
a2

0 0
q1−q3

b2
0 −q1−q3

b2
0 0 0 0 0

0 0 0 0 0 0 0 0

 . (4.108)

According to (4.108) and (4.107), the stiffness matrix for the first tetrahedron can be
presented in the following form

KN
1 =

V1



−E ah ( q1
b
− q3

b )
2

12 b (ν2−1)
0

E ah ( q1
b
− q3

b )
2

12 b (ν2−1)
−E hν ( q4

a
− q6

a ) (
q1
b
− q3

b )
12 (ν2−1)

0 0 0 0
E ah ( q1

b
− q3

b )
2

12 b (ν2−1)
0 −E ah ( q1

b
− q3

b )
2

12 b (ν2−1)
E hν ( q4

a
− q6

a ) (
q1
b
− q3

b )
12 (ν2−1)

−E hν ( q4
a
− q6

a ) (
q1
b
− q3

b )
12 (ν2−1)

0
E hν ( q4

a
− q6

a ) (
q1
b
− q3

b )
12 (ν2−1)

−E bh ( q4
a
− q6

a )
2

12 a (ν2−1)
0 0 0 0

E hν ( q4
a
− q6

a ) (
q1
b
− q3

b )
12 (ν2−1)

0 −E hν ( q4
a
− q6

a ) (
q1
b
− q3

b )
12 (ν2−1)

E bh ( q4
a
− q6

a )
2

12 a (ν2−1)
0 0 0 0
0 0 0 0

0
E hν ( q4

a
− q6

a ) (
q1
b
− q3

b )
12 (ν2−1)

0 0

0 −E hν ( q4
a
− q6

a ) (
q1
b
− q3

b )
12 (ν2−1)

0
E bh ( q4

a
− q6

a )
2

12 a (ν2−1)
0 0

0 −E bh ( q4
a
− q6

a )
2

12 a (ν2−1)
0 0
0 0



.

(4.109)
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2nd tetrahedral element Taking into account the shape function of the second
tetrahedron (4.82), the matrix (4.106) can be written in the following form

B̂2 =

 0 q4−q6
a2

0 −q4−q6
a2

0 0 0 0
0 0 0 0 q7−q9

b2
0 −q7−q9

b2
0

0 0 0 0 0 0 0 0

 . (4.110)

In the case of the second space-time tetrahedron, the stiffness matrix according to
(4.110) and (4.107) is given by

KN
2 =

V2



0 0 0 0

0 −E bh ( q4
a
− q6

a )
2

12 a (ν2−1)
0

E bh ( q4
a
− q6

a )
2

12 a (ν2−1)
0 0 0 0

0
E bh ( q4

a
− q6

a )
2

12 a (ν2−1)
0 −E bh ( q4

a
− q6

a )
2

12 a (ν2−1)

0 −E hν ( q4
a
− q6

a ) (
q7
b
− q9

b )
12 (ν2−1)

0
E hν ( q4

a
− q6

a ) (
q7
b
− q9

b )
12 (ν2−1)

0 0 0 0

0
E hν ( q4

a
− q6

a ) (
q7
b
− q9

b )
12 (ν2−1)

0 −E hν ( q4
a
− q6

a ) (
q7
b
− q9

b )
12 (ν2−1)

0 0 0 0

0 0

−E hν ( q4
a
− q6

a ) (
q7
b
− q9

b )
12 (ν2−1)

0

0 0
E hν ( q4

a
− q6

a ) (
q7
b
− q9

b )
12 (ν2−1)

0

−E ah ( q7
b
− q9

b )
2

12 b (ν2−1)
0

0 0
E ah ( q7

b
− q9

b )
2

12 b (ν2−1)
0

0 0



.

(4.111)

3rd tetrahedral element Using the shape function (4.86), the matrix (4.106) can
be written as follows

B̂3 =

 0 0 0 0 0 q10−q12
a2

0 −q10−q12
a2

0 0 q7−q9
b2

0 −q7−q9
b2

0 0 0
0 0 0 0 0 0 0 0

 . (4.112)
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According to (4.112) and (4.107), the stiffness matrix for the third tetrahedron can be
given as follows

KN
3 =

V3



0 0 0 0
0 0 0 0

0 0 −E ah ( q7
b
− q9

b )
2

12 b (ν2−1)
0

0 0 0 0

0 0
E ah ( q7

b
− q9

b )
2

12 b (ν2−1)
0

0 0 −E hν ( q10
a

− q12
a ) ( q7

b
− q9

b )
12 (ν2−1)

0

0 0 0 0

0 0
E hν ( q10

a
− q12

a ) ( q7
b
− q9

b )
12 (ν2−1)

0

0 0
0 0

E ah ( q7
b
− q9

b )
2

12 b (ν2−1)
−E hν ( q10

a
− q12

a ) ( q7
b
− q9

b )
12 (ν2−1)

0 0

−E ah ( q7
b
− q9

b )
2

12 b (ν2−1)
E hν ( q10

a
− q12

a ) ( q7
b
− q9

b )
12 (ν2−1)

E hν ( q10
a

− q12
a ) ( q7

b
− q9

b )
12 (ν2−1)

−E bh ( q10
a

− q12
a )

2

12 a (ν2−1)
0 0

−E hν ( q10
a

− q12
a ) ( q7

b
− q9

b )
12 (ν2−1)

E bh ( q10
a

− q12
a )

2

12 a (ν2−1)



.

(4.113)

The matrices (4.109), (4.111) and (4.113) are the components of the local space-time
nonlinear stiffness matrix KN . Finally, matrix KN can be presented using submatrices
AN

k , BN
k , CN

k and DN
k as follows

KN =

[
AN

k BN
k

CN
k DN

k

]
, (4.114)
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where

AN
K =

−E ah ( q1
b
− q3

b )
2

12 b (ν2−1)
0

E ah ( q1
b
− q3

b )
2

12 b (ν2−1)
−E hν ( q4

a
− q6

a ) (
q1
b
− q3

b )
12 (ν2−1)

0 0 0 0
E ah ( q1

b
− q3

b )
2

12 b (ν2−1)
0 −E ah ( q1

b
− q3

b )
2

12 b (ν2−1)
E hν ( q4

a
− q6

a ) (
q1
b
− q3

b )
12 (ν2−1)

−E hν ( q4
a
− q6

a ) (
q1
b
− q3

b )
12 (ν2−1)

0
E hν ( q4

a
− q6

a ) (
q1
b
− q3

b )
12 (ν2−1)

−E bh ( q4
a
− q6

a )
2

6 a (ν2−1)
0 0 0 0

E hν ( q4
a
− q6

a ) (
q1
b
− q3

b )
12 (ν2−1)

0 −E hν ( q4
a
− q6

a ) (
q1
b
− q3

b )
12 (ν2−1)

E bh ( q4
a
− q6

a )
2

6 a (ν2−1)

0
E hν ( q4

a
− q6

a ) (
q1
b
− q3

b )
12 (ν2−1)

0 0

0 −E hν ( q4
a
− q6

a ) (
q1
b
− q3

b )
12 (ν2−1)

0
E bh ( q4

a
− q6

a )
2

6 a (ν2−1)
0 0

0 −E bh ( q4
a
− q6

a )
2

6 a (ν2−1)


,

(4.115)

BN
K =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−E hν ( q4
a
− q6

a ) (
q7
b
− q9

b )
12 (ν2−1)

0
E hν ( q4

a
− q6

a ) (
q7
b
− q9

b )
12 (ν2−1)

0 0 0

0 0 0 0 0 0
E hν ( q4

a
− q6

a ) (
q7
b
− q9

b )
12 (ν2−1)

0 −E hν ( q4
a
− q6

a ) (
q7
b
− q9

b )
12 (ν2−1)

0 0 0


, (4.116)

CN
K =



0 0 0 −E hν ( q4
a
− q6

a ) (
q7
b
− q9

b )
12 (ν2−1)

0
E hν ( q4

a
− q6

a ) (
q7
b
− q9

b )
12 (ν2−1)

0 0 0 0 0 0

0 0 0
E hν ( q4

a
− q6

a ) (
q7
b
− q9

b )
12 (ν2−1)

0 −E hν ( q4
a
− q6

a ) (
q7
b
− q9

b )
12 (ν2−1)

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, (4.117)
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DN
K =

−E ah ( q7
b
− q9

b )
2

6 b (ν2−1)
0

E ah ( q7
b
− q9

b )
2

6 b (ν2−1)
−E hν ( q10

a
− q12

a ) ( q7
b
− q9

b )
12 (ν2−1)

0 0 0 0
E ah ( q7

b
− q9

b )
2

6 b (ν2−1)
0 −E ah ( q7

b
− q9

b )
2

6 b (ν2−1)
E hν ( q10

a
− q12

a ) ( q7
b
− q9

b )
12 (ν2−1)

−E hν ( q10
a

− q12
a ) ( q7

b
− q9

b )
12 (ν2−1)

0
E hν ( q10

a
− q12

a ) ( q7
b
− q9

b )
12 (ν2−1)

−E bh ( q10
a

− q12
a )

2

12 a (ν2−1)
0 0 0 0

E hν ( q10
a

− q12
a ) ( q7

b
− q9

b )
12 (ν2−1)

0 −E hν ( q10
a

− q12
a ) ( q7

b
− q9

b )
12 (ν2−1)

E bh ( q10
a

− q12
a )

2

12 a (ν2−1)

0
E hν ( q10

a
− q12

a ) ( q7
b
− q9

b )
12 (ν2−1)

0 0

0 −E hν ( q10
a

− q12
a ) ( q7

b
− q9

b )
12 (ν2−1)

0
E bh ( q10

a
− q12

a )
2

12 a (ν2−1)
0 0

0 −E bh ( q10
a

− q12
a )

2

12 a (ν2−1)


.

(4.118)

4.2.3.3 The inertia matrix

Taking into account the general forms of the characteristic matrices (3.8), the inertia
matrix can be presented in the following form

M ij =

∫
V

CT
i ρCj dV , (4.119)

where the matrix C describes the velocities in the finite element and is as follows

CT
i =

[
∂Ni

∂t
0

0 ∂Ni

∂t

]
, (4.120)

Cj =

∂Nj

∂t
0

0
∂Nj

∂t

 . (4.121)

However, the mass matrix ρ is presented as follows

ρ =

[
ρ 0

0 ρ

]
. (4.122)
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Since the derivative of the shape function (4.64) with respect to time is constant, the
integral (4.119) reduces to a matrix product

M ij = VeC
T
i ρCj , (4.123)

where Ve is the space-time volume of the tetrahedron and we can calculate it using the
determinant (4.91).

1st tetrahedral element Taking into account the shape function of the first tetra-
hedron (4.78), the matrix (4.121) takes the following form

C1 =

(
− 1

h
0 0 0 0 0 1

h
0

0 − 1
h

0 0 0 0 0 1
h

)
. (4.124)

The inertia matrix calculated by (4.123) based on (4.124) and (4.122) is as follows

M 1 = VeC
T
1 ρC1 =



a b ρ
6h

0 0 0 0 0 −a b ρ
6h

0

0 a b ρ
6h

0 0 0 0 0 −a b ρ
6h

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

−a b ρ
6h

0 0 0 0 0 a b ρ
6h

0

0 −a b ρ
6h

0 0 0 0 0 a b ρ
6h


. (4.125)

2nd tetrahedral element According to the shape function of the second tetrahe-
dron (4.82), the matrix (4.121) can be written in the following form

C2 =

(
− 1

h
0 0 0 0 0 1

h
0

0 − 1
h

0 0 0 0 0 1
h

)
. (4.126)

Taking into account (4.126) and (4.122) the inertia matrix (4.123) of the second tetra-
hedron is given by

M 2 = VeC
T
2 ρC2 = Ve



a b ρ
6h

0 0 0 0 0 −a b ρ
6h

0

0 a b ρ
6h

0 0 0 0 0 −a b ρ
6h

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

−a b ρ
6h

0 0 0 0 0 a b ρ
6h

0

0 −a b ρ
6h

0 0 0 0 0 a b ρ
6h


. (4.127)
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3rd tetrahedral element Based on the shape function (4.86), the matrix (4.121)
takes the following form

C3 =

(
− 1

h
0 0 0 0 0 1

h
0

0 − 1
h

0 0 0 0 0 1
h

)
, (4.128)

where the inertia matrix calculated by (4.123) according to (4.128) and (4.122) is as
follows

M 3 = VeC
T
3 ρC3 = Ve



a b ρ
6h

0 0 0 0 0 −a b ρ
6h

0

0 a b ρ
6h

0 0 0 0 0 −a b ρ
6h

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

−a b ρ
6h

0 0 0 0 0 a b ρ
6h

0

0 −a b ρ
6h

0 0 0 0 0 a b ρ
6h


. (4.129)

The local inertia matrix M is sum of (4.125), (4.127) and (4.129). The matrix M can
also be represented as 4 sub-matrices Am, Bm, Cm and Dm in the following way

M =

[
Am Bm

Cm Dm

]
, (4.130)

where

Am =
abρ

6h



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


, (4.131)

Bm = −abρ

6h



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


, (4.132)
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Cm = −abρ

6h



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


, (4.133)

Dm =
abρ

6h



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


. (4.134)

It is noteworthy that both Bk in Eq (4.99) and BN
k in Eq (4.114) are triangular matrices.

For the space-time finite element method, when calculating the deformation of the
system, the final step involves solving the linear equation F = Kx, where F is a known
vector, and K is the aforementioned triangular matrix. This characteristic is one of
the reasons why the space-time finite element method is more efficient compared to
traditional finite element methods. The triangular structure of K simplifies the solution
process, reducing computational complexity and improving efficiency. For a detailed
derivation and analysis, please refer to the work by [32].

4.2.4 Example

4.2.4.1 Description of the finite element model

The finite element model depicted in the Fig. 4.15 illustrates a triangle with vertices
at coordinates A(0.1, 0.3), B(0.5, 0.2), and C(0.6, 0.7). This configuration is designed
for the application of the finite space-time finite element method.

• Vertices and Coordinates: The triangle’s vertices are defined as follows:

– Point A is located at (0.1, 0.3)

– Point B is positioned at (0.5, 0.2)

– Point C is positioned at (0.6, 0.7)

• Boundary Conditions:

– Points A and B are fixed, meaning they are constrained from movement.
This is represented by filled circles at these points, along with symbolic
rectangles indicating fixed supports.
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A (0.1, 0.3)

B (0.5, 0.2)

C (0.6, 0.7)

F

Figure 4.15: Finite element of the plane-stress problem. Points A and B are fixed,
while a horizontal force F is applied at point C.

– Point C is subjected to a horizontal force F . This force is illustrated by an
arrow directed to the right, starting from point C.

• Geometric Representation:

– The edges of the triangle are drawn using thick lines to clearly define the
boundary of the element.

– The nodes at each vertex are labeled with their respective coordinates for
clarity and reference in the simulation.

• Material Properties: The material properties of the finite element are specified
as follows:

– Young’s Modulus, E = 0.01 GPa

– Density, ρ = 1 kg/m3

– Poisson’s Ratio, ν = 0.2

4.2.4.2 Results

In this section, the outcomes of the finite element simulations for different applied
horizontal forces F are presented and analyzed. Three scenarios are considered, where
the applied force F is set to 0.01N, 0.1N, and 1N, respectively. Each set represents
a distinct loading condition that influences the deformation and stress distribution
within the finite element model. The results are demonstrated in Fig. 4.16 to 4.18.
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Figure 4.16: Results of finite element model for F=0.01 .

Figure 4.17: Results of finite element model for F=0.1 .

We investigate the influence of including the nonlinear term KN in the finite element
analysis by comparing the simulation results under different loading conditions.

Linear analysis (neglecting nonlinear term KN): When neglecting the nonlinear
term KN , the simulation results closely align with traditional linear mechanical prin-
ciples. Under small deformation conditions, such as F=0.01, the structural response of
the triangular element exhibits linear behavior, and the differences between the linear
and nonlinear analyses are minimal. In these cases, the linear analysis provides an effi-
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Figure 4.18: Results of finite element model for F=1 .

cient and accurate representation of the structural behavior without the computational
overhead of solving nonlinear equations.

Nonlinear analysis (including nonlinear term KN): In contrast, under larger
loading conditions (e.g., F=0.1 or F=1), the influence of geometric nonlinearities be-
comes more pronounced. Including the nonlinear term KN in the analysis accounts
for large deformations, leading to significant differences in the structural response com-
pared to the linear analysis. In these scenarios, the nonlinear analysis provides a more
accurate representation of the structural behavior, capturing the effects of nonlinear
material and geometric properties.

The comparison between the linear and nonlinear analyses highlights the critical
role of considering geometric nonlinearities in finite element simulations, particularly
under significant loading conditions. While the linear analysis may suffice for cases with
small deformations, larger deformations necessitate the inclusion of the nonlinear term
KN to capture the structural response accurately. However, it’s essential to consider
the computational costs associated with solving nonlinear equations, particularly for
large-scale simulations.

In conclusion, the decision to include the nonlinear term KN in finite element sim-
ulations depends on the magnitude of deformation imposed by the applied loading
conditions. When deformations are small, the analysis provides an efficient and accu-
rate solution. However, for scenarios where deformations are significant, such as those
resulting from larger forces, considering the nonlinear term becomes essential to ensure
the accuracy of the simulation results, albeit at the cost of increased computational
complexity.
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Chapter 5

Parallel simplex-shaped space-time
finite element method in dynamic
analysis of structures

5.1 Parallel computing algorithm

Effective design of an algorithm that optimally uses the operating memory and proces-
sor working time requires the preparation of several auxiliary tables containing various
types of numbering useful for dividing the system into subsystems, depending on the
number of processors at the disposal. Of course, we are interested in separating the
task into at least 16 computational threads. The development of computer architecture
will easily increase this number. The condition for the effectiveness of the algorithm
is fast data transmission between the processor cores, cache and main memory. We
are not able to assess the impact of the processor architecture on computational times,
but we will show how the computational time is reduced in various multi-threaded
test tasks. On this occasion, it should be noted that we do not take into account
the launch of automatic threading processes carried out automatically by compilers,
nor the use of pipelining or iterative procedures for solving systems of equations. We
present a particular method of parallelizing construction dynamics problems, or more
generally, initial-boundary problems. It is also not the purpose of the work to compare
the presented method with all known or only used algorithms, because then the scope
of the work would go far beyond the intended, commonly accepted one. Nor would
such a comparison be credible without a thorough study of every known method. such
a comparison may be made in the future.
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5.2 Algorithm of the solution

The parallelization algorithm will be explained on the example of a two-dimensional
problem depicted in Fig. 5.1. This will facilitate the reader to understand the next
steps without losing the generality of the presentation. The element-by-element as-

Figure 5.1: A 2-dimensional problem as an example discussed in this article.

sembly results in the coefficient matrices with the triangular matrix B as in Fig. 5.2.
Auxiliary tables should be created that will facilitate and simplify the subsequent stages

Figure 5.2: Exemplary matrices C, D+A, and B for the 2D plate structure.

of algorithmization. The first of these auxiliary tables is the IM table describing the
arrangement of non-zero frames of A, B, C, and D in memory. At this point, we note
that only the B and D matrices require memory reservations, and only for non-zero
coefficient frames. This sequence of numbers, resulting from the topology of the spatial
mesh, allows for efficient programming of operations assigned to the rows of the global
matrices A, B, C, D. This sequence contains the numbers of nodes neighboring in the
spatial mesh with the next node 1, 2, ..., NP, including themselves. The numbers of
consecutive nodes that start the subsequences of neighboring nodes are placed in the
first place (Fig. 5.3).

The second auxiliary vector is IW, which slices the IM string into parts assigned to
subsequent nodes. In practice, it contains the position of the node numbers 1, 2, ...,
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Figure 5.3: A sequence of nodes adjacent to subsequent nodes IM.

located in the first places of the strings IM:

IW = [1, 5, 10, 18, 22, 27, ..., 76] .

This string ends with an element at position NP+1, containing the number of the string
IM increased by 1 to allow simple counting of last row elements in an IM string.

Now one needs to separate groups of nodes that will be solved within one package
on a single processor core. The number of packages should correspond to the number of
available cores. With a smaller number of separated packages, the calculation perfor-
mance will be lower, as there will be idle periods of unused cores. On the other hand,
a larger number of packages will force unnecessary portioning and solution several
packages one after another.

If we solve the sample task on a maximum of eight cores, then we can separate
eight groups of nodes, in which there will be two nodes and in the last one one:

group 1: nodes 1, 2 group 5: nodes 9, 10
group 2: nodes 3, 4 group 5: nodes 11, 12
group 3: nodes 5, 6 group 5: nodes 13, 14
group 4: nodes 7, 8 group 5: node 15

Due to the limitations resulting from the mesh topology, when solving a specific node
must be preceded by completing the calculations of the corresponding nodes adjacent
to it, the number of node groups, packages, should be much greater than the number
of cores.

According to the established scheme in the Fig. 5.4, calculations of packages 1, 4 and
8 can be carried out independently, with the exception that package 1 will have fixed
unknowns in time ti+2, group 4 in time ti+1, and group of 8 in time ti. The calculations
can be carried out on three cores. More cores will not be physically used. Slightly
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Figure 5.4: Initial stage and repeatable cycles of parallel solution.

different numbering of nodes and their neighbors would allow more even distribution
of the load in steps 1 and 2. Optimization of the number of groups of nodes, their size
and diversity of this number is a separate mathematical problem.

One can choose between two calculation modes. The first one consists in deter-
mining the solutions of successive groups in oblique layers, as in Fig. 3.9. The second
mode, more natural, is to carry out the start-up phase of the procedure. Therefore, in
the initial phase, batches 1, 2, 3 should be calculated in the first start-up step at t = 0,
in the second step batches 1 and 2 at t = ∆t, and in step 3, batch 1 at time t = 2∆t.
Thanks to this, further steps can be carried out in horizontal layers as shown in the
Fig. 3.9, but each package will represent a different moment.

5.2.1 Algorithm for partition of the solution processes

• Split the list of nodes coded in table IW into packages. Below the partition into
8 packages is applied:

IMPROC = [ 1, 2 | 3, 4 | 5, 6 | 7, 8 | 9, 10 | 11, 12 | 13, 14 | 15 ] .
Prepare the indexing table
IWPROC = [1, 3, 5, 7, 9, 13, 15, 16 ] .

• A temporary table TMP will make programming easier
1: l← 0
2: for i← 1, n_proc do
3: for j ← IWPROC(i), IWPROC(i+1)-1 do
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4: l← l + 1
5: TMP(l)=i
6: end for
7: end for

Here TMP=[ 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8 ]

• In every package find the maximum node number (table MX_PACK indicated
with circles if Fig. 5.3)
MX_PACK=[ 6, 9, 11, 9, 13, 15, 15, 15 ] .

Now establish what package proceeds a given package

1: for i←1, n_proc do
2: IPROCEED(i) ← TMP(MX_PACK(i))
3: end for

Finally IPROCEED = [ 3, 5, 6, 5, 7, 8, 8, 8 ]

• ......COUNTERS.......

do i=1,npack
counters(1,i)=i

enddo

do ii=2,npack
counters(ii,1)=counters(ii-1,iprev(1))+1
do i=2,npack

counters(ii,i)=max(counters(ii-1,iprev(i)),counters(ii,i-1))+1
enddo

enddo

• Generate a table of processes
1: l← 0
2: for i←COUNTERS(npack,1),COUNTERS(npack-1,1)+1,-1 do
3: l← l + 1
4: for j ←npack,1,-1 do
5: for k ←1,npack do
6: if counters(j,k) = i then
7: ITABPROC(l,COUNTPERC(l))=k
8: end if
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9: end for
10: end for
11: end for

The resulting table ITABPROC now has the following form

1 4 8
3 7
2 6
5

In the table below each line shows the calculations of individual packages in the
same time, i.e. in parallel. After the initial 7-step stage, a repetitive sequence of four
computational cycles is obtained. In this simple example, 4 computation cycles using
3 cores replace 15 cycles of a single-core processor.

One can see that they must be performed in a specific order, after the calculations
of preceding packages are completed. In the case of packages 1, 4, and 8, they can
be solved in parallel, but each must receive the results of packs from the previous
moments, package 1 containing nodes 1 and 2 after the end of package 3 with nodes
5 and 6, package 4 containing nodes 7 and 8 after the end of package 5 with nodes 9
and 10, and package 8 with a single node 15 after the end of package 8 from a previous
time step, respectively (see Fig. 5.3). Unfortunately, with the assumed topology, the
calculations of package 6, 7, and 8 may only be started after the calculations of batch 8
have been completed for the previous time step. Fig. 5.5 shows the repeatable sequence
of steps distributed over processor’s core. The Fig. 5.5 corresponds with the part of the
scheme in Fig. 5.4.

core 1 core 2 core 3
step 1: 1 4 8
step 2: idle 5 idle
step 3: 2 6 idle
step 4: 3 7 idle

Figure 5.5: Separating packages for calculations in the successive steps.

Characteristic matrices of the problem are collected in the form of a ribbon of
square matrices with dimensions equal to the number of degrees of freedom at the
node. Therefore, they often have dimensions of 2x2 or 3x3. Pairs of matrices located
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in matrices B and D are collected in the order corresponding to the sequence IM.
The numbers in circles correspond to the first numbers in the rows in Fig. 5.3. The
subsequent numbers correspond to the consecutive numbers in those sequences. In the
case where the number of the given node in the row IM, as shown in the Fig. 5.3, is
greater than the first number in the row, the matrix B corresponding to the frame
does not exist due to the triangular form of the matrix. In this case, there is no need
to reserve space for these coefficients (Fig. 5.6). The location and fast access to the

Figure 5.6: Global matrix coefficients stored as a ribbon.

appropriate coefficients can be implemented in many ways using a built-in sequence,
either through an additional position array or by utilizing features and capabilities of
the programming language used.

In this simple coding depicted in Fig. 5.6 only about 150-160% of the non-zero
coefficients contained in the classical stiffness matrix of the finite element method are
collected, without the need to reserve any memory for operations related to solving the
problem. This may raise the question of what the 50-60% of memory is used for and
what benefits this slightly increased demand brings.

The programming-correct approach is to split the band into two separate bands,
maintaining the elements of matrix B and D separately. It is necessary to create
appropriate auxiliary indexing of matrix frames in both bands. It is important to note
that only the starting positions of the sequences in the frames, as shown in Fig. 5.6
and marked with numbers in circles, need to be indexed. The remaining positions of
specific matrix frames are automatically reproduced by looping within the subarrays
of the IM array from Fig. 5.3, taking into account whether the starting number of a
given row is lower or higher than the next number in the row from Fig. 5.3.

It should be emphasized here that in the above method of writing the coefficient
matrix, no operational memory is required as a workspace. Furthermore, very large
tasks performed on computers with relatively small memory can be solved almost at
no cost by storing the matrices in external memory and bringing them in sequences
piece by piece to operational memory. This is due to the fact that the calculations are
carried out node by node and the matrices are also built and collected node by node.
This feature also allows to distribution of parts of very large tasks among separate
computers and exchanges only solution vectors between them.

The second remark is as follows. Collecting the contents of matrices, whether
directly in the form of matrix elements B and D or generated and collected as the vector
product of matrices A and C by state vectors, allows for an accurate description of the
model’s evolution under the influence of variable coefficients or non-linear factors. This
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topic is described, for example, in [13]. It should be noted here that the physical task
describes a time continuous method, especially at the interface of time layers, taking
into account the equilibrium of observed parameters, unlike classical approaches, which
only consider equilibrium at selected time intervals.

5.3 Efficiency assessment

A simple test of parallel computation with access to common matrices shows the ex-
pected feature that properly scheduled threads do not increase parallel computation
time beyond physical necessity. With 16 available cores, the computation time of N
threads with similar workloads corresponds to int(N/16+0.5) the execution time of
a single thread (Fig. 5.7). a similar relationship is to be expected in the final real-scale
tests. The above example used for algorithm description exhibits the following execu-
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Figure 5.7: Computational time of various numbers of task parts solved in parallel.

tion time measured with ’time’ command:

No. of cores real time user time
1 core 0m1.569s 0m1.564s
16 cores 0m0.140s 0m0.232s

5.4 Conclusions

The main conclusions from the proposed method of discretization of the differential
equation of motion are as follows:

• Only non-zero characteristic matrix coefficients are stored.
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• Semi-separation of the system of equations thanks to symplectic elements and
the created triangular global matrix of coefficients significantly reduces the com-
putational cost.

• The method can be placed between implicit methods with full/band matrices
and explicit methods with diagonal matrices.

• Symplectic elements allow you to divide a spatial area into sub-areas and solve
them in parallel.

• Separating a sub-area sensitive to non-linear influences, requiring iterative solving
of a single-layer equilibrium equation, by surrounding it with simplectic elements,
makes it possible to limit iterations to this area.

• Obtaining a limited speed of information propagation between grid nodes in sub-
sequent computational steps introduces a hyperbolic character of the numerical
model of wave tasks, instead of the traditionally parabolized model, in which
we observe a non-physical infinite speed of information propagation. In many
dynamics tasks this is of lesser importance, although it is important to be aware
of it.

• The functionality of subdomain decoupling allows for distributing parts of very
large tasks among separate computers and exchanging only solution vectors be-
tween them.

• The computational performance over time is linearly dependent on the number
of processor cores.
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Chapter 6

Examples of applications

The issue of shock impact is a significant concern as it directly endangers the health
and safety of individuals involved in sports, high-risk occupations, and other hazardous
activities. Athletes in sports such as football, rugby, and cycling frequently encounter
collisions, falls, and other accidents, which can result in severe injuries to the head
and body, or even be life-threatening. Similarly, workers in fields such as construction,
machinery operation, and the military often face similar dangers. These workers are
at risk of accidents, such as falling heavy objects, collisions, and explosions, especially
when working at heights or operating machinery.

The development of impact protection materials is a critical and practical issue.
Sudden impacts can cause significant damage to both lives and equipment. Therefore,
the demand for safeguarding structures against severe impacts is steadily increasing,
as the safety of structures is largely dependent on the materials used in their construc-
tion. It is highly desirable to enhance the properties of materials designed to protect
the human head, body, and various engineering structures. There is a constant need for
lighter, high-performance, and cost-effective materials in practical applications. More-
over, there is an increasing demand for improved models and calculation methods to
accurately address practical issues, including deformation and stress analysis.

Therefore, it is essential to enhance existing protective equipment and boost its
effectiveness through innovative research. Introducing new materials, developing more
accurate mathematical and physical models, and creating more efficient numerical cal-
culation methods and manufacturing processes could provide new ideas and solutions
to these challenges. Continuous improvement and innovation aim to provide lighter,
more comfortable, and more effective protective equipment to better safeguard the
health and safety of athletes, workers, and other high-risk individuals.

Throughout history, traditional materials commonly used for impact reduction have
included iron (steel) [77] and materials reinforced with natural fiber particles such as
sisal and jute [90, 89]. These materials have been chosen for their specific properties
such as impact strength and compression strength. Additionally, hybrid materials like
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aramid fibers and kenaf fibers have been explored as alternatives to reduce costs and en-
vironmental impact while maintaining required protection levels [78]. Due to their low
cost, synthetic materials such as expanded polystyrene (EPS), expanded polypropylene
(EPP) and expanded polyurethane (EPU) are also popular. EPS is frequently used due
to its exceptional energy absorption properties and lightweight nature [71]. However,
existing materials have significant limitations, which is why structures based on intelli-
gent materials are being intensively developed. Smart materials are advanced materials
that can respond to environmental changes. They can alter one or more properties un-
der controlled conditions by external stimuli such as stress, moisture, electric fields,
magnetic fields, light, and temperature [56]. There are many types of smart materials
such as piezoelectric, granular materials, shape memory alloys, electrorheological and
magnetorheological fluid [8]. However, Smart materials in mechanics face limitations,
excessive mass and the necessity to use additional devices to enable modification of
parameters are two drawbacks of smart materials. These issues can lead to increased
costs, complexity, and potential reliability concerns [34].

Mechanical metamaterials may be a potential solution to the above-mentioned prob-
lems. Metamaterials are man-made structures with counterintuitive mechanical prop-
erties that originate in the geometry of their unit cell instead of the properties of
each component [105]. Engineered materials that gain their properties from structure
rather than composition, have led to the study of a myriad of properties not exhibited
by most (and in some cases all) natural materials (Fig.6.1). Such as pentamode ma-
terials, auxetic metamaterials, negative stiffness, negative compressibility, light fabric
metamaterials, and origami material [19, 22, 80].

Figure 6.1: Mechanical metamaterials gain their properties from structure rather
than composition [19].

The first part of the chapter presents the concept of a one-dimensional linear elastic
structure in which the stiffness changes with the moving mechanical wave caused by an
impact. The simplicity of the case enables a semi-analytical solution to the problem,
which allows for the verification of solutions obtained numerically using the space-time
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element method. The presented research was published in [107]. Next, an example
of a visco-plastic two-dimensional structure is presented, the appropriately selected
geometry of which allows shaping the response of the structure subjected to impact
loading.

6.1 Smart elastic material with a moving local stiff-
ness zone

The primary objective of this research endeavor is to elucidate the concept of an intel-
ligent material that is adept at mitigating the adverse effects stemming from impact
loads. It is paramount to underscore that the material under consideration exhibits
the versatility of being either rigid or flexible, thereby showcasing its efficacy in atten-
uating the repercussions of impacts. The enhancement in operational efficiency can
be attributed to the localized and transient alteration in stiffness prompted by the
propagation of mechanical waves within the material. It is imperative to highlight that
the envisaged material must possess a notably high usable stiffness, only deviating
from this characteristic momentarily and locally during critical junctures to modify
its mechanical properties. Through this approach, the functionality of an element or
structure integrated with intelligent material remains consistent and unaltered across
its entire operational spectrum, encompassing instances of impact occurrence.

The study posits a streamlined analysis concerning the behavioral dynamics of a
theoretical metamaterial. This material exhibits elastic properties, with the passage
of mechanical waves instigating localized adjustments in its stiffness profile. The ram-
ifications of localized increments or decrements in Young’s modulus on the structural
response were meticulously scrutinized. The insights garnered from these investigations
pave the way for identifying the optimal configuration of a metamaterial that aligns
with the stipulated operational strategy. Leveraging a simplistic 1D model facilitates
an in-depth exploration of the intricacies of the issue owing to its inherent simplicity
and the expedited computational processing it affords.

In subsection 6.1.1, we elaborate on the mathematical model, where Heaviside func-
tions are utilized to effectively represent the traveling stiffness zone within the system.
This methodology leads to the emergence of a non-constant longitudinal force exerted
on the rod. Following this, we clarify the problem definition and the equation of motion
to enhance the understanding of the model. The next part, subsection 6.1.2, focuses
on providing a semi-analytical solution to the model, achieved by applying the sepa-
ration of variables method alongside integral transformation techniques. In subsection
6.1.3, we meticulously develop a detailed numerical finite element method framework
to tackle the complexities involved in the problem. The results from the numerical
simulations performed are instrumental in validating the accuracy and effectiveness of
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the constructed numerical model. Subsection 6.1.4 explores the impact of varying the
number of local material changes on the system’s overall response. Finally, subsection
6.1.5 presents a comprehensive analysis and discussion, offering significant conclusions
and implications drawn from the study.

6.1.1 Mathematical model

Let us consider a homogeneous straight clamped-free rod of the length L and a con-
stant cross-section A clamped on the left side (Fig. 6.2). Assuming that the material
constituting the rod exhibits linear elasticity, it can be inferred that the behavior of
the material adheres to the fundamental principles delineated by Hooke’s law. The
function denoted as w(x, t) serves to elucidate the longitudinal displacements within
the rod under consideration. Consequently, the articulation of the boundary conditions
can be succinctly expressed as follows w(0, t) = 0 ,

∂w(x,t)
∂x

∣∣∣
x=L

= 0 .
(6.1)

Moreover, the bar has a density ρ and a global stiffness E. The following zero initial

L

ǫ

v0v0v0v0v0v0

c

E + Ê
ρ, E,A

Figure 6.2: A rod with a moving stiffness zone.

displacement and initial velocity v0{
w(x, 0) = 0 ,

ẇ(x, 0) = v0 .
(6.2)

Additionally, we assume that along with the wave moving in the rod, its stiffness
changes locally

E(x) = E +
[
H(x− (L− ϵ− ct))−H(x− (L− ct))

]
Ê , (6.3)
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where

H(x) =

{
0, if x < 0 ,

1, if x ≥ 0 .
(6.4)

The Heaviside step function, H(x), plays a crucial role in the stiffness equation by
modelling the localized change in stiffness as the wave propagates. The Heaviside
function is defined as 0 for x < 0 and 1 for x ≥ 0, and in this context, it creates a
"window" function through the difference H(x− (L− ϵ− ct))−H(x− (L− ct)). This
difference results in a value of 1 within the interval (L − ct) ≤ x < (L − ϵ − ct) and
0 elsewhere, effectively defining a region of length ϵ where the stiffness is modified by
Ê. As both L− ct and L− ϵ− ct are functions of time t, this interval moves with the
wave at speed c, thus ensuring that the localized change in stiffness travels along the
rod as the wave propagates. Consequently, the Heaviside function allows the equation
to dynamically capture the moving region of increased stiffness, reflecting the localized
nature of the stiffness modification accompanying the wave. We will consider two cases:
local strengthening (Ê > 0 and local weakening (Ê < 0 of stiffness. The difference of
the Heaviside functions, H(x − (L − ϵ − ct)) −H(x − (L − ct)), defines the traveling
stiffness zone of width ϵ. This means that within the interval (L−ct) ≤ x < (L−ϵ−ct),
the stiffness changes by Ê, creating a region that either strengthens or weakens the
material locally. As time progresses, this region moves along the rod with the wave
at speed c, where c =

√
E/ρ. This speed is derived from the relationship between

the stiffness E and the density ρ of the material. For the purpose of our analysis, we
focus only on the stage where the wave reaches the support at tmax = L/c, ensuring we
understand the effects of this travelling stiffness zone up to the point where the wave
has fully propagated through the length of the rod.

The longitudinal force N in the rod is given by

N = E(x)A
∂w

∂x
, (6.5)

where E(x) is the stiffness, A is the cross-sectional area, and ∂w
∂x

is the strain in the
rod. According to Newton’s second law, the change in momentum of a segment of the
rod is equal to the net force acting on it. For a differential segment dx of the rod, the
equation of motion can be expressed as

ρAdx
∂2w(x, t)

∂t2
= −N(x, t) +N(x, t) + dN(x, t) , (6.6)

where ρ is the density of the rod material, and ∂2w(x,t)
∂t2

represents the acceleration of the
segment. This equation links the dynamic behaviour of the rod (through acceleration)
to the spatial variation in the longitudinal force N , highlighting the relationship be-
tween the material properties, the cross-sectional area, and the resulting longitudinal
displacements due to external forces. Thus, by combining the constitutive relation for
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the longitudinal force with Newton’s law, we derive the fundamental equation governing
the wave propagation in the rod.

According to (6.3) the force N is not constant, so the increase in longitudinal force
dN can be written in the following form

dN =
∂N

∂x
dx =

{
EA

∂2w

∂x2
+
[
δ(x− (L− ϵ− ct))− δ(x− (L− ct))

]
ÊA

∂w

∂x

+
[
H(x− (L− ϵ− ct))−H(x− (L− ct))

]
ÊA

∂2w

∂x2

}
dx .

(6.7)

Finally, after rearrangements the Eqn (6.6), after taking into account (6.7) and dividing
by Adx, takes the form of the equation of motion

−E∂2w(x, t)

∂x2
−
[
δ(x− (L− ϵ− ct))− δ(x− (L− ct))

]
Ê
∂w

∂x

−
[
H(x− (L− ϵ− ct))−H(x− (L− ct))

]
Ê
∂2w

∂x2
+ ρ

∂2w(x, t)

∂t2
= 0 .

(6.8)

The Dirac delta function, denoted as δ(x), can be defined as follows

δ(x) =

{
∞, if x = 0 ,

0, otherwise .
(6.9)

The relationship of these functions is

δ(x) =
d

dx
H(x) . (6.10)

The Eq (6.8) described is a partial differential equation with variable coefficients. It
involves Dirac deltas and Heaviside step functions as variables, indicating localized
changes and discontinuities in the system. Consequently, the potential solution is
sought in the distributional sense, as traditional solutions may not adequately handle
such singularities.

A limitation of the mathematical model is applicable only during the initial phase
of the process, specifically up to the point when the wave reaches the support. This
restriction stems from the nature of the function representing the moving stiffness as
defined in equation (6.8). The function does not account for wave reflections from the
fixed end of the rod, making any further continuation of the solution beyond this phase
physically inaccurate. Incorporating wave reflections would introduce significant math-
ematical complexity, making the solution process far more challenging. This approach
allows for a broader understanding of solutions, accommodating the irregularities pre-
sented by the Dirac deltas and Heaviside steps within the framework of distribution
theory.
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6.1.2 Semi-analytical solution

Semi-analytical analysis refers to a computational approach that combines analytical
methods with numerical techniques to solve complex engineering problems efficiently.
Various research papers highlight the utility and effectiveness of semi-analytical mod-
els in different fields. For instance, Guo et al. developed a semi-analytical model for
predicting the vibration characteristics of flexible varying section disk-blades systems,
showcasing high precision and computational efficiency [45]. Additionally, Qian et al.
introduced a semi-analytical model for stability analysis of unsaturated slopes, incor-
porating spatially variable parameters and hydraulic considerations, demonstrating its
potential as a benchmark for geotechnical design[74]. Furthermore, Zhou et al. utilized
a semi-analytical model to analyze the dynamic characteristics of missiles during ver-
tical cold launches, proving its effectiveness in studying the impact of wind load and
other factors on missile behavior [84]. These studies collectively emphasize the signifi-
cance of semi-analytical methods in enhancing computational efficiency and accuracy
across diverse engineering applications. In this study, in order to solve the Eq (6.8)
along with the boundary conditions (6.1) and the initial conditions (6.2) we will use
the separation of variables method

w(x, t) = V (t)U(x) . (6.11)

Substitution (6.1) into the formula (6.11) leads to boundary conditions for the function
U(x). To solve the boundary problem, we define eigen functions and eigenvalues. The
assumed boundary conditions are satisfied by the following series of sines

w(x, t) =
2

L

∞∑
j=1

Vj(t) sin
(2j − 1)πx

2L
. (6.12)

So we get an infinite sequence of eigenvalues. Each eigenvalue corresponds to an eigen-
function. The V (t) function is determined from the following formula

Vj(t) =

∫ L

0

w(x, t) sin
(2j − 1)πx

2L
dx . (6.13)

The integral (6.13) is called the Fourier transformation. Taking into account (6.13)
initial conditions (6.2) take the following form

Vj(0) = 0 , V̇j(0) =
2v0L

(2j − 1)π
. (6.14)
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According to (6.12) and (6.13) the equation of motion (6.8) after rearrangements can
be written in the following form

V̈j(t) +
E

ρ

(
(2j − 1)π

2L

)2

Vj(t)

− Ê

ρ

π

L2

∞∑
k=1

(2k − 1)Vk(t) cos
(2k − 1)π(L− ϵ− ct)

2L
sin

(2j − 1)π(L− ϵ− ct)

2L

+
Ê

ρ

π

L2

∞∑
k=1

(2k − 1)Vk(t) cos
(2k − 1)π(L− ct)

2L
sin

(2j − 1)π(L− ct)

2L

+
Ê

ρ

2

L

(
π

2L

)2 ∞∑
k=1

(2k − 1)2Vk(t)

∫ L

L−ϵ−ct

sin
(2k − 1)πx

2L
sin

(2j − 1)πx

2L
dx

− Ê

ρ

2

L

(
π

2L

)2 ∞∑
k=1

(2k − 1)2Vk(t)

∫ L

L−ct

sin
(2k − 1)πx

2L
sin

(2j − 1)πx

2L
dx = 0 ,

(6.15)

where the integral is presented for the interval < L− ϵ− ct, L > in the following form∫ L

L−ϵ−ct

sin
(2k − 1)πx

2L
sin

(2j − 1)πx

2L
dx

=
2L

π

1

(2j − 1)2 − (2k − 1)2

[
(2j − 1) cos

(2j − 1)π(L− ϵ− ct)

2L
sin

(2k − 1)π(L− ϵ− ct)

2L

−(2k − 1) sin
(2j − 1)π(L− ϵ− ct)

2L
cos

(2k − 1)π(L− ϵ− ct)

2L

]
.

(6.16)

The second integral differs by the integration interval when ϵ = 0. We can see that the
solution (6.16) is only possible for j ̸= k. In the case of j = k we have to use l’Hôpital’s
rule. The formula is given in the following form∫ L

L−ϵ−ct

(
sin

(2j − 1)πx

2L

)2

dx =
L

2(2j − 1)π
sin

(2j − 1)π(L− ϵ− ct)

L
+

1

2
(ct+ ϵ) .

We limit the series to a finite number of n terms. Finally, the system of equations
(6.15) can be written in matrix form

MV̈ +KV = 0 . (6.17)

The final solution to the problem is obtained by substituting the components of the
vector V into the series expansion presented in equation (6.12). To solve the system of
differential equations described in equation (6.17), the numerical Newmark integration
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method is employed. This method, widely used in structural dynamics, allows for time-
domain integration with the initial conditions provided in equation (6.14). The entire
computational process has been implemented in a custom-developed Fortran program,
which was specifically written for the task at hand.

One of the key advantages of this semi-analytical solution is its utility in verifying
the accuracy of results obtained through the finite element method. By providing
a solution based on a simplified analytical approach, it serves as a benchmark for
comparison with more complex numerical models. This verification is essential to
ensure the reliability and accuracy of the numerical methods used in structural analysis.

However, a limitation of the semi-analytical approach lies in the scope of the mathe-
matical model, which is constrained to only the initial phase of the process, specifically
up until the point when the wave reaches the support, tmax = L/c. This restriction
arises due to the nature of the function, representing the moving stiffness. The struc-
ture of the moving stiffness is such that it does not account for wave reflections from the
fixed end of the rod, thus rendering any solution beyond this initial phase physically
invalid. Extending the model to include wave reflections would require significantly
more complex mathematical modifications to the stiffness function, complicating the
analytical framework considerably.

Despite this limitation, the semi-analytical solution is sufficient for verifying the de-
veloped numerical model, which will be presented in detail later in the manuscript. The
simplicity and clarity of this solution provide a robust preliminary check against the nu-
merical results, ensuring that the basic dynamics of the system are captured accurately
before more advanced numerical methods are applied. Additionally, it is important to
note that this semi-analytical solution is valid only for the specific boundary conditions
outlined in equation (6.1), further emphasizing the need for caution when generalizing
the results to other scenarios.

While the semi-analytical approach offers valuable insights and serves as an effective
verification tool, its application is limited by the assumptions inherent in the mathe-
matical model. These limitations do not, however, detract from its usefulness in the
context of validating the numerical methods, such as the finite element method, which
are capable of handling more complex boundary conditions and wave reflections.

6.1.3 Finite element approach of a moving stiffness

In this subsection, we introduce a numerical model that describes the behavior of
moving stiffness as it travels along the length of the rod. The classical finite element
method is employed to develop this model, offering a well-established approach for
discretizing and solving the governing equations of the system. By discretizing the
rod into finite elements, the dynamic interactions caused by the moving stiffness are
captured in a systematic manner. While the model is initially constructed using a
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traditional FEM framework, it is worth noting that the resulting matrix formulation
can be seamlessly transformed into a space-time approach. Fig. 6.3 illustrates the setup
of the problem, depicting a rod that is fixed at its left end. The diagram helps visualize
the physical system under consideration, where the moving stiffness progresses along
the rod while the fixed boundary at the left end constrains its movement. The rod is

Figure 6.3: Finite element model of rod subjected to the travelling stiffness zone.

divided into n finite elements of length b. The moving element is marked in yellow and
moves at c wave speed. The parameters informing about the width of the yellow zone
and where it is located at a given moment of time are as follows

p =
ct− ct%b

b
, (6.18)

q =
(ct+ ϵ)− (ct+ ϵ)%b

b
, (6.19)

where % denotes modulo operation. The considered moving zone of length ϵ may
include only 1 element, but also several elements. Fig.6.4 shows the case of the two
involved elements. In order to solve this problem we assume the linear shape functions,

c

b

1 2 3

ǫ

Figure 6.4: The travelling stiffness zone on the two elements involved.
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then the displacement can be expressed as follows

w(x, t) =

(
1− x

b

)
w1(t) +

x

b
w2(t) , (6.20)

and similarly virtual displacements

w∗(x) =

(
1− x

b

)
w1 +

x

b
w2 . (6.21)

According to (6.8) virtual energy of the travelling zone can be presented in the following
form

Π̂ = ÊA

∫ b

0

w∗

{[
H(x− (b− ϵ− ct))−H(x− (b− ct))

] ∂2w

∂x2

−
[
δ(x− (b− ϵ− ct))− δ(x− (b− ct))

] ∂w
∂x

}
dx .

(6.22)

The above integrals can be computed considering (6.20) and (6.21) as follows∫ b

0

w∗H(x− (b− ϵ− ct))
∂2w

∂x2
dx =

∫ b

b−ϵ−ct

w∗∂
2w

∂x2
dx , (6.23)

∫ b

0

w∗ δ(x− (b− ϵ− ct))
∂w

∂x
dx =

(
w∗∂w

∂x

)
x=b−ϵ−ct

. (6.24)

Taking into account Fig. 6.3, we can divide the moving component (covered in yellow)
into 3 parts. The first part of the moving component is all elements completely covered
by the moving component ((p+2)th to qth). In these elements, the result of the integral
is given by the formula

ÊA

∫ b

0

w∗∂
2w

∂x2
dx = ÊA

∫ b

0

∂w∗

∂x

∂w

∂x
dx =

ÊA

b

[
w∗

1 w∗
2

] [ 1 −1
−1 1

][
w1

w2

]
. (6.25)

As a result of the minimization of the energy, and considering all covered elements, the
results are as follows

W1 =
ÊA

b

[
1 −1
−1 1

][
wp+2

wp+3

]
+

ÊA

b

[
1 −1
−1 1

][
wp+3

wp+4

]
+ . . .

+
ÊA

b

[
1 −1
−1 1

][
wq

wq+1

]
.

(6.26)
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The second part of the moving component refer to the elements that are partially
covered by the moving component. According to (p + 1)th and (q + 1)th elements,
integrals can be written in the following forms

ÊA

∫ b

ct%b

w∗∂
2w

∂x2
dx = ÊA

∫ b

ct%b

∂w∗

∂x

∂w

∂x
dx

=
ÊA

b2
(b− ct%b)

[
w∗

p+1 w∗
p+2

] [ 1 −1
−1 1

][
wp+1

wp+2

]
,

(6.27)

ÊA

∫ (ct+ϵ)%b

0

w∗∂
2w

∂x2
dx = ÊA

∫ (ct+ϵ)%b

0

∂w∗

∂x

∂w

∂x
dx

=
ÊA

b2
((ct+ ϵ)%b)

[
w∗

q+1 w∗
q+2

] [ 1 −1
−1 1

][
wq+1

wq+2

]
.

(6.28)

Similarly, as a result of the minimization of the energy we obtain

W2 =
ÊA

b2
(b− ct%b)

[
1 −1
−1 1

][
wp+1

wp+2

]

+
ÊA

b2
((ct+ ϵ)%b)

[
1 −1
−1 1

][
wq+1

wq+2

]
.

(6.29)

For the second part calculation

ÊA

(
w∗∂w

∂x

)
=

ÊA

b

[
w∗

1 w∗
2

] [ 1
b
x

1− 1
b
x

] [
1 −1

] [w1

w2

]

=
ÊA

b2

[
w∗

1 w∗
2

] [ x −x
b− x x− b

][
w1

w2

]
.

(6.30)

As a result of the minimization of the energy, and substituting b− ct%b and (ct+ ϵ)%b
to x we obtain

W3 =
ÊA

b2

[
b− ct%b ct%b− b
ct%b −ct%b

][
wp+1

wp+2

]

+
ÊA

b2

[
(ct+ ϵ)%b −(ct+ ϵ)%b

b− (ct+ ϵ)%b (ct+ ϵ)%b− b

][
wq+1

wq+2

]
.

(6.31)
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Finally, vector describing the travelling zone can be written in the following form

Wmove = W1 +W2 +W3

=
ÊA

b

[
1 −1
−1 1

][
wp+2

wp+3

]
+

ÊA

b

[
1 −1
−1 1

][
wp+3

wp+4

]
+ . . .

+
ÊA

b

[
1 −1
−1 1

][
wq

wq+1

]
+

ÊA

b2
(b− ct%b)

[
1 −1
−1 1

][
wp+1

wp+2

]

+
ÊA

b2
((ct+ ϵ)%b)

[
1 −1
−1 1

][
wq+1

wq+2

]

+
ÊA

b2

[
b− ct%b ct%b− b
ct%b −ct%b

][
wp+1

wp+2

]

+
ÊA

b2

[
(ct+ ϵ)%b −(ct+ ϵ)%b

b− (ct+ ϵ)%b (ct+ ϵ)%b− b

][
wq+1

wq+2

]
.

(6.32)

6.1.4 Results

A test example that illustrates the correctness of the numerical model is presented.
Computer calculations were performed using the characteristic matrices of the rod
derived in subsection 4.1.3.
The data set used in the simulations:

• Young’s modulus - E = 100 [GPa]

• Moving Young’s modulus - Ê = 0.9E

• Density of a rod - ρ = 10 [ kg
m3 ]

• Length of a rod - L = 0.05 [m]

• Width of a moving zone - ϵ = 0.01 [L]

• Initial velocity - v0 = 1 [m
s
]

Figs. 6.5 and 6.6 present the obtained results, compared with the semi-analytical solu-
tion from the section 6.1.2. The previously presented analytical solution validates the
results obtained using the numerical method. While the analytical solution is limited
to a specific case, the numerical solutions provide a broader range of possibilities for
analysis. This demonstrates the robustness and flexibility of numerical methods in
solving complex dynamic problems.
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Figure 6.5: Displacements in the middle of the rod - local strengthening (above) and
local softening (below).

Below, we will discuss the results obtained numerically using the matrices described
in subsection 6.1.3, in the case of a rod with one end fixed and the free end loaded with
a force impulse. We will consider the acceleration of the free end of the rod and the
axial force appearing in the finite element at the free end. The influence of the width of
the hardening/softening zone will be exhibited as well as the ratio of the contribution
of Ê to the initial elasticity modulus E.

Fig. 6.7 presents the force and acceleration at the subjected end of the rod for both
softened and stiffened travelling zones. The following parameters were assumed for
the analysis: a ratio of Ê/E = 0.9, and the width of the travelling stiffness modifi-
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Figure 6.6: Velocities in the middle of the rod - local strengthening (above) and local
softening (below).

cation zone was set to 1% of the total length of the rod. In the case of the softening
material, the axial force observed in the edge element immediately after the impact is
approximately 15% of the force value in the unmodified material. Conversely, in the
case of the hardening material, the force is observed to be about 60% higher than that
in the unmodified material. Furthermore, the acceleration recorded at the end of the
rod shows significant variations depending on the stiffness modification. For the rod
with a temporarily weakened material, the acceleration is 25% less than the reference
acceleration measured in the unmodified rod. In contrast, the acceleration for the hard-
ening material is 30% greater than the reference acceleration. These results highlight
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Figure 6.7: Force and acceleration at the subjected end for softened and stiffened
travelling zone normalized to those obtained with unmodified material.
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the substantial impact of local stiffness changes on the dynamic response of the rod,
demonstrating that both softening and hardening modifications can significantly alter
the force and acceleration experienced at the rod’s end. The numerical data empha-
size the importance of considering such local modifications in engineering applications
where precise control of dynamic responses is critical.

Fig. 6.8 depicts the impact of varying amounts of local material weakening on the
overall response exhibited by the system under consideration. The analysis considers

Figure 6.8: Force at the subjected free end depending on the relative additional elas-
ticity module.

a spectrum of weakening scenarios for the modulus of elasticity denoted as Ê, ranging
from 0 to 95% of the nominal value of the base modulus of elasticity E characterizing
the rod in question. In practical terms, the effective modulus E + Ê within the region
affected by weakening experiences a transition from E to 0.05E. Notably, a clear
relationship emerges wherein the reduction in internal force experienced at the loaded
extremity of the member aligns proportionally with the Ê/E ratio, as evidenced by
the trends observed in the system response.

Fig. 6.9 illustrates the displacements in time corresponding to various values of the
relative additional elasticity module Ê. The displacements w(x, t) can be directly
correlated to the displacement of the free end denoted as w0, assuming an unaltered
elasticity module E. Specifically, in the particular scenario under analysis, the value
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Figure 6.9: Displacement at the subjected free end depending on the relative addi-
tional elasticity module.

of w0 is set at 1. A noteworthy observation from the data is the gradual and more
pronounced advancement over time of the resultant displacement magnitude in in-
stances where the material exhibits a softened characteristic. This particular behavior
is advantageous as it enables a more gradual progression in the recorded accelerations,
thereby contributing to a softer and less abrupt nature of the impacts observed.

Fig. 6.10 demonstrates that the width of the moving softened gap can be relatively
narrow. While a wider gap marginally improves the results compared to a narrower
gap by reducing the acting forces and accelerations, this improvement is slight. This
phenomenon is theoretically explicable because, in an elastic material, the wavefront
is sharply defined without parabolization of the governing equation and the blurring
effects of damping. Consequently, only a narrow zone is significantly involved in the
process described in this study. This observation underscores the localized nature
of the stiffness modification’s impact on the dynamic response of the rod, indicating
that even small modifications in stiffness can have pronounced effects on the force and
acceleration within the affected region.

Fig. 6.11 depicts the amplitude in terms of the width of the modified moving zone.
The increasing amplitude along with the lengthening of the first period of vibration
results in a reduced value of the acceleration at the free end of the rod. The extension
of the oscillation period, even with increasing amplitude, leads to a reduction in the
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Figure 6.10: Internal force at the subjected free end depending on the modified zone
width.

acceleration amplitudes. Fig. 6.11 shows a three-fold increase in displacement ampli-
tudes, with a ten-fold increase in the time it takes to return the observed point to its
equilibrium position. This is the reason for the significant decrease in accelerations and
forces. It should be emphasized again that the narrow, softened moving zone somehow
distributes the impulse energy over the area of the object.

6.1.5 Conclusions

This research study demonstrates that the local and temporary reduction in material
strength has a significant impact on critical utility values, such as peak accelerations
and peak force values experienced at the periphery of the tested object. The weakening
of the material occurs specifically in areas characterized by high deformation velocities,
precisely at the location where the traveling wave front emerges as a result of the
impact. It is important to note that only a thin layer of the material undergoes
weakening, while the remaining portion retains its original mechanical and functional
properties without alteration.

The utilization of mathematical formulation and semi-analytical solution techniques
in addressing the task has enabled the validation of the developed numerical model
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Figure 6.11: Displacements w(x, t)/w0 at the subjected free end depending on the
gap width.

based on finite elements. Within the realm of numerical simulation, ensuring the ac-
curacy of depicting the propagation of the weakened zone front across the successive
finite elements’ domain holds paramount importance. The same level of significance
is attributed to the transition at the end of the weakened zone, where a segment of
the finite element domain experiences weakening while other parts remain unaffected.
Moreover, the orientation of the elastic wave assumes critical importance in the nu-
merical model. The consistency between semi-analytical and numerical findings was
observed within the limits of assessable scope, accounting for the emergence of known
artifacts.

The outcomes of the simulations indicate that materials exhibiting a localized reduc-
tion in stiffness offer a more efficient means of mitigating large, short-term acceleration
peaks, thereby proving effective in accident prevention measures. Illustrative instances
underscore that the mitigation of forces or accelerations can vary between 30 to 70%
when compared to models constructed with conventional materials.

While materials with temporary reinforcement are relatively easy to manufacture
and procure, the acquisition of weakening materials poses a current challenge. Hence,
the ongoing efforts directed toward advancing research in this domain are deemed
imperative and warrant further exploration.
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6.2 Mechanical metamaterial

Researchers are actively exploring the applications of mechanical metamaterials in the
development of lighter and stronger structures. By using these materials, engineers
can create components that maintain structural integrity while significantly reducing
weight, which is crucial in industries like aerospace and automotive. Lighter materials
contribute to better fuel efficiency and enhanced performance, making them invaluable
for modern engineering challenges. The ability to tailor mechanical properties also
allows for greater design freedom, paving the way for innovative architectures and
systems that were previously unattainable. As research progresses, the potential of
mechanical metamaterials continues to expand, promising advancements in numerous
fields, from construction to consumer electronics, revolutionizing how we think about
and use materials in our everyday lives.

Engineering practice shows that currently available smart materials have significant
drawbacks that limit their potential application in practice. This is excessive mass, but
above all the need to use complex additional devices that allow, through control, mod-
ification of parameters. The solution to the problems may turn out to be mechanical
metamaterials, whose dynamic properties are determined to a greater extent by their
geometric structure than by the base materials that constitute the carrier. They are
lightweight, and what is more, they are characterized by full autonomy of operation.
Thanks to the use of effective computational tools, it seems possible to design prototype
metamaterials that exhibit unusual and so far unexplored functional features.

In the literature, we can find metamaterials characterized by negative Poisson’s
ratio, which use elastic instability of the structure [39]. Fig. 6.12 shows an elastic
material with regular geometry. The sample is compressed, and adjacent holes interact
during deformation, leading to self-activating jumps in subsequent material layers. This
elastic instability of the structure is a kind of switch that allows semi-active modification
of the material characteristics. An appropriately designed geometric structure of such
a material can be used to implement a two-state control strategy.

In this subsection, the problem of plane stress state is presented. The structure is
subjected to an impulsive load. A viscoplastic material model was used in computer
simulations. According to the space-time model from subsection 4.2.3, numerical cal-
culations of the metamaterial structure were performed and the results of computer
simulation were presented.

6.2.1 Space-time viscoplastic model

In the process of creating a material model intended for dynamic simulation, it is
essential to address the complexities involved in identifying multiple parameters, as
well as the significant computational resources necessary for running these simulations.
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Figure 6.12: A mechanical metamaterial biholar sheet [39].

This example focuses on a specific uniform, isotropic, and non-compressive material
characterized by a relatively uncomplicated Norton-Hoff formula for viscoplastic solids
[82]. The model is designed to be both straightforward and user-friendly, requiring
only a few parameters to be identified through experimental means. Initially utilizing
the nonlinear model, modifications were later implemented by adding rate-dependent
softening and an extra modifier to enhance its compatibility with the reference results.

A space-time approach was employed to describe the problem, as it allows for a
more convenient representation of geometric changes during plastic flow through si-
multaneous interpolation in both space and time. Additionally, the space-time finite
element method enables parallel computing, and when appropriately tailored, it can
yield results significantly faster than traditional finite element method. In the con-
ventional Norton-Hoff model, the deviatoric component of the Cauchy stress tensor,
denoted as τ ′, is defined in the following manner

τ ′ =
Kε̇(√
3D
)1−m , (6.33)

where
ε̇ =

1

2
(gradv + gradTv) = Dv, (6.34)
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D =

√
2

3
ε̇T ε̇. (6.35)

The material viscosity is represented by K, and the deformation rate sensitivity is
denoted by m, where 0 ≤ m ≤ 1. Specifically, m = 0 indicates a perfectly plastic
material, whereas m = 1 corresponds to a Newtonian fluid, as illustrated in Fig. 6.13a.

a) b)

Figure 6.13: Norton-Hoff material response for different rate sensitivity m (a) and
the resulting acceleration over time, compared with reference literature results (b).

The constraint of having positive values for m limits the ability to achieve an
accurate alignment between the numerical results and the existing literature. As a
result, the model was adjusted to permit negative values in the range of −1 ≤ m ≤ 0,
leading to the observed weakening illustrated in Fig. 6.13a. This modification causes
viscosity to decrease as deformation rates increase, a behavior typically associated with
certain biological fluids, as well as jelly and gel-like substances. Consequently, a revised
version of the generalized material law (6.33)–(6.35) is proposed in the following form

τ ′ = s
Kε̇(√
3D
)1−m (6.36)

with permissible
m ∈ ⟨−1, 1⟩ . (6.37)

The viscosity K and the parameter m can be modified, in addition to the intro-
duction of the multiplier s, which facilitates various hyperbolic configurations of the
dependency. This enhancement enables the acquisition of distinct viscoplastic softening
characteristics.

In comparing the material response at various values of m (Fig. 6.13b), it is evident
that assuming m < 0 (indicating softening and decreasing viscosity) results in a rapid
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initial peak in acceleration, followed by a gentle decline. This behavior closely mirrors
the reference results.

The virtual work within a space-time layer can be represented by the following
integral∫ h

0

∫
V

(v∗)Tρ
∂v

∂t
dΩ +

∫ h

0

∫
V

(ε̇∗)Tτ ′dΩ =

∫ h

0

∫
∂V

(v∗)T f d(∂V ) dt , (6.38)

where h is the considered time step. Taking into account the second term in (6.38), the
interpolation of the virtual velocities utilized in (6.34) along with the actual velocities
in (6.36) makes it possible to express this term as follows

s

∫
Ω

q̇T (DN∗)T
K

(
√
3D)1−m

DN dΩ · q̇ . (6.39)

Following several transformations, the matrix associated with this term and connected
to the potential energy will be represented in the following manner

K =

∫ h

0

∫
V (t)

(
DN∗(x, t)

)T
E DN(x, t)dV dt . (6.40)

It is important to highlight the analogy with the elastic case. In viscoplastic elements,
the matrix E now varies with the strain rate. The other matrices can be derived
similarly, leading to the final equation being expressed in the following matrix form

(K+M+ Z)q̇ = F. (6.41)

The matrix K represents the stiffness, M accounts for the effects of inertia, Z reflects
the influence of external damping, while F denotes the external load vector. The
condition of incompressibility

div v = 0 , (6.42)

which is included in the penalty function, can be readily formulated into an appropriate
expression. The penalty function term that contributes to the functional is represented
as follows

1

2
λ div v∗ div v =

1

2
q̇T

∫
Ω

(DN∗)TΛDNdΩ · q̇ , (6.43)

where λ represents the coefficient of the penalty function, and the matrix Λ takes the
following form in three-dimensional problems

Λ = λ



1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


. (6.44)
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6.2.2 Numerical simulations

Let us consider the rectangular structure with three holes. The plane-stress problem
is considered so we can use the numerical model from subsection 4.2.3. The example
structure is divided into two parts, an upper elastic part and a lower viscoplastic
part. The description of the viscoplastic material and the method of entering material
parameters into the numerical model are presented in the 6.2.1 subsection. Fig. 6.14
presents a geometric diagram of the calculation example. The geometric data of the
structure are presented in cm. The structure is fixed at the bottom, which means that

Figure 6.14: The outline of the problem.

the degrees of freedom about the x and y axes are taken away. This prevents the lower
edge of the rectangle from moving in any direction. The deformation process of the
structure starts from the initial velocity v0=-0.005 cm/µs.

The computer simulations use the units cm, g, µs so that we do not deal with large
numbers that could affect the inaccuracy of the solutions.
The following data set were used:

• elastic part

– Young’s modulus - E=69 GPa=0.69 g/cm/µs2
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– Poisson ratio - ν=0.33

– mass density - ρ=2720 kg/m3=2.72 g/cm3

– damping coefficient - ηz=500 kg/s=0.5 g/µs

• viscoplastic part

– viscosity - K=0.001

– deformation rate sensitivity - m=0.267

– mass density - ρ=2720 kg/m3=2.72 g/cm3

The freely available program "triangle" was used to generate the finite element mesh.
Ultimately, due to the size of the test example, it was decided to use 967 mesh nodes,
which resulted in 1750 finite elements. According to the obtained division into triangles,
a simplex-shaped space-time mesh was built.

Using the calculation scheme (3.12) and characteristic matrices (4.99), (4.114) and
(4.130), a computer program was developed to simulate the dynamic behavior of the
example problem. Deformations of the structure lead to a rapid change of geometry.
Part of the deformed material begins to be in contact with other parts of the structure,
and therefore it is necessary to study dynamically changing contact zones in the ma-
terial. Fig. 6.15 illustrates the progression of deformation in the tested structure over
a series of successive time steps. In addition, we specifically examined the acceleration
of a point with initial coordinates (0.5, 1.5), which is situated along the upper edge of
the plate. The measured acceleration values for this point are depicted in Fig. 6.15.
During the initial phase of the simulation, we observe that the acceleration values are
notably high. This behavior indicates that the structure is responding within the elas-
tic range, where it deforms elastically and returns to its original shape upon unloading.
As the simulation progresses, the material begins to exhibit plastic behavior, marking
a transition from elastic deformation to plastic deformation. At this critical juncture,
we witness a sudden relative deformation of the holes in the structure, leading to a
significant reduction in the acceleration of the point in question. This abrupt change
illustrates the shift in material behavior as it yields and accommodates additional dis-
placement, highlighting the complex interaction of forces at play within the structure
under analysis.

Effective parallelization hinges on a well-defined flow of information during the
initial stages of the computational solution process. In the first clock cycle, the calcu-
lations can only yield the unknown values for a single node, establishing a foundational
reference point for subsequent computations. This first stage is crucial, as it sets the
groundwork for the iterative process that follows. In the subsequent clock cycles, the
methodology systematically incorporates neighboring nodes one at a time into the cal-
culations. This incremental approach allows for a structured progression through the
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Figure 6.15: Distribution of the in-plane deformation in successive stages.

spatial domain, ensuring that each additional node is directly influenced by the results
of its adjacent nodes. Consequently, the computational front line in the space-time
continuum evolves as more nodes are included, effectively creating a "slope" that rep-
resents the wave of computation spreading through the system. As the process unfolds,
after a determined number of initial computational steps during each cycle, every node
that is integrated into the calculations corresponds to a different moment in time. This
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Figure 6.16: Acceleration at a selected point of the structure.

creates a dynamic and evolving computational lattice, where each position on this grid
reflects the state of the system at various temporal intervals. The careful organization
of information flow not only enhances computational efficiency but also ensures that
the results obtained at each node are synchronized with those of its neighbors. The
result is a cohesive and coherent calculation that mirrors the physical behavior of the
dynamic structure being analyzed. In summary, the orderly flow of information initi-
ated in the first clock cycle serves as the catalyst for a broader and more intricate web
of calculations, which ultimately enables accurate modeling of the dynamic response
of structures over time. This systematic approach to parallelization maximizes the
use of computational resources, reduces processing time, and leads to more robust and
reliable outcomes in the analysis of complex dynamic systems. As the methodology
continues to unfold, it opens up new avenues for exploring various structural behaviors
and enhancements within the realm of computational mechanics.

In the parallel space-time method, it is essential to incorporate finite element char-
acteristic matrices into a global matrix while ensuring that concurrent access to shared
memory is safeguarded against multiple processors. To achieve this, the process must
be organized into sub-stages that generate element matrices from nodes that are sep-
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arated by at least one spatial element. This precaution ensures that concurrently
computed elements do not share common nodes, thus preventing conflicts in memory
access. In the context of a two-dimensional mesh composed of regularly arranged tri-
angles, we can conceptually identify clusters of triangles, known as "rosettes," that
surround individual nodes. During consecutive computational cycles, the matrix of
elements surrounding a specific node is identified, and the associated coefficients are
sequentially integrated into the global matrix. This systematic approach requires that
the process be carried out in a step-by-step manner for each spatial element within
the designated rosette. By following this methodical procedure, we ensure that the
integration of finite element matrices is not only efficient but also safe from the risks of
simultaneous memory access. As each node’s contributions are incorporated into the
global matrix one rosette at a time, the overall coherence and integrity of the numerical
analysis are maintained, facilitating accurate simulation of dynamic structures.

6.2.3 Conclusions

The proposed methodology presents a groundbreaking approach for the parallel bulk
computation of dynamic structures, marking a significant advancement in computa-
tional techniques within structural engineering and dynamic analysis. This innova-
tive framework allows for the direct decoupling of the resulting system of equations,
enabling the efficient distribution of computational tasks across multiple parallel pro-
cessing units. By leveraging parallel computing, the methodology can exploit the
capabilities of modern hardware, significantly accelerating analysis times.

A key feature of this approach is the transformation of the resulting global matrix
into a triangular form, which retains only non-zero coefficients. This simplification
not only enhances memory efficiency but also improves computational speed, as oper-
ations on sparse matrices tend to require fewer resources and time compared to dense
matrices. Proper spatial discretization is essential in this context, as it aids in effec-
tively separating zones characterized by nonlinear behavior that necessitates iterative
solutions. By isolating these nonlinear regions, the methodology allows for iterative
recomputation only of small sections of the algebraic equation system, rather than
the entire system. This targeted recomputation significantly reduces overall computa-
tional effort, permitting a frontal solution of the time-stepping scheme that contributes
to enhanced efficiency.
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Chapter 7

Summary of research work

In this dissertation, the initial two chapters outline the objectives of the thesis and the
current research being presented. The focus is on the concept of decoupling systems
of equations, which allows for parallel computations across different segments of the
system. This decoupling technique involves sequentially calculating unknown variables,
enabling parallel processing and facilitating a progressive movement in the computa-
tion. Additionally, the discussion includes the simplex-shaped space-time finite element
method, a strategy employed to solve differential equations. Simplex-shaped functions
help define the space-time coordinates within various subelements, which is instrumen-
tal in tackling wave problems and understanding structural dynamics. The space-time
finite element method also permits continuous adaptation of the spatial mesh over time,
as well as the separation of resulting equations from the algebraic equation system dur-
ing the formation of characteristic matrices, all without necessitating triangulation.

In Chapter 3, we provide an in-depth introduction to the space-time finite element
method. We begin by discussing the flow of data within the mesh before deriving
the relevant mathematical expressions in detail. This method incorporates space-time
shape functions that are analogous to those used in classical finite element techniques.
By integrating these shape functions into the governing equations of motion, we obtain
the general findings for the system. We present the formulations for several essential
matrices: the stiffness matrix, the inertia matrix, the internal damping matrix, and
the external damping matrix. These matrices are vital for accurately depicting the
dynamic behavior of the system.

Moreover, we delve into the properties of simplex elements and their function within
the method. A key characteristic to highlight is that the strain displacement matrix
is lower triangular, which simplifies the computational process and facilitates the res-
olution of the mechanical system. Furthermore, we provide a brief overview of the
nonlinear iteration procedures used within a subdomain, which are critical for manag-
ing nonlinearities and ensuring solution accuracy in complex scenarios. Overall, this
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chapter thoroughly explores the fundamentals of the space-time finite element method,
emphasizing its mathematical underpinnings and practical applications.

In Chapter 4, we focus on selected examples of one- and two-dimensional struc-
tures to demonstrate the application of numerical methods in structural analysis. We
construct a standard one-dimensional rod model. This involves conducting a thorough
force analysis and deriving the one-dimensional partial differential equation of motion.
By utilizing the space-time finite element method laid out in Chapter 3, we apply sim-
plex elements to derive the stiffness and inertia matrices specific to this one-dimensional
context. The force analysis enables us to accurately represent the dynamic behavior
of the rod, leading to the formulation of its governing equations. By employing the
space-time finite element method, we convert these equations into a discretized for-
mat suitable for numerical examination. The role of the simplex elements is crucial
in this transformation, ensuring both the efficiency and precision of the resulting ma-
trices. Following this, we illustrate the application of the method through a classic
one-dimensional example. This specific model is solved using two numerical strategies:
the semi-analytical method in conjunction with the Newmark technique, and the space-
time finite element method. A comparison of the results from these two simulations is
conducted to evaluate the effectiveness of the proposed method.

In the second part of Chapter 4, the focus shifts to addressing the challenges posed
by large deformations within the context of plane-stress problems. We commence by
deriving the fundamental relationship between stress and strain, offering a comprehen-
sive understanding of the mechanics involved. This relationship is integral for solving
the two-dimensional partial differential equations that describe deformation behavior.
When the system undergoes large displacements, integrating nonlinear terms becomes
essential for achieving accurate outcomes, as neglecting these nonlinearities can result
in considerable errors. To tackle this, we derive the shape functions for a tetrahedral el-
ement in the two-dimensional case, specifically within the framework of the space-time
finite element method. By incorporating these shape functions into the equations of
motion, we yield numerical solutions for the system. We offer explicit formulations for
both the inertia matrix and the stiffness matrix, presented in their linear and nonlinear
forms. Including nonlinear terms is particularly vital for addressing large deformations,
as these terms account for the geometric and material nonlinearities that develop. To
validate our methodology, we provide a detailed numerical example where we apply
the space-time finite element method to resolve the plane-stress problem under con-
ditions of both small and large displacements. A comparison of outcomes is made to
emphasize the importance of accounting for nonlinear terms in situations involving
significant displacement. Our results unequivocally indicate that for large deforma-
tions, incorporating nonlinear terms is essential for acquiring accurate and trustworthy
outcomes. The comparative analysis shows that the linear model fails to capture the
actual behavior of the system under large displacements, while the nonlinear model
offers a much closer approximation.
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In Chapter 5, we delve into the practical applications of the space-time finite element
method. To enhance clarity, we opt for a two-dimensional model for the simulation.
This chapter provides an extensive examination of the characteristic matrices rele-
vant to this model, detailing their configurations and significance in the computational
workflow. We explore how the iterative process of solving the model is facilitated
using parallel computing techniques. Specifically, we outline how computations are
distributed across multiple threads to improve efficiency and decrease overall process-
ing time. An algorithm governing this parallelized operational workflow is presented,
emphasizing its effectiveness in optimizing the performance of the space-time finite
element method.

In Chapter 6, we apply the space-time finite element method to two distinct ex-
amples that center on the development of advanced impact protection materials. The
first example focuses on creating a smart elastic material that can modify its proper-
ties in response to the propagation of mechanical waves. We detail a comprehensive
mathematical model for this innovative material. To solve the governing equations, we
utilize both semi-analytical solutions and space-time finite element model. A compara-
tive analysis of these solutions demonstrates that they yield similar results, showcasing
the effectiveness of the numerical methodology. We further provide results illustrating
the force and acceleration at the impacted end of the material in both softened and
stiffened zones, normalized against the results obtained from unmodified material. Ad-
ditionally, we investigate the force at the impacted free end as a function of the relative
increase in the elasticity modulus.

The second example is centered on developing mechanical materials using the space-
time finite element method to model a viscoplastic material. In this scenario, the space-
time description proves beneficial due to its capability to manage evolving geometry
during plastic flow. The simultaneous interpolation of both space and time afforded by
the space-time finite element method is particularly effective in capturing the intricate
behavior of viscoplastic materials. Moreover, the use of the space-time finite element
method allows for efficient parallel computing, resulting in significantly reduced com-
putation times relative to traditional finite element methods. The results confirm that
the space-time finite element method, complemented by its parallel processing capabil-
ities and sophisticated interpolation techniques, offers considerable advantages in the
development and assessment of complex mechanical materials.

In summary, this dissertation investigates the advancement and application of the
space-time finite element method, aiming to enhance both the efficiency and accu-
racy of solving complex differential equations. It begins by tackling the challenge of
decoupling systems of equations, which promotes parallel computation and improves
scalability. The space-time finite element method, leveraging simplex-shaped func-
tions, is presented as a more effective solution for hyperbolic, parabolic, and elliptic
differential equations. The method is applied to a one-dimensional rod model, demon-
strating its ability to solve governing equations and compare outcomes with traditional
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approaches. The research further extends into large deformation issues under plane-
stress conditions, where the necessity of incorporating nonlinear terms for accurate
simulations of significant displacements is highlighted. The method’s versatility is val-
idated through the development of a smart elastic material and a viscoplastic model.
Parallel computing is employed to optimize the performance of the space-time finite
element method, with exhaustive comparisons made for both computational efficiency
and numerical results across various examples. The findings underline the method’s
robustness in managing complex simulations and its superiority over classical methods
in terms of both accuracy and computational speed.
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Chapter 8

Conclusions and future
recommendation

This dissertation presents a comprehensive study on the development and application
of the space-time finite element method for solving complex differential equations and
advancing the simulation of dynamic structures. The proposed methodology introduces
a novel approach to parallel computation, enabling the direct decoupling of systems of
equations and efficient distribution of computations to parallel processing units. The
resulting global matrices, taking a triangular form with non-zero coefficients, highlight
the efficiency of this approach. Proper spatial discretization facilitates the separation of
nonlinear zones that require iterative solutions, thereby reducing computational effort
by allowing only small parts of the system to be recomputed iteratively. This method
significantly enhances computational efficiency, especially in large-scale problems.

A key differentiator of the space-time element method from traditional approaches
is its simultaneous discretization of spatial and temporal variables. Unlike the classical
two-step interpolation method, which first transforms partial differential equations into
ordinary differential equations in time, the space-time FEM integrates these variables,
facilitating a more straightforward transition from static to dynamic solutions. This
integration allows the use of effective tools for each stage and simplifies the application
of numerical procedures for both static and dynamic analysis. The innovative approach
of simultaneously discretizing spatial and temporal domains offers a unified framework
that can handle complex boundary conditions and varying material properties more
effectively than traditional methods.

One critical aspect highlighted in this dissertation is the decision to include the
nonlinear term in finite element simulations, which depends on the magnitude of defor-
mation imposed by the applied loading conditions. For small deformations, the analysis
provides an efficient and accurate solution without the nonlinear term. However, for
significant deformations resulting from larger forces, including the nonlinear term is es-
sential to ensure simulation accuracy, despite the increased computational complexity.
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This highlights the importance of adaptive algorithms that can selectively incorporate
nonlinear effects based on the deformation magnitude, thus optimizing both accuracy
and computational resources.

In demonstrating practical applications, the dissertation presented two examples
in Chapter 6. The first example focused on developing a smart elastic material with
variable properties in response to mechanical wave propagation. By using a Heavi-
side function to simulate the wave and comparing semi-analytical solutions with fi-
nite model results, the research showed that the material’s locally weakening stiffness
could effectively reduce peak accelerations and forces by 30% to 70%. This finding
has significant implications for the development of protective materials. The ability
to dynamically alter material properties in response to external stimuli can lead to
the design of advanced materials for impact mitigation in various fields, such as au-
tomotive safety, sports equipment, and aerospace engineering. Future research should
correlate the mathematical model with real materials, explore multilayer materials
with different mechanical functions, and verify impact energy absorption in two- and
three-dimensional systems.

The second example concerned the plane stress problem in which the structure
is subjected to an impulse load. A viscoplastic material model was employed for the
computer simulations. The publicly accessible program "triangle" was utilized to create
the finite element mesh. Based on the resulting triangular division, a simplex-shaped
space-time mesh was constructed. A computer program was then developed to simulate
the dynamic behavior of the problem at hand. Utilizing the space-time model outlined
in subsection 4.2.3, numerical calculations of the metamaterial structure were carried
out, and the results from the computer simulation were presented.

Overall, this dissertation underscores the effectiveness of the space-time finite el-
ement method in addressing complex dynamic problems. The integration of spatial
and temporal discretization, combined with parallel computing, offers a powerful tool
for engineers and researchers. The significant reduction in computational time and en-
hanced accuracy of simulations pave the way for practical applications across various
fields, including material science, biomechanics, and structural engineering.

Based on the findings and limitations identified in this research, several recommen-
dations for future work are proposed:

1. Extension to Nonlinear Problems Expanding the methodology to handle
a broader range of nonlinear problems will enhance its applicability, allowing for more
comprehensive solutions to practical engineering challenges involving complex material
behaviors and large deformations.

2. Optimization of Parallel Algorithms Further optimization of parallel com-
putation algorithms, including exploring advanced parallelization techniques and hard-
ware acceleration such as GPUs, can lead to significant performance improvements.

3. Application to Multiphysics Problems Integrating the space-time finite
element method with multiphysics simulations can provide a comprehensive framework
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for solving coupled problems involving multiple physical phenomena, expanding its
utility in fields like fluid-structure interaction and thermal analysis.

4. Development of Adaptive Refinement Techniques Implementing adaptive
refinement techniques within the continuous mesh adaptation framework can further
improve accuracy and computational efficiency, especially for problems with localized
features or singularities.

5. Experimental Validation Conducting experimental studies to validate the
computational results will strengthen the credibility of the proposed methodologies,
providing practical insights and identifying areas for further improvement.

In conclusion, this dissertation presents a novel and effective approach to solv-
ing complex differential equations through the space-time finite element method and
parallel computation. The research offers significant contributions to computational
mechanics, providing a solid foundation for future advancements. By addressing the
proposed future work, the method’s potential can be further realized, leading to even
greater impacts in the field of engineering and beyond.
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List of symbols, abbreviations, and
acronyms

FEM Finite Element Methods

STFEM Space-time Finite Element Methods

GPU Graphics Processing Unit.

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

GPGPU General-Purpose computing on Graphics Processing Units

PinT Parallel-in-Time

PITA Parallel Implicit Time-Integration Algorithms

HPC High-Performance Computing

API Application Programming Interface

PETSc Portable, Extensible Toolkit for Scientific Computation

General notations

x coordinate

y coordinate

t time

· ·· derivatives with respect to time

∇ gradient operator
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div divergence operator

D differential operator

ti time in i step

h time step

N shape function matrix

N∗ virtual shape function matrix

L length

A cross-sectional area

E Young’s modulus

ν Poisson’s ratio

ρ density of the material

B linear strain matrix

C velocity matrix

K linear stiffness matrix

M inertia matrix

KN nonlinear stiffness matrix

D material properties matrix

H(x) Heaviside step function

δ(x) Dirac delta function

c wave propagation speed in rod
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Chapter 3

V closure of the domain V , a subdomain in E3

V interior of the domain V

∂V boundary of the domain V

u displacement vector

v velocity vector

f body force vector (inertial forces)

σ symmetric Cauchy stress tensor

ε symmetric strain tensor

t̂ surface traction vector (force on boundary)

x spatial coordinates in E3

δu virtual displacement vector

q nodal displacement vector

K̃e element space-time stiffness matrix

Ke element stiffness matrix

Me element inertia matrix

We internal damping matrix

Ze external damping matrix

E elasticity matrix

R inertia matrix

ηw internal viscous damping coefficient

ηz external damping coefficient

Qe vector of external forces

q0 initial displacement vector

q̇0 initial velocity vector
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Ai submatrix of the space-time stiffness matrix (upper left)

Bi submatrix of the space-time stiffness matrix (upper right)

Ci submatrix of the space-time stiffness matrix (lower left)

Di submatrix of the space-time stiffness matrix (lower right)

Chapter 4

u displacement in the x-direction

v displacement in the y-direction

f external body force per unit length

σ stress in the rod

ϵ strain in the rod

F internal force

qi nodal displacement of i-th node

G matrix of the coordinates

b length of the 1d element

Se area of the triangle

P axial force

σx normal stress in the x-direction

σy normal stress in the y-direction

τxy shear stress in the xy-plane

fx body force per unit volume in the x-direction

fy body force per unit volume in the y-direction

ϵx longitudinal strain in the x-direction

ϵy longitudinal strain in the y-direction

γxy shear strain in the xy-plane
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Ve volume of the tetrahedron

Ki stiffness matrix for the i-th tetrahedral element

M i inertia matrix for the i-th tetrahedral element

KN
i nonlinear stiffness matrix for the i-th tetrahedral element

Chapter 6

w longitudinal displacement in rod

Ê Young’s modulus of the moving part

v0 initial velocity

ϵ width of the traveling stiffness zone

N longitudinal force

Vj(t) Fourier sine integral transformation of function w(x, t)

M inertial matrix in semi-analytical solution

K stifness matrix in semi-analytical solution

Π̂ virtual energy

K material viscosity (Norton-Hoff model)

m deformation rate sensitivity (Norton-Hoff model)

τ ′ Cauchy stress tensor

D equivalent strain rate

ε̇ strain rate vector

s multiplier

λ coefficient of the penalty function
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