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Abstract

The skin is a complex layer system and the most important barrier between

the environment and the organism. In this review, we describe some wide-

spread skin problems, with a focus on eczema, which are affecting more and

more people all over the world. Most of treatment methods for atopic dermati-

tis (AD) are focused on increasing skin moisture and protecting from bacterial

infection and external irritation. Topical and transdermal treatments have spe-

cific requirements for drug delivery. Breathability, flexibility, good mechanical

properties, biocompatibility, and efficacy are important for the patches used

for skin. Up to today, electrospun fibers are mostly used for wound dressing.

Their properties, however, meet the requirements for skin patches for the

treatment of AD. Active agents can be incorporated into fibers by blending,

coaxial or side-by-side electrospinning, and also by physical absorption post-

processing. Drug release from the electrospun membranes is affected by drug

and polymer properties and the technique used to combine them into the

patch. We describe in detail the in vitro release mechanisms, parameters

affecting the drug transport, and their kinetics, including theoretical

approaches. In addition, we present the current research on skin patch design.

This review summarizes the current extensive know-how on electrospun fibers

as skin drug delivery systems, while underlining the advantages in their pro-

spective use as patches for atopic dermatitis.

This article is categorized under:

Implantable Materials and Surgical Technologies > Nanomaterials and

Implants
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1 | INTRODUCTION

As the skin is the largest human organ and our most important protective barrier, it is exposed to many harmful con-
ditions. A skin damaged by diseases or external factors causes a significantly reduced quality and comfort of life. Pol-
luted environments, an aging society, trauma, and genetic factors can all lead to the development of skin problems.
In 2017, 180 million persons worldwide suffered from eczema. The disability-adjusted life years-measured as the
years of life lost due to premature mortality plus the years lost due to disability or its consequences-for atopic derma-
titis (AD) increased worldwide from 0.27% in 1990 to 0.35% in 2017 (Urban et al., 2021). The treatment costs reported
exceeded those related to cardiovascular issues or diabetes, which are usually considered examples of the most expen-
sive health problems (Flohr & Hay, 2021; Lim et al., 2017). Therefore, medical doctors and scientists are constantly
looking for new treatment possibilities to improve the efficiency of the existing ones and reduce costs (Lee
et al., 2022). AD is one of the most common skin diseases. People can suffer from it at any age; however, newborns
and children are the most affected. AD requires complex and diverse medication depending on the severity of the dis-
ease (Salimian et al., 2022). Topical and transdermal active substances are frequently prescribed, as they cure locally
and give immediate relief (Benson et al., 2019). The main drawback of existing treatments is that they deliver drugs
quickly, giving the maximum drug concentration, with the need for reapplication to keep their value constant (Souto
et al., 2019). The delivery system requires a sustainable release which has been effectively obtained via electrospun
fibers for topical and transdermal drug delivery (Özen & Wang, 2021), especially for wound healing cases (García-
Salinas et al., 2020; Lowe et al., 2015; Zahedi et al., 2010). Electrospinning makes it possible to produce fibrous mem-
branes, which can be loaded with various bioactive molecules (Sultana et al., 2022; Torres-Martinez et al., 2018;
Wen & Jingwei, 2015). Electrospinning parameters determine fiber geometry, thus influencing drug release mecha-
nisms (Luraghi et al., 2021). Furthermore, polymer selection also plays an important role (Theron et al., 2004).
Fibrous dressings are flexible and easy to handle (C. Yang et al., 2016). Moreover, they are breathable (Keirouz
et al., 2020), but also maintain skin hydration by reducing water evaporation (Costa et al., 2019). Considering the
worldwide tracking costs of skin disease treatments (Flohr & Hay, 2021), the most important advantage of
electrospun membranes is their low production cost (Khoshbakht et al., 2020; Z. Wang et al., 2017). This led us to
think of the possibility of using fibers as topical patches for AD treatment. In this review, we describe skin problems,
while focusing on AD. The requirements for topical patches have been defined. The electrospinning process has been
comprehensively characterized to show the reader that an easy-looking process has many parameters that affect final
materials and drug delivery system properties, which need to be carefully adjusted to the production needs. Also, we
underlined the effect of bioactive molecule selection on drug release and the importance of in vitro studies. Recently
published research has mainly been focused on drug delivery systems mostly for wound healing and AD itself. The
design of skin bandages includes other strategies and designs, especially when using electrospun polymer fibers and
membranes. Several studies on electrospun patches for skincare and AD treatment currently available are covered in
this review. Furthermore, we investigated the prospect of adopting the unique electrospun fiber properties for devel-
oping skin dressings and bandages.

2 | SKIN

2.1 | Skin structure

The skin is a barrier between the environment and the organism that provides protection from physical and chemi-
cal pollution, pathogens, and unregulated water loss. It is made up of the epidermis, dermis, and a subcutaneous
layer consisting of the hypodermis and muscles (see Figure 1a). The epidermis mainly consists of keratinocytes
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FIGURE 1 Schematic drawing of the structure of: (a) skin indicating all main components. Reproduced with permission from Moniz

et al. (2020); (b) epidermis with all sub-layers and types of cells; (c) image of skin with AD shown as a red rash behind the knees.

Reproduced with permission from Salava and Lauerma (2014)
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(Figure 1a), but melanocytes, Langerhans cells, and Merkel cells are also found. Keratinocytes, producing keratin,
are found in each layer, while the type of protein depends on the stage of cell differentiation. Cells are organized in
layers and their morphology changes as they shift from the stratum germinatum to the top of the skin, becoming flat-
ter, larger, and thinner (Lanigan & Zaidi, 2010). Melanocytes transfer melatonin via dendrites to keratinocytes to cre-
ate an UV protective layer, which absorbs harmful radiation, thus protecting the skin (Gola et al., 2012). They also
have a thermoregulation function (J. Y. Lin & Fisher, 2007). Langerhans cells, produced by bone marrow, protect the
skin via immunological responses. This part of the skin absorbs nutrition from the dermis, as it does not have its own
blood vessels (Lanigan & Zaidi, 2010). The outermost layer of skin, the stratum corneum (SC), is made up of
corneocytes surrounded by lipid lamellas, which provide the main pathway for the diffusion of the active substances
(Bouwstra & Honeywell-Nguyen, 2002). Corneocytes, anucleate keratinocytes, create an impenetrable layer. Cells are
large, filled with keratin, and have a flat polyhedral morphology: they are held together by lipids (see Figure 1b). In
addition to cells, the SC consists of ceramides, cholesterol, and free fatty acids (Menon et al., 2012; Notman
et al., 2007; Sahle et al., 2015). The next epidermis layer is the stratum lucidum, but it is only present in the palms of
the hands and soles of the feet. Here cells have nuclei, and their cytoplasm is densely packed. The stratum
granulosum (SG) contains granules that produce different proteins which have the important role of binding SC cells
and aggregating keratin filaments. The stratum malpighian, the penultimate and thickest layer of the epidermis, is
responsible for keratin development and intracellular SC adhesion. In the stratum germinatum, a single layer of
dividing cells with large nuclei and columnar morphology, the cytoplasm is filled with keratin filaments
(tonofilaments). The disturbed permeability of the SC is a pathophysiological factor for skin diseases (Taylor, 1999).
Transepidermal water loss (TEWL) is the main effect of a perturbed skin barrier, usually associated with epidermis
inflammatory reactions, as it takes place in AD (Rustemeyer & Fartasch, 2012).

2.2 | Inflammation of the skin

Immunologists and allergists described a variety of dermatological problems, reflecting skin conditions and peo-
ple's lives (Cohen et al., 2020). Out of many, pityriasis alba was reported to be a mild form of AD frequently affect-
ing children and teenagers. Skin erythema, plaques, scaly skin, and hypopigmentation are its main symptoms.
Patients suffering from this disease often have a history of atopic skin or their relatives do. Here, climate plays an
important role, since intensive sun exposure and humidity below 30% and above 50% can have a negative impact
(Miazek et al., 2015). Seborrheic dermatitis is another skin disease caused by a reaction to yeast attacking the SC
and generating an immune response, resulting in skin inflammation. Thus, there is an exaggerated proliferation of
keratinocytes, resulting in a disturbed corneocyte differentiation, which is the cause of its characteristic symptoms.
The skin around the sebaceous gland areas is that most affected by itchy scaly patches (A. K. Gupta et al., 2003).
Acne vulgaris is a skin issue frequently occurring in adolescents and young adults, but may also be almost lifelong.
A few pathogenesis pathways have been reported: microbial colonization, sebum overproduction, or follicular
hyperkeratinization. The factors causing this illness can be either genetic or nongenetic, due to disturbed neuroen-
docrine regulatory mechanisms or to diet (Zaenglein et al., 2016). Rosacea is a common chronic inflammatory skin
problem in adults. In this case, dry, sensitive skin with redness, flushing, and/or raised red bumps is observed. Its
possible cause is often a vascular abnormality, but lifestyle—meaning diet and negative stressors—can also be an
important factor in rosacea development (Culp & Scheinfeld, 2009). Lichen planus is an autoimmune inflamma-
tory disease affecting mucous membranes and the skin, which are covered with flat-topped itchy papules
(Tziotzios et al., 2018). Keratosis pilaris commonly occurs with AD in childhood and adolescence on extensor
surfaces and extremities. Erythema and scaling surround keratin plugs in hair follicles (De Paepe et al., 2009).
Psoriasis is a genetic, chronic, inflammatory disease, with increased proliferation and differentiation of
keratinocytes. It frequently affects adults, who show scaly, dry, itchy skin which can cover either small localized
patches on the scalp, knees, and elbows, or even the whole body (Gudjonsson & Elder, 2007). The skin diseases
listed above are merely the most frequent ones, whereas there are many others not mentioned here, thus demon-
strating the importance of delivering novel skin treatment technologies to improve people's lives. The following
section focuses more in detail on AD as the main cause of skin inflammation, which is correlated with all the
dermatological challenges mentioned above.
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2.3 | Atopic skin characterization and treatment

AD is one of the most common inflammatory skin diseases. Its chronic, itchy (Kido-Nakahara et al., 2017), red, swollen,
and cracked skin is very common in children, but may occur at any age (Fenner & Silverberg, 2018; see Figure 1c). Its
main abnormalities are: increased skin pH (Proksch, 2018), penetration of allergens and microbiomes, production of
proinflammatory cytokines, and skin infections mostly due to Staphylococcus aureus (Geoghegan et al., 2018). The
expression of filaggrin and keratins is downregulated and TEWL also occurs (J. Kim et al., 2019). The immune system
of patients with AD overreacts to allergens and overproduces IgE, thus leading to many diseases. AD's first manifesta-
tion is atopy, followed by food allergy, allergic rhinitis, and allergic asthma—referred to collectively as atopic march
(Bantz et al., 2014). The disturbed skin barrier is a critical factor in AD; it may be caused by mutations in the gene
encoding protein that builds the skin protective layer (H. Han et al., 2017). In AD, the structure of SC is changed by the
distrusted lipid architecture and composition. The total number of lipids together with long chain ceramides is reduced,
what leads to TEWL. The chain length of fatty acids is decreased too. Except changes in lipids, size of corneocytes is
reduced. Furthermore, the SG layer is thinner or even not present in the skin (Luger et al., 2021).

AD treatment is mostly focused on improving the skin barrier by using emollients, and avoiding inflammation and
infections by eliminating irritating factors. Oral anti-inflammatory therapy with topical corticosteroids and calcineurin
inhibitors is usually the first-line treatment. Phototherapy is applied when other methods have failed; it can be used as
a single remedy or combined with drugs. UVA light helps with collagen synthesis, as it enters the dermis, while UVBs
reduce the skin colonization with S. aureus and the expression of cytokines responsible for immune response; the best
results can be obtained with an UVA and UVB combination. Short-term doses of phototherapy may cause mild side
effects such as burning, while long-term doses cause photoaging or even cutaneous malignancies (Ortiz-Salvador &
Pérez-Ferriols, 2017). Wet wraps are used for AD treatment in both children and adults. These are bandages or cotton
cloths soaked with emollients and sometimes with corticosteroids also, which are applied overnight (Oranje
et al., 2006).

3 | TOPICAL AND TRANSDERMAL DRUG DELIVERY

The most common topical system works locally in the form of ointments or creams with a high concentration of active
compounds (see Figure 2). The poor diffusion though the skin and need for controlled release present great challenges
in such a treatment. Moreover, overcoming the SC barrier presents another huge problem (Ammala, 2013). Thus, pene-
tration enhancers can be used to improve topical drug delivery systems. Different types of nanocarriers are reported to
overcome the drawbacks of conventional topical systems (M. Gupta et al., 2012). Due to the skin structure, an effective

FIGURE 2 Schematic comparison of topical (dermal) drug delivery and transdermal drug delivery systems showing the different drug

delivery mechanisms through the skin. Reproduced with permission from Chaturvedi and Garg (2021)
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drug diffusion is possible for molecules smaller than 500 kDa; enhancers are required for larger ones (Goyal
et al., 2016). However, the daily drug dose should not exceed 10 mg, as it can cause diffusional resistance (Factor
et al., 2013). Skin conditions change constantly even throughout a single day, and may thus alter the efficiency of topi-
cal treatments. The form of active substances affects the dispersion or absorption within the skin; lotions, emollients,
and so on are used when a rapid treatment is necessary. Interestingly, some drugs, for example, antifungal ketocona-
zole, can only be applied onto the skin, while oral treatment is forbidden by the Food and Drug Administration and
European Medicines Agency. In spite of many limitations, topical drug delivery makes it possible to use higher doses
and longer treatments to obtain the required effect (Mustfa et al., 2021). Transdermal drug delivery transports medi-
cines through the skin into the blood circulation (Figure 2). The principles of and reasons for the use of such a system
are similar to those that apply to topical drug delivery. A large skin area (1–2 m2) and its accessibility are the main
enhancing factors for researching and creating new skin delivery systems. Moreover, in most cases, non-invasive and
repeatable application provides an enormous opportunity for the development of effective technologies and materials
for improving medical care. For many diseases, sustained medicine release is required: something that cannot be
achieved by traditional oral drug administration. However, there are numerous limitations for both topical and trans-
dermal drug delivery systems; see Table 1 (Naik et al., 2000). The SC creates a lipophilic barrier (Figure 1a), while drug
dissolution occurs in the systematic circulation. Thus, the balance between medicine lipophilicity and hydrophilicity
should be maintained. Otherwise, drugs may either remain in the SC layer or be unable to cross the SC. Moreover, the
aqueous solubility of a drug should exceed 1 mg ml�1, as the epidermal layer supporting the SC is more aqueous than
the SC itself (Singh & Bali, 2016). Active substance solubility and absorption are strictly correlated with its melting
point. It has been reported that a melting point lower than 200�C ensures good drug solubility (Chu &
Yalkowsky, 2009; Pastore et al., 2015). Drug delivery into or across the skin shows great potential when it involves large
surface areas, thus, there are numerous potential places for applying treatments. This system also reduces the necessity
for dose repetition and the possible risk of toxic side effects (Verreck et al., 2003), as the pharmacokinetics process takes
place evenly, with fewer peaks. Two different pathways for drug diffusion can be described: intracellular for hydrophilic
and polar substances through corneocytes, and intercellular via lipid matrix for lipophilic and non-polar molecules.
Medicines can also be transported by hair follicles and sweat glands (Alkilani et al., 2015). The skin drug delivery sys-
tem is based on the dissolution and release from a native form, with consequent infiltration into the SC, whence drugs
penetrate into subsequent layers and to the vessels and systemic circulation (Y. Chen et al., 2019). A very important
issue in skin drug delivery is the distinction between desired topical and transdermal sites. The first requires a local
effect, while the second distributes medicines into the systemic circulation (Cevc & Vierl, 2010).

4 | REQUIREMENTS FOR SKIN BANDAGES AND PATCHES

Transdermal patches deliver active substances to the skin by close contact and have been used for four decades. How-
ever, increasing skin problems require new solutions. The first requirement for transdermal patches is the biocompati-
bility of the materials, followed by the chemical and physical compatibility of the selected material with the drug or
other treating substances, and the adhesive properties (Cilurzo et al., 2012). The crucial property in skin dressings is
their permeability to air and fluids, as often the desired waterproof characteristics of materials can lead to skin macera-
tion (Naseri et al., 2014; R. Xu et al., 2016). Transdermal patches are mostly pressure-sensitive adhesives and may cause
chemical and mechanical skin irritation when removed (Hwang et al., 2018). Patches need to be flexible and easily
removed without excessive adhesion and skin irritation (Gonz�alez-L�opez et al., 2017; J. Wang & Windbergs, 2017).

TABLE 1 The most important drug requirements for transdermal drug delivery, based on the reference Naik et al. (2000)

Specific properties Required characteristics

Molecular weight <500 Da

Dose deliverable <10 mg day�1

Lipophilicity 10 < Ko/w < 1000, Ko/w-oil–water partition coefficient

Aqueous solubility > 1 mg ml�1

Melting point <200�C
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Tensile strength and elongation at break are required to overcome the stress exerted by body movements. Moreover,
these materials have to be strong but also flexible (Peh et al., 2000). Traditional skin dressings protect from external fac-
tors but do not enhance healing, nor do they prevent bacterial infections. Modern bioactive materials optimize the pro-
cess of skin healing and can be provided in different forms: foams, bandages, nanogels or microgels and scaffolds,
hydrogels, and films (Teixeira et al., 2020). Transdermal patches are based on drug delivery to the systemic circulation
through the skin. The poor water solubility and low chemical stability of certain medicines lead to problems with such
delivery systems. Drug encapsulation responds to the expectations, by improving long-term stability, drug solubility,
and sustained release. The incorporation of pharmaceutics into a polymer matrix may induce drug crystal formation,
thus significantly decreasing medicinal efficiency (Vatankhah, 2018). The development method of topical drug delivery
dressings depends on the skin needs. Each type of patch has different mechanical properties, breathability, and cure
efficacy (see Figure 3). Generally speaking, skin dressings can be divided into three groups: passive, interactive, and bio-
active; those applicable for topical drug delivery are classified as bioactive. Among the many materials used, hydrogels,
hydrocolloids, thin films, and gauze-like materials are the most common (Boateng et al., 2008; B. S. Gupta &
Edwards, 2019). Electrospun membrane fibers are excellent materials capable of meeting all the requirements men-
tioned above, thanks to their large surface area; therefore, in this review, we focus on skin patches based on fibrous
structures.

5 | ELECTROSPINNING

The most common method of producing fibrous membranes is electrospinning. The electrospinning setup consists of a
high-voltage power supply and grounded collector, polymer solution in the syringe, a pump which doses and deter-
mines the flow rate of the polymer solution, and spinneret (see Figure 4a,b). Some of them can control the temperature
and humidity, when the setup consists of a climate-controlled chamber. The principle of electrospinning consists of the
application of a voltage sufficient to stretch a polymer droplet by electrostatic repulsion, which counteracts the surface
tension of the liquid. The solution droplet is then elongated into a cone shape, forming a polymer jet at the cone apex,
which starts to spin in the electric field; lastly, fibers are deposited on the collector (Keirouz et al., 2020; Sandri
et al., 2020). In particular, electrospinning is based on fast solvent evaporation leading to the production of solid fibers,
thus indicating the solvent selection for preparing polymer solutions (Luo et al., 2010). Membranes made of electrospun
fibers have a high surface area-to-volume ratio and high porosity (Hong, 2006; Kaniuk et al., 2020); thus, they provide
satisfactory gas exchange (Shi et al., 2013) and high absorption capacity (Ma et al., 2018; Mofidfar & Prausnitz, 2019;
Sandri et al., 2020). Electrospun fibers can be produced using single- or multiaxial nozzles (D. Han & Steckl, 2013;

FIGURE 3 Image of an electrospun patch on forearm skin with an insert of a scanning electron microscopy micrograph of polymer

fibers indicating the most important requirements and features for epidermal bandages
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Khalf & Madihally, 2017), obtaining porous membranes with random or oriented fibers (Z. Yang et al., 2010). Aligned
fibers are obtained when deposited on the fast rotating collector (see Figure 4b; Kiselev & Rosell-Llompart, 2012;
Truong et al., 2010). High humidity during electrospinning leads to a disturbed solvent evaporation and porous fiber
formation (Szewczyk & Stachewicz, 2020). Fiber morphology depends on electrospinning parameters and polymer and
solvent selection (Koski et al., 2004; Szewczyk, Ura, et al., 2019). The fiber size can be decreased as the distance between
needle and collector increases (Al-Hazeem, 2020). Moreover, the flow rate of the polymer solution affects fiber diame-
ter, while reduced smaller fibers are obtained (Zargham et al., 2012). The surface chemistry of fibers can be changed by
applying a positive or negative voltage polarity (Stachewicz et al., 2012; Szewczyk et al., 2020). Voltage polarity plays an
important role in the dynamics of the electrospinning process (Ura & Stachewicz, 2022). Also, as the voltage increases,
the fibers formed have smaller diameters (Zanto et al., 2011). Generally speaking, manufactured structures have small
diameters ranging from hundreds of nanometers to a few micrometers (Fridrikh et al., 2003; Ura et al., 2019; Z. Wang
et al., 2017; see Figure 5). The higher the molecular weight of a polymer, the larger the fiber diameter, for the same
polymer (Krysiak, Kaniuk, et al., 2020). Both natural and synthetic polymers can be used for electrospinning (Zahedi

FIGURE 4 Electrospinning setup consisting of a syringe filled with polymer solution, stainless needle, and grounded collector:

(a) stationary to obtain random fibers, and (b) rotating for aligned fibers. Schematics of drug incorporation into electrospun fibers:

(c) polymer and drug blend in a solution, (d) core–shell fibers, where a drug can be loaded in both the core and shell into a coaxial needle.

Reproduced with permission from Y. Sun et al. (2019), (e) side-by-side electrospinning, where a drug can be loaded into one or two sides of a

divided needle. Reproduced with permission from J. Yang, Wang, et al. (2020), (f) physical absorption or chemical immobilization of a drug

on the fiber surface. Reproduced with permission from Y. Sun et al. (2019)
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et al., 2010). Also, hydrophilic, hydrophobic membranes (C. H. Kim et al., 2005) or their combination can be produced
via electrospinning (Knapczyk-Korczak, Ura, et al., 2020; Krysiak, Gawlik, et al., 2020). The mechanical properties of
electrospun mats are mostly related to the fiber diameter, thus they can be adjusted depending on the requirements
(Rashid et al., 2021). Electrospun fibers are used in piezoelectric nanogenerators (Szewczyk et al., 2020), smart textiles
(Busolo et al., 2019), systems for water harvesting (Knapczyk-Korczak et al., 2021; Knapczyk-Korczak, Szewczyk,
et al., 2020) and purification from oil (Brown & Bhushan, 2016; Jiang et al., 2022; F. Li, Bhushan, et al., 2019), or sys-
tems for separation of antibiotics (K. Zhao et al., 2021). Due to the possibility of using various non-toxic, biodegradable
polymers for electrospinning, this method makes it possible to use polymer fibers for food packaging (H. Huang
et al., 2022; Razavizadeh & Niazmand, 2020; C. Zhang et al., 2019) and tissue engineering purposes (Angel et al., 2022;
Sell et al., 2010; X. Wang et al., 2013). In particular, fibrous membranes are commonly used for wound healing
(D. W. C. Chen et al., 2012; H. Li, Zhang, et al., 2019; J. Wang & Windbergs, 2017; J. Yang, Wang, et al., 2020), as they
are highly permeable and their structural properties aid in the skin regeneration processes (Kataria et al., 2014; Naseri
et al., 2014; Shi et al., 2013; R. Xu et al., 2016). Electrospun fibers create 3D, interconnected porous structures that
mimic an extracellular matrix (Soliman et al., 2011; Z. Wang et al., 2014), resulting in their excellent regeneration prop-
erties. Furthermore, fibers can be used as a drug delivery system (El-Newehy et al., 2012; Kyzioł et al., 2017; Shoba
et al., 2014), thanks to their high loading capacity (Vatankhah, 2018). Treatment substances and drugs can be incorpo-
rated into the fiber membrane (Mustfa et al., 2021) by blend electrospinning, covalent immobilization (Feng
et al., 2019; Nada et al., 2016), physical adsorption, or coaxial or side-by-side electrospinning (Z. Sun et al., 2003; Zare
et al., 2021; see Figure 4c–f). Depending on the method chosen for incorporation of the medicine into the fibers and the
different materials selected to manufacture them, the drug release rate can be controlled, and consequently, fibrous
drug delivery systems are used for various applications (Schneider et al., 2018; Wu et al., 2020). In addition, post-
processing steps on fibers and membranes also make it possible to incorporate medical substances or drugs (Paquin
et al., 2015; Teixeira et al., 2020). In short, electrospinning is a beneficial method for the production of porous mem-
branes that can be successfully used as patches.

5.1 | Drug delivery systems obtained via various types of electrospinning

Electrospun fibers are used as drug delivery systems because their release properties can be conveniently adjusted.
Many drawbacks of medicine release kinetics can be overcome when loaded into electrospun meshes. For instance,
poorly water-soluble drugs cause difficulties when used in drug delivery systems. But when they are encapsulated
within electrospun fibers, their availability for aqueous media increases. This approach is used in amorphous solid dis-
persion materials, where the liquid carrying the drug is solidified by the applied energy. Electrospinning provides fast
solvent evaporation and fiber solidification, thus, drug mobility within fibers is reduced. Drug molecules are homoge-
nously “frozen” within polymer fibers and there is little possibility for their crystallization (Yu et al., 2018). In other
words, drug dissolution and solidification can provide changes in the drug's crystal structure, leading to its
amorphization, and thus enhance dissolution (Hemati Azandaryani et al., 2018; Potrč et al., 2015; Siafaka et al., 2016).
The release from nanomaterials loaded with drugs can be controlled by the polymer response to environmental factors
such as pH (Okuda et al., 2010; Schneider et al., 2018; Schoeller et al., 2021), oxidative stress, or temperature (X. Lin
et al., 2013; Ziaee et al., 2016), and also to issues generated externally: magnetic field, light, or ultrasound (Pillai &

FIGURE 5 Scanning electron microscope (SEM) micrographs of (a) random, and (b) aligned poly(vinyl butyral-co-vinyl alcohol-co-vinyl

acetate) (PVB) fibers
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Panchagnula, 2001). These properties promote the use of electrospun fibers as a drug delivery system that is tunable via
external factors (X. Zhao et al., 2015). Different approaches are related to drug release times and amounts, which can
be controlled by manufacturing techniques. The easiest way to incorporate drugs into fibers is by blending the medicine
with a polymer solution before electrospinning (Figure 4c). Another method is coaxial or side-by-side electrospinning
(Zheng et al., 2021), when a drug can be dissolved in its solvent or in a polymer solution (Figure 4d,e). Active agents
can be incorporated post-processing by physical absorption to create the drug delivery system (Figure 4f). Electro-
spraying is an alternative approach for depositing medicine on the electrospun membrane. In the following sections,
blend, coaxial and side-by-side electrospinning are described within the mentioned processing methods and post-
processing steps.

5.1.1 | Blend electrospinning

Blend electrospinning is one of the methods most often used to incorporate drugs into a polymer matrix (Buzgo
et al., 2018). An active molecule is added to the polymer solution before electrospinning and then fibers are produced
(see Figure 4c). Cellulose acetate (CA) fiber mats with incorporated retin-A and vitamin E (VE) have been reported to
be used as a dermal and transdermal drug delivery system. Lipid soluble substances (vitamins) were added to the poly-
mer solution before electrospinning. The release was examined in vitro and was compared with cellulose solution-cast
films. Fibrous systems made possible a slower, more even release of retin-A and VE, compared with the films
(Taepaiboon et al., 2007). A water-soluble derivative of VE was combined with silk fibroin (SF) for fiber fabrication.
The beneficial effects of both VE and SF on the skin are well known. They stabilize the skin barrier, alleviate atopic
skin, and reduce scarring (Sheng et al., 2013). Vitamin B12 was dissolved in a hydrophobic polycaprolactone (PCL) solu-
tion and electrospun to produce fibers which underwent plasma treatment post-production to obtain hydrophilic fibers.
This research was conducted to verify the difference in the water-soluble vitamin release profile of electrospun mats.
Vitamin release from hydrophobic fibers is slower than from hydrophilic ones, thus suggesting that an active compound
release could be manipulated by the wetting properties of a material (Madhaiyan et al., 2013). Electrospun fiber mats
could be used as an alternative facial mask; for this purpose polyvinyl alcohol (PVA) was mixed with randomly methyl-
ated β-cyclodextrins, ascorbic acid, retinoic acid, collagen, and gold to manufacture nanofibers via electrospinning. The
material was delivered to the skin in the dry form and wetted with water once on the skin. The advantage over com-
mercially used facial masks is an increased stability of the incorporated active substances. In addition, the unique char-
acteristic of electrospun mats, such as their high surface area-to-volume ratio, also make this an advantageous material
(Fathi-Azarbayjani et al., 2010). Layered systems made of PCL/shellac/PCL electrospun fibers were reported to be a
mechanically strong material with a slow drug release profile, which is ideal for overnight skin care products. Salicylic
acid was added to both PCL and shellac solutions prior to electrospinning. Different types of fibers were overlaid layer
by layer to obtain PCL/shellac/PCL membranes. The drug release process took from 8 to 10 h to obtain a 70% cumula-
tive release of salicylic acid, thus making it usable for overnight products (Ma et al., 2018). Another possible application
of electrospun fibers is a long-acting contraceptive patch. PCL was mixed with levonorgestrel and then electrospun to
fabricate microfiber mats which were homogenously loaded with a drug. Both the lack of chemical interactions
between PCL and the drug and the uniformity of the levonorgestrel incorporation ensure a steady release rate. More-
over, ex vivo skin studies showed that a 1 cm2 fibrous mat provides a daily dose of human contraception for 5 days
(Mofidfar & Prausnitz, 2019). PCL was also blended with tretinoin and used for acne treatment in the form of topically
applied substances. Nanofibers were produced via electrospinning, resulting in enhanced stability and sustained drug
release (Khoshbakht et al., 2020). Transdermal patches made of CA and poly (vinyl pyrrolidone) (CA/PVP) in the form
of nanofibers and cast membranes were loaded with ibuprofen to compare their drug release. Both in vitro and ex vivo
(using porcine skin) studies showed the advantage of electrospun fibers over cast membranes in obtaining a faster drug
release and efficient permeation through the skin (Shi et al., 2013). Propolis, a natural substance produced by bees,
boasts some anti-inflammatory and antimicrobial properties which can be applied to the biomedical field
(Adomaviči�utė et al., 2018). Propolis was blended with polyurethane (PU) and electrospun, producing smooth
nanofibers with increased antibacterial activity (J. I. Kim et al., 2014; Razavizadeh & Niazmand, 2020). Anti-
inflammatory poly(propylene sulfide) (PPS) nanoparticles were added to poly(ethylene oxide) (PEO) and electrospun to
produce patches for skin diseases such as AD and psoriasis. The biocompatibility of the manufactured materials was
examined with human dermal fibroblasts. The enzyme-linked immunosorbent assay for tumor necrosis factor con-
firmed the anti-inflammatory properties of PPS nanoparticles (Willcock et al., 2021). Antibiotic therapies require high
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doses, resulting in adverse effects such as instance nephrotoxicity. Drug encapsulation makes it possible to use high
concentrations of drugs, thus obtaining a more efficient therapy without side effects. Methicillin-resistant Staphylococ-
cus aureus (MRSA) causes skin infections which may be life-threatening. PEO and sodium alginate (ALG) were mixed
and electrospun with vancomycin for MRSA treatment. The material produced can be applied directly to the skin for
precise drug release, without causing any adverse effects. Cytotoxicity was examined in four different cell lines. In vitro
and in vivo antibacterial tests showed the superiority of electrospun fiber over vancomycin solution (Fathi et al., 2020).
Non-antibiotic therapies for acne vulgaris, a common chronic inflammatory skin disease, continue to be investigated.
Herbal extracts are known to have properties that reduce inflammation by regulating cytokine secretion. PVA and
chitosan (CS) were both blended with multiple herbal extracts, with possible synergistic effects, and electrospun. The
produced patches were examined for their prospective use as drug delivery systems for acne treatment. The reported
results confirmed their in vitro and in vivo antibacterial effect (Tang et al., 2021).

5.1.2 | Coaxial electrospinning

Coaxial nozzles are used for electrospinning core–shell fibers, where drugs can be incorporated into either the core or
the shell polymer solution (see Figure 4d). Core–shell structures are used for deliberate drug release, where the pharma-
ceutical concentration can vary between the core and the shell (H. H. Huang et al., 2009; C. Yang et al., 2016). PCL or
poly(D,L)-lactide-co-glycolide (PLGA) was electrospun as the shell, while tetracycline hydrochloride (TCH) with the
sheath polymer was loaded into the core. Both polymers underwent erosion due to hydrolysis and pore formation, thus
creating the pathway for drug diffusion. First the TCH on the core surface and between the core and shell was released
as it was available for the buffer. Then the driving force was the TCH concentration gradient. Lastly, the release rate
decreased, as the concentration was reduced, and the diffusion pathway increased. The described TCH delivery system
presented a sustained release, compared with the typical fiber blend made of the above-mentioned polymer and drug
(Maleki et al., 2013, 2014). Exactly 1 and 5 wt% TCH-loaded shell fibers, with a constant drug concentration in the core,
were compared. The cumulative burst release reached 44% and 73%, respectively. In this case, the driving force of TCH
diffusion was the concentration gradient. When the difference in drug concentration between the release medium and
fibers is great, it starts to achieve an equilibrium state, and burst release occurs. When a drug is also incorporated in the
shell, however, it creates a protective barrier, because the concentration gradient is smaller (Maleki et al., 2013). In
addition to core–shell fibers, tri-layered nanofibers were electrospun (M. Wang, Hou, et al., 2020). In the inner part of
the fiber, CA was blended with ketoprofen (KET), then CA was covered with the outermost layer of PVP mixed with
KET. Fibers with three different coaxial layers were created. The KET release profiles from the core–shell and tri-layer
structure were compared. The only difference between these two-drug delivery systems was CA coating. The role of the
CA middle layer was to retard KET diffusion from the core (Y. Yang, Wang, et al., 2020; see Figure 6). Another
approach to controlled drug elution is to create thin coatings on the electrospun fiber surfaces. Polymers can be
absorbed on the material surface by electrostatic forces, acid–base interactions, and hydrogen bonds. Poly(acrylic acid)

FIGURE 6 Drug release from: F1-core–shell nanofibers where the core was CA + KET and the shell PVP + KET, and F2-tri-layered

nanofibers, where the outer layer was PVP + KET, middle CA, and inner CA + KET. (a) Cumulative release of KET over 4 days, (b) 4 h

release in the first stage. Reproduced with permission from Y. Yang, Chang, et al. (2020)
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(PAA) and poly(allylamine hydrochloride) (PAH) fibers blended with model drug-methylene blue were hydrophobic-
coated with perfluorosilane to obtain drug elution in a controlled manner (Chunder et al., 2007). Hydrophobic layers
act like the previously described hydrophobic shell, which retards medicine release due to the difficult access of water
to the drug delivery system.

5.1.3 | Side-by-side electrospinning

Another approach is creating side-by-side fibers, so-called Janus fibers, with a hydrophilic and a hydrophobic part (see
Figure 7; M. Wang, Li, et al., 2020; J. Yang, Wang, et al., 2020). PVP-zein fibers loaded with ferulic acid provide a two-
stage release profile. First, the medicine from water-soluble PVP was available due to the polymer dissolution and burst
release which occurred, followed by a more sustained one, as the zein did not dissolve in the aqueous medium. Here,
the drug is released within polymer erosion in the early stage, and then, by a diffusion mechanism (M. Wang, Li,
et al., 2020). This system could be used, when an intensive release is required at the beginning, with a further constant
quantity of released medicine. For instance, PVP mixed with ciprofloxacin (CIP) and ethyl cellulose (EC) with silver
nanoparticles (AgNPs) were used for electrospinning side-by-side fibers. A fibrous membrane produced was used for
wound healing, where immediate antibacterial treatment is necessary. In the initial stage, CIP was intensively released
to inhibit bacteria growth, then followed by a sustained release of AgNPs, which offers a long-term antibacterial protec-
tion (J. Yang, Wang, et al., 2020).

5.1.4 | Physical absorption of drug on electrospun fibers

The immobilization of drugs on fibers after electrospinning via absorption prevents active agent degradation, because
the contact between solvent and medicine is avoided (Luraghi et al., 2021). Cellulose microfibers were immersed in an
ibuprofen solution, and then the fibers were dried. The drug presence was confirmed by Fourier-transform infrared
spectroscopy (FTIR) and differential scanning calorimetry (DSC). A burst release of ibuprofen was observed due to its
dissolution from the fibers' surface. Furthermore, it was slightly reduced, as the remaining drug was entrapped in the
porous structure of the electrospun membrane. The release time (300 min) was short, compared with the drugs incorpo-
rated via blend or coaxial electrospinning (Y. Liu et al., 2017). An ornidazole solution was dropped onto the electrospun
PCL membrane. The dressing produced was elastic and easy to handle. Due to PCL biodegradability, the material pro-
duced could potentially be used for abdominal adhesion reduction. As previously described, in this case, also, the drug
absorbed into the fiber surface was released rapidly (Bölgen et al., 2007). PU was mixed with keratin, and nanofibers
were produced via electrospinning. AgNPs were fabricated in situ by immersing the fibrous mesh first in the silver
nitrate solution, and then in the ascorbic acid for nanoparticle formation. This dressing had antibacterial properties and

FIGURE 7 Biphasic drug release profile from Janus fibers. First, an erosion mechanism occurred due to PVP dissolution, followed by

medicine diffusion from the insoluble part of fibers. Reproduced with permission from M. Wang, Li, et al. (2020)
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a potential to repair wounds (Y. Wang et al., 2016). Similarly, SF electrospun nanofibers were coated with AgNPs by
dropping the nanoparticle solution onto the membrane, and showed an inhibitory effect against the most common skin
bacteria species (Uttayarat et al., 2012). There are a few examples of electrospun fibers used as patches for skin care,
except for wound healing dressings. These fibers were loaded with oils blackcurrant seed (Sroczyk et al., 2021), hemp
seed (Metwally et al., 2020), borage, black cumin seed, and evening primrose (Krysiak, Kaniuk, et al., 2020; Krysiak,
Knapczyk-Korcak, et al., 2020) by simple absorption and used as a moisturizing bandage for dry skin. A nanosized poly-
amide 6 (PA6) fiber-based dressing was compared with polystyrene (PS) microfibers to verify borage oil delivery to the
dry skin. Both materials behaved as slow-release oil reservoirs. Nanofibers, however, showed a more significant skin
moisture than PS fibers (Krysiak, Knapczyk-Korcak, et al., 2020). Moreover, PVB patches loaded with evening primrose
oil showed a similar behavior. The release of the oil absorbed in the electrospun fibers depends on the fiber diameter
(Krysiak et al., 2022).

5.1.5 | Electrospinning fibers combined with drug electrospraying

Apart from simple fiber immersion in the bioactive molecule solution, drug immobilization into the electrospun mem-
brane by electrospraying is also possible (Sridhar et al., 2015). The principle of this technique is similar to
electrospinning; however, the solution flowing out from the needle is dispersed in very small droplets. CA nanofibers
were covered with the lysosome-antibacterial enzyme by electrospraying, thus creating an antimicrobial dressing (W. Li
et al., 2014). A layer-by-layer system was produced with electrospun CA fibers coated with CS via electrospraying, for
prospective use as a patch for wounds (W. Li et al., 2012). Different water-soluble polymers were combined with folic
acid (FA) for the production of transdermal drug delivery systems and beauty masks. PVA, PVA-gelatin, and PVA-ALG
fibers were produced and sprayed with an FA solution. Due to the hydrophilic character of the mentioned polymers
and drug, the latter was integrated within fibers rather than deposited onto the fiber surface. Thus an initial burst
release was observed, which is beneficial for a rapid action on the skin (Parın et al., 2021). Electrospraying was com-
bined with electrospinning to manufacture core–shell fibers loaded with KET. Since the shell layer was made of electro-
sprayed hydrophilic microparticles, an initial burst release of drug was observed, followed by sustained medicine
dissolution, which was entrapped in the electrospun fibers. This approach demonstrated the possibility to create drug
delivery systems with a dual release profile, based on two manufacturing methods (Yu, Williams, et al., 2013).

Table 2 summarizes various electrospinning methods for the design of drug delivery systems. Depending on the
needs, a different production approach is applied. The type of incorporated drug or active substance defines the applica-
tion of a fibrous membrane as a drug delivery material. Blend electrospinning is the most popular method for drug
incorporation into fibers (Chou & Woodrow, 2017). Electrospinning parameters have to be adjusted to the one drug–
polymer solution, while the release behavior depends on fewer parameters: mostly fiber size, polymer and drug solubil-
ity, and concentration (Ziaee et al., 2016). Coaxial and side-by-side electrospinning require the proper selection of sol-
vents if different polymers are used for core and shell or sides for fiber production. Solvents have to be miscible with
each other (Yan et al., 2021). Core–shell fibers enable drug entrapment in the inner layer and retard drug release. More-
over, both core–shell and side-by-side electrospinning lead to drug delivery systems with a dual release profile (first a
burst followed by a more sustained release) (Chunder et al., 2007; M. Wang, Li, et al., 2020). Medicine deposition on
the surface of fibrous membranes by physical absorption or electrospraying causes a fast release, as the drug is not per-
manently bound to the polymer (Parın et al., 2021; Y. Wang et al., 2016). In summary, by choosing the production pro-
cedure for fibrous drug delivery systems, the release behavior can be adjusted to the treatment requirements.

6 | MECHANISM OF DRUG RELEASE FROM FIBERS

Numerical models for drug release kinetics usually take into consideration only one or two variables, thus for more
expanded systems experimental results may differ from simplified theoretical approaches. Computational models, how-
ever, often provide good estimates of the requirements for drug delivery systems, thus helping to create the most effi-
cient and suitable devices (Siepmann & Siepmann, 2008). The aim is to find the ideal drug concentration to obtain a
fair effectiveness with less than the minimum toxic dose. A drug should be beneficial and without side effects. In vitro
studies of drug release help to understand and predict in vivo behaviors (Laracuente et al., 2020). Nevertheless, real
physiological conditions have not yet been described by numerical models, as many factors have to be taken into
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TABLE 2 Summary of the electrospun fibers used as a drug delivery system, including the type of polymer, drug, and the application of

the proposed system and references

Type of
system Polymer

Drug/active
substance Application Reference

Blend CA Curcumin Topical, transdermal, wound
healing

Suwantong et al.
(2007)

CA Rosmarinic acid Anti-inflammatory Vatankhah (2018)

CA VE/vitamin A Acne treatment, antioxidant
activity

Taepaiboon et al.
(2007)

PVA and CS Herbal extracts Topical treatment of acne
vulgaris

Tang et al. (2021)

PVA Ascorbic acid/
retinoic acid/
collagen/gold

Anti-wrinkle facial mask Fathi-Azarbayjani
et al. (2010)

PAN Hydrocortisone Topical treatment of psoriasis Hemati
Azandaryani et al.
(2018)

Ecovio® (blend of poly(butylene
adipate-co terephthalate and
PLA)

CLOX Antibacterial topical
application

Schneider et al.
(2018)

PCL Tretinoin and
Erythromycin

Topical treatment of acne
vulgaris

Khoshbakht et al.
(2020)

PCL Acyclovir and
omega-3 fatty
acids

Herpes treatment Costa et al. (2019)

PLA DCF Topical treatment of actinic
keratosis

Piccirillo et al.
(2017)

PEO PPS nanoparticles Wound healing and treatment
of inflammatory skin
disorders

Willcock et al.
(2021)

PEO and ALG Vancomycin Antibacterial topical
application

Fathi et al. (2020)

PVP Aloe vera Antimicrobial, anti-
inflammatory

Aghamohamadi
et al. (2019)

Gelatin Chloramphenicol Antibacterial topical
application

Nada et al. (2016)

SF VE Skin care Sheng et al. (2013)

SF Manuka honey Antimicrobial, anti-
inflammatory, and
antioxidant

X. Yang et al. (2017)

Layer-by-layer PCL and shellac Salicylic acid Skin care Ma et al. (2018)

CA CS Wound patch W. Li et al. (2012)

Coaxial CA Acyclovir Antiviral application M. Wang, Hou,
et al. (2020)

CA KET Anti-inflammatory Yu, Li, et al. (2013)

CA and PVP KET Anti-inflammatory Y. Yang, Chang,
et al. (2020)

PLGA Tetracycline
hydrochloride

Antibacterial Maleki et al. (2013)

PCL Ampicillin Antibacterial Sultanova et al.
(2016)
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consideration, such as protein binding, active and passive drug uptake into cells, enzymatic degradation, and many
others (Fu & Kao, 2010; Siepmann & Siepmann, 2008). The mechanism of drug release profiles relies on the analysis of
in vitro results plotted in various kinetics model-dependent methods: zero- or first-order, Higuchi, Korsmeyer–Peppas,
and Hixson–Crowell (Dash et al., 2010).

In the zero-order model, the drug is released without disaggregation at a constant rate, and it is described as:

Qt ¼Q0þk � t ð1Þ

First-order model

Qt ¼Q0þ 1� e�k t�toð Þ
� �

ð2Þ

Higuchi model

Qt ¼Q0þk � t� t0ð Þ12 ð3Þ

Hixson–Crowell model

Q0�Qtð Þ13 ¼ k � t ð4Þ

The Korsmeyer–Peppas model assumes that the drug is homogenously distributed in the polymer matrix.

TABLE 2 (Continued)

Type of
system Polymer

Drug/active
substance Application Reference

Methacrylic acid/methyl
methacrylate copolymer

DCF and lecithin Anti-inflammatory C. Yang et al.
(2016)

Side-by-side
fibers (Janus
fibers)

Zein and PVP Ferulic acid Skin care M. Wang, Li, et al.
(2020)

EC and PVP AgNPs and CIP Antibacterial J. Yang, Wang, et al.
(2020)

Absorption PA6, PS Borage oil Skin moisture Krysiak, Knapczyk-
Korcak, et al.
(2020)

PCL Hemp oil Skin moisture Metwally et al.
(2020)

PCL Ornidazole Antibacterial Bölgen et al. (2007)

PVB Evening primrose oil Skin moisture Krysiak, Kaniuk,
et al. (2020)

Polyimide (PI) Blackcurrant seed oil Skin moisture Sroczyk et al. (2021)

Cellulose Ibuprofen Anti-inflammatory Y. Liu et al. (2017)

PU and keratin AgNPs Antibacterial Y. Wang et al.
(2016)

SF AgNPs Antibacterial Uttayarat et al.
(2012)

CA Lysozyme Antibacterial W. Li et al. (2014)

PVA, PVA-gelatin, PVA-ALG FA Beauty masks Parın et al. (2021)

KRYSIAK AND STACHEWICZ 15 of 35

 19390041, 2023, 1, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
nan.1829 by Instytut Podstaw

ow
ych Problem

ow
 T

echniki PA
N

, W
iley O

nline L
ibrary on [21/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Qt ¼ k � tn ð5Þ

where, Q0 is the initial drug quantity in the time t0, Qt is the drug quantity dissolved in the time t, and K is the release
constant.

Zero-order release model is independent of the drug concentration. In the Korsmeyer–Peppas model, n release expo-
nent for cylindrical shape describes the mechanism. For n < 0.45 release represents Fickian diffusion, 0.45 < n < 0.89
non-Fickian. When n exceeds 0.89, matrix dissolution occurs (Amoli-Diva & Pourghazi, 2017; Wu et al., 2020).

Most frequently, a drug release mechanism is quantitatively examined in vitro using the spectrophotometric
method. A new drug delivery system must be examined from the standpoint of medicine release behavior. Firstly, it
helps predict the doses required for in vivo studies. Also, it makes possible to modify the system produced to obtain the
desired release kinetics. In vitro studies are the initial step in material characterization and make it possible to reduce
the expenses for in vivo research (Zahedi et al., 2010). Drug release is described as a process in which drug solutes
migrate from the polymer matrix to the release medium. It is affected by the physicochemical properties of solutes and
polymer, release environment, and structure of the drug delivery material (Fu & Kao, 2010). The understanding of drug
release mechanisms is essential for the proper development of controlled release systems. Among many mechanisms,
erosion, diffusion, and swelling are the most common for electrospun drug delivery systems (Bruschi, 2015; Grassi &
Grassi, 2005; Pillay et al., 2013; see Figure 8). The most common release mechanism is based on diffusion through the
water-filled pores; Figure 8d (Fredenberg et al., 2011). Fick's law of diffusion describes solute transport through the
polymer matrix. The transport in the polymer matrix can follow both Fickian and non-Fickian diffusion. In the case,

FIGURE 8 Drug release mechanism from electrospun fibers through a polymer (the cross section of fibers): (a) erosion, (b) degradation,

(c) swelling, and (d) diffusion through the polymer matrix
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when polymer relaxation time (tr) is much greater than solvent diffusion time (tg), the transport refers to Fickian diffu-
sion. Non-Fickian model is applied, when tg value is similar to tr (Fu & Kao, 2010). The erosion mechanism can be
described for fibers electrospun from water-soluble polymers (Figure 8a). Nanofiber membranes, when brought to the
aqueous solution, start swelling, and polymeric chains are solvated, resulting in drug dissolution (Jannesari et al., 2011;
Schneider et al., 2018).

CA nanofibers were electrospun with KET. At the beginning the drug release was bursting followed by a high
cumulative percentage. It was analyzed using the Peppas equation, demonstrating the Fickian diffusion mechanism:

Q¼ 12:5 � t0:4 ð6Þ

To retard KET diffusion from the CA matrix to the medium, coaxial electrospinning was applied. CA drug-loaded fibers
were coated with pure CA. Release kinetics was represented by a zero-order model within a small tailing-off. Further-
more, when the Peppas equation was applied, the release exponent was equal to 0.84, thus suggesting an erosion/
diffusion mechanism (Figure 8a,d). This approach shows that a drug release mechanism can be easily modified
depending on the requirements, for instance in transdermal and topical delivery systems (Yu, Li, et al., 2013). Also,
when comparing drug release kinetics from core–shell and tri-layer systems made of the same polymer and medicine, a
different mechanism appeared (see Figure 6). CIP was homogenously distributed in the PLGA-based fibrous meshes, as
all delivery system components were dissolved in the same solvent. Drug release was studied in detail and three stages
were characterized. Initially, as with most drug-loaded electrospun fibers, the initial burst release was observed in corre-
spondence with the first-order model, due to fiber swelling and polymer hydrophobicity. Within the swelling, fiber
diameter increased (Figure 8c), fibers linked together, and the electrospun membrane grew denser. There were fewer
release channels, thus slowing down the medicine release. At this stage, as the sustained release is independent of con-
centration, a zero-order model could be applied. Lastly, the polymer matrix became degraded, and the large release was
characterized as Higuchi. Moreover, the drug release mechanism from the complex delivery system made of two poly-
mers is divided into different stages. This makes it possible to adjust the release duration and the dose of medicine.
Also, complex drug release systems described by the one mechanism may be incorrect: in these cases the Peppas equa-
tion should be applied (Wu et al., 2020). PVA was blended with poly(vinyl acetate) (PVAc) and loaded with 5% or 10%
CIP. The high initial drug release (up to 72 h) characteristic was defined by the Higuchi model, where the medicine
was diffused from the fiber surfaces. The later stage of drug release can be ascribed to the Hixson–Crowell model, due
to the erosion of PVAc (Jannesari et al., 2011). PLGA was electrospun on commercially available vascular grafts
together with vancomycin. Moreover, its non-topical application showed a difference between in vitro and in vivo drug
release: something which should be taken into consideration in all studies on drug delivery materials (K. S. Liu
et al., 2015). An antibiotic, cloxacillin benzathine (CLOX), was mixed with Ecovio® (polymer blend) and nanofibers
were electrospun. The drug release profile was determined in vitro in a medium with two different pH values: 7.3—
physiological and 5.5—inflammatory. An initial burst release, characteristic for non-Fickian kinetics, was obtained for
the higher pH, while for the slightly acidic medium, the first intense release was followed by the more sustained-
Fickian diffusion. Post-release SEM images of a nanofiber membrane soaked in physiological solution showed eroded
structures with pores and capillaries. This indicates CLOX dissolution and diffusion from the polymer, which enhance
the medium penetration into fibers, thus further inducing the linear drug release. On the other hand, an acidic buffer
can induce the negative charge density of CLOX and, consequently, the electrostatic interaction between polymer and
drug, thus decreasing the release (Schneider et al., 2018). Rosmarinic acid (RosA), an anti-inflammatory and antioxi-
dant substance, was blended with CA, and fibers for chronic pain treatment patches were manufactured via
electrospinning. The in vitro release of RosA in a sodium acetate buffer (pH = 5.5) stimulating the skin environment,
was elevated (almost total release after 64 h) due to no drug aggregation in the fiber matrix. The patches presented had
a semi-crystalline structure, thus showing a limited drug diffusion and little fiber erosion, which were ascribed to a
Fickian diffusion (Vatankhah, 2018). Anti-inflammatory and non-steroidal diclofenac (DCF) was combined with gly-
cine (Gly) to obtain a derivative suitable for daily skin treatments. This synthesized drug (DCF-Gly) has an acidic form,
and is characterized by low solubility in water and high hydrophobicity, compared with pure DCF. A hydrophobic
poly-L-lactide (PLA) was mixed with DCF-Gly and electrospun to create transdermal drug delivery systems. The
drug release profile was ascribed to the Fickian diffusion, as both the active agent and the polymer have a hydrophobic
character (Piccirillo et al., 2017).
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7 | FACTORS AFFECTING DRUG RELEASE

Drug release profiles depend on the chemical and physical factors of a drug delivery system. In particular: hydrophobic-
ity, molecular weight (Huma et al., 2013; Tallury et al., 2008), and crystallinity of the polymer and drug. Also, the degra-
dation rate of a polymer, drug concentration, and structure of electrospun membranes affect the drug release profile
(Cui et al., 2006; Demirci et al., 2014; L. Liu et al., 2016). The pH of pathological tissue can modulate the release mecha-
nism by drug solubility (C. Yang et al., 2016; X. Zhao et al., 2015), polymer–drug interactions, and different effectiveness
of water penetration into the fibrous membrane. Variable skin problems and diseases require different drug release pro-
files. Bacterial infections require an initial burst in drug release to quickly inhibit bacteria proliferation and then a
sustained release to prolong treatment (Jannesari et al., 2011). A burst medicine release can have both a desirable and
undesirable effect at the same time. In particular, it can take a drug to its toxic level without being sufficiently metabo-
lized, and thus be wasted. On the other hand, a burst release either contributes to the immediate bacterial growth inhi-
bition or kills the pain quickly (X. Huang & Brazel, 2001). All parameters affecting the drug release from electrospun
fibers are summarized in Table 3 and are also described in more detail in the sections below.

7.1 | Polymer properties

The selection of polymers is crucial when designing a drug delivery system, as they make it possible to determine the
chemical, mechanical, biological, and surface properties of the drug-releasing material for a predictable release. Hydro-
philicity influences the permeability, water sorption capacity, and degradability of materials and, consequently, the
release mechanism. Water-soluble polymers are characterized by an initial burst drug release (M. Zhang et al., 2016).
Furthermore, hydrophilic polymer carriers used as the shell in core–shell systems lead to an initial intensive release.
However, blending with a hydrophobic polymer or crosslinking such a material makes it possible to control degradabil-
ity, due to the reduced drug diffusion rate through fibers (El-Newehy et al., 2012; Kyzioł et al., 2017; Moreno
et al., 2011). Furthermore, the molecular weight of a polymer and its solubility significantly affect drug delivery kinetics
(Miyajima et al., 1997; Pillai & Panchagnula, 2001). Drug release increases as the molecular weight decreases, while
comparing the same polymer. The chain entanglement is lower and the diffusion of drug molecules through the

TABLE 3 Parameters affecting drug transport in delivery systems

Drug/
polymer Parameter References

Polymer Hydrophobicity/hydrophilicity Amoli-Diva and Pourghazi (2017); Huma et al. (2013); Jannesari et al.
(2011); Maleki et al. (2014); Pillai and Panchagnula (2001); Siepmann and
Siepmann (2008); Wu et al. (2020)

Molecular weight, copolymer ratio Jeong et al. (2003); Miyajima et al. (1997); Sung et al. (1998)

Form (amorphous, crystalline) Jeong et al. (2003); Kamath et al. (2020); Karavelidis et al. (2011); Miyajima
et al. (1998); Sackett and Narasimhan (2011); Vollrath et al. (2021);
Zamani et al. (2010)

Polymer
and
drug

Chemical reactions/ physical interaction of
polymer, drug, and release medium

Fredenberg et al. (2011); Göpferich (1996); Kamath et al. (2020); Karavelidis
et al. (2011); Klose et al. (2008); Y. Yang et al. (2008)

Drug Hydrophobicity/Hydrophilicity Karavelidis et al. (2011); Sung et al. (1998)

Molecular weight X. Huang and Brazel (2001); Naik et al. (2000); Potrč et al. (2015)

Form (amorphous, crystalline) Natu et al. (2010)

Concentration X. Chen et al. (2009); H. H. Huang et al. (2009); Maleki et al. (2013)

Distribution in the polymer matrix Fredenberg et al. (2011); X. Huang and Brazel (2001); Maleki et al. (2013)

Release
medium

pH, ionic strength, LCST Amoli-Diva and Pourghazi (2017); Demirci et al. (2014); Göpferich (1996);
X. Huang and Brazel (2001); L. Liu et al. (2016); Miyajima et al. (1998); C.
Yang et al. (2016); Z. Zhang et al. (2020); Ziaee et al. (2016) Nakielski
et al. (2020)
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polymer matrix is simplified. Copolymers made of hydrophilic and hydrophobic monomers can be applied for a con-
trolled drug delivery. The changing ratio between monomers affects polymer properties, resulting in different drug
release mechanisms (X. Huang & Brazel, 2001; Sung et al., 1998; Wu et al., 2020). Also, the blending of two polymers,
hydrophilic and hydrophobic in various proportions, affects release kinetics. A fibrous drug delivery system made of
PCL and PEO showed a significantly faster medicine release, when the hydrophilic PEO was the majority blend compo-
nent (Pillay et al., 2013). Huma et al. suggested that poly(N-vinyl pyrrolidone-co-n-hexyl methacrylate) loaded with
dexamethasone could have diverse release mechanisms, when changing the monomer ratio and molecular weight
(Huma et al., 2013; Natu et al., 2010). Polymer crystallinity significantly affects the delivery of the incorporated drug.
The molecular mobility of polymer chains is reduced in the crystalline part of the chain, thus retarding degradation
and causing a slow drug release. The arranged chains (crystallites) create a barrier against aqueous medium penetration
(Frank et al., 2005; Kamath et al., 2020). Furthermore, amorphous polymers are used for enhancing the dissolution of
insoluble drugs (Vollrath et al., 2021). Some research, however, has reported that high crystallinity causes a micro-
channel development in the polymer matrix, thus enlarging the surface area of the polymer matrix and creating an
additional pathway for drug release (Karavelidis et al., 2011). Semi-crystalline materials are characterized by an initial
burst release as the medicine located on the fiber surface is immediately dissolved. Additionally, polymer bulk degrada-
tion is retarded by limited water access to the semi-crystalline regions. Polymer degradation may help with drug release
in such a case (Natu et al., 2010). Thus polymer degradability has a huge impact on drug release kinetics (Klose
et al., 2008). Application of a biodegradable polymer on electrospun fibers or coaxial electrospinning resulting in core–
shell fibers can prevent an initial burst effect (Cui et al., 2006; Z. M. Huang et al., 2006; Maleki et al., 2014; Y. Yang
et al., 2008; M. Zhang et al., 2016). Biodegradable PLGA fibers were loaded with vancomycin for a slow and sustained
release, which took more than 30 days both in vitro and in vivo. The release rate was related to the polymer degrada-
tion, which is reported to take approximately 2 months (K. S. Liu et al., 2015).

Thermo-sensitive polymeric drug carriers can be applied for a deliberate pharmaceutical release profile. Poly(N-
vinylcaprolactam-co-methacrylic acid) (PNVCL-co-MAA) has different properties with regard to low critical solution
temperature (LCST). Therefore, it was electrospun within captopril or KET to create a thermo-sensitive drug carrier.
Below LCST (33�C), the components of a mixture are miscible for all compositions and PNVCL-co-MAA can easily dis-
solve in water. Furthermore, LCST is a critical value for a drug release profile. At 20�C, that is, below LCST, both capto-
pril and KET loaded in the PNVCL-co-MAA electrospun fibers had an initial burst release-Fickian mechanism. On the
other hand, at 40�C, when the temperature exceeded LCST, a non-Fickian behavior was observed and the drug dis-
solved and diffused slowly (L. Liu et al., 2016). The chemical properties of thermo-responsive poly(N-
isopropylacrylamide) (PNIPAAm) blended with PU depend on temperature. The material's character changes from
hydrophilic to hydrophobic when the temperature exceeds the LCST value. Consequently, drug release was signifi-
cantly more effective in the case of hydrophilic materials (below LCST), as the water can easily diffuse into fibers and
dissolve the drug (X. Lin et al., 2013). Also, PNIPAAm blended with hydrophobic PCL reduced ibuprofen burst elution
in release tests conducted below and above LCST (see Figure 9). PCL was used as a boundary layer and reduced medi-
cine release (Tran et al., 2015). Furthermore, drug release on demand is possible with thermoresponsive polymer.
P(NIPAAm-co-NIPMAAm) hydrogel containing gold nanorods (AuNRs) was encapsulated between fibrous layers man-
ufactured via electrospinning of poly-L-lactide (PLLA) combined with Rodamine B. Cascade-stimuli drug release was
activated by Near-infrared light, which is absorbed by AuRNs and converted to the heat. The hydrogel structure is
changed leading to the drug release. Thus thermo-sensitive polymers can be used for controlled and switchable drug
delivery systems (Nakielski et al., 2020).

7.2 | Drug properties

The hydrophilicity of drugs plays an important role in the release mechanism (Sung et al., 1998). Water-soluble phar-
maceuticals loaded into electrospun fibers are characterized by an initial burst release, as the drug located on the fiber
surface can be easily dissolved (L. Liu et al., 2016). Moreover, the high ionic strength of drugs leads to their deposition
on the fiber surface (K. Kim et al., 2004). The burst release of low molecular weight medicines is more likely due to
their small size and high solubility in aqueous solutions (X. Huang & Brazel, 2001). The form of the medicine deter-
mines its location in fibers: a crystalline drug is generally located on the fiber surface, while an amorphous drug enters
the fiber structure. Obviously, easily available pharmaceuticals trigger an initial burst release (Natu et al., 2010; Thakur
et al., 2008). PCL blended with Lutrol F127 and timolol or acetazolamide had a three-stage release profile. At the
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beginning, a crystalline drug was dissolved, as it was not fully entrapped within the polymer. Next there was an erosion
of the hydrophilic Lutrol, followed by degradation of the hydrophobic PCL (Natu et al., 2010). A drug acidic form has a
lower water solubility, compared with salt formulas; consequently, its diffusion rate is slower and can be controlled
depending on the form of the drug (Piccirillo et al., 2017). Moreover, the drug content in the fibers has an impact on its
release. A greater quantity of medicine stimulates a burst release, as the drug crystals were not fully encapsulated
within the polymer matrix and were immediately dissolved. Conversely, a smaller quantity of medicine was totally
encapsulated in the fibers, thus causing the release to be more sustained. Both drug and polymer characters affect their
behavior in the aqueous environment; since they are hydrophobic, medicine release has a low burst and sustained
release (Zamani et al., 2010). Therefore, for a sustained release, a lipophilic drug should be loaded into a lipophilic poly-
mer, and for hydrophilic drugs the relationship is the same. Otherwise, the medicine would be dispersed on the fiber
surface (Demirci et al., 2014; Zeng et al., 2005). Low medicine solubility in the polymer matrix, together with an excel-
lent water solubility, results in a high percentage of total release. Drug release is strictly correlated with the polymer sol-
ubility limits; when the quantity of the drug is above the limit, it forms crystals. On the other hand, when it is below
the limit, its form is amorphous. Pharmaceutical release profiles may be designed by their quantity incorporated into
the polymer (Z. M. Huang et al., 2006; Natu et al., 2010; Zamani et al., 2010). Furthermore, a large amount of pharma-
ceuticals added to the polymer decreases its crystalline structure (Chou & Woodrow, 2017). This happens when a drug
is homogenously spread in the material matrix and disturbs hydrogen bonding within polymer chains
(Vatankhah, 2018). In addition, a low drug concentration loaded into the fibers creates fewer pores within the structure
during the initial release, compared with higher concentrations. The porosity created is crucial for any additional medi-
cine dissolution and release (Cui et al., 2006).

7.3 | Fiber properties

Fiber size, morphology, porosity, and geometry affect the drug release behavior (Peng et al., 2008; Pillay et al., 2013).
Mechanically stretched electrospun membranes loaded with a drug showed a faster release compared with non-
stretched ones. Elongated fibers have thinner diameters, therefore the drug diffusion distance is shorter (Chou &
Woodrow, 2017; Yu, Li, et al., 2013). In the presence of smaller fiber diameter and higher surface area, drug release is
faster due to the short diffusion pathway. In other words, a medicine encapsulated in thin fibers is more available
through the surface (Fathi et al., 2020; Kyzioł et al., 2017; K. S. Liu et al., 2015; Okuda et al., 2010; Pillay et al., 2013;
Zamani et al., 2010). In Figure 10, the schematics of drug release from electrospun fibers is illustrated, indicating that
the initial burst release can be reduced by entrapping the drug in the core, when the shell of fibers is polymeric.

FIGURE 9 Mechanism of reduced burst effects from thermo-sensitive pNIPAM blended with ibuprofen IP and hydrophobic PCL,

which prevent the initial fast drug release. Reproduced with permission from Tran et al. (2015)
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Increasing fiber size for both core–shell and blend material would reduce the initial drug release and provide a more
sustained process. A shell covering the drug in the fibers creates a boundary layer, which slows down drug diffusion
(Sultanova et al., 2016). A thinner core part also delays medicine release, when fibers with the same diameter but a dif-
ferent shell size are compared, since the drug has to cover a larger distance to reach the release medium and become
dissolved. Interestingly, a medicine addition to the polymeric shell layer may decrease the burst release. The thickness
of a membrane can also affect the release kinetics for a single-drug delivery system (Blakney et al., 2014; Cui
et al., 2008). The thickness of the electrospun membranes is usually controlled by the electrospinning time; when fiber
production is longer, more fibers are deposited. Therefore, metronidazole (MTZ) was blended with PCL, and fibers were
manufactured with various electrospinning times. The longer the process, the more fibers were produced, and the more
the membrane thickness increased. MTZ release took longer in the case of fibers produced within 8 h, compared with
the thinner samples, which are related to the shorter electrospinning time (see Figure 10d). The thicker the fiber mat,
the smaller the swelling is, and both the initial and total time for drug release are longer (Okuda et al., 2010). Buffer
uptake by the membrane is strictly correlated with wettability. Generally speaking, superhydrophobic materials are per-
fect for a prolonged and sustained drug elution, as it occurs at the interface between material and water. The high
hydrophobicity of electrospun membranes is associated with the air entrapped in the fiber pores which reduce water

FIGURE 10 Scheme of drug release depending on: (a) drug concentration, (b) fiber structure, and (c) structural parameters for both

core–shell and blend drug delivery systems. Reproduced with permission from Maleki et al. (2013). (d) Drug release from nanofibers with

different thicknesses related to blend electrospinning time. Reproduced with permission from Zupančič et al. (2018). (e) Mechanism of drug-

eluting release from superhydrophobic materials. Water diffuses into the superhydrophobic structure within displacement entrapped air,

thus regulating the drug release by controlling the rate at which the internal polymer surface area is exposed to the release medium.

Reproduced with permission from Yohe et al. (2012)
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contact with their surface (Yohe et al., 2012; see Figure 10e). For the PCL-MTZ blend, the medicine was immediately
released after an in vitro buffer uptake. Moreover, the thicker the fibrous membrane, the longer the buffer penetration
is, resulting in a prolonged drug release (Zupančič et al., 2018).

8 | EXAMPLES OF ELECTROSPUN SKIN PATCHES

As we mentioned in the introduction, so far only a few designs of electrospun patches have been proposed. PCL was
blended with acyclovir and omega 3-fatty acids and electrospun to produce a skin dressing for orofacial herpes treat-
ment (see Figure 11). Fibrous material created an occlusive bandage with antiviral properties and the ability to heal
herpes infections. This bandage showed the possibility to overcome many of the limitations existing with commercially
available herpes treatments. Electrospun fibers can provide single dosage with controlled release, thus eliminate daily
reapplications. The contact between the active agent and epidermis is undisturbed and there was no physiological
removal of the formulation. A large fiber surface area leads to a slow acyclovir release in a controlled manner. Further-
more, omega 3-fatty acids were also incorporated into PCL fibers to help the healing process, whereas the only products
available on the market are mainly antivirals. Fibrous dressings prevent water evaporation from the skin, while at the
same time they are permeable for oxygen and make it possible to drain wound exudates. In particular, the designed
material was flexible and durable during application, its mechanical properties being similar to already-available medi-
cal textiles (Costa et al., 2019).

A portable electrospinning device was used for the production of antimicrobial bandages. Electrospun fibers made
of a PEO solution combined with antibiotics and gold nanoparticles which showed a great potential for killing bacteria.
The main advantage of this system is the possibility to place the fiber directly on the affected skin area, thus enabling
fiber collection on nonconductive surfaces (Huston et al., 2019).

Furthermore, there are a few examples of the use of electrospun fibers as skin moisturizing patches. The principle is
based on using oil-loaded fibrous membranes as slow-release reservoirs applied on the dry skin in order to increase its
moisture, as presented by Krysiak, Kaniuk, et al. (2020). Prior to electrospinning, poly(3-hydroxybutyrate-co-3-hydro-
xyvalerate) (PHBV) was blended with evening primrose oil (EPO) and fibers were produced. The patches created with
extra EPO drops were applied on the skin and left for 6 h. Skin moisture was measured before and after patch

Macroscopic

Sem

Bioactive Compounds:

Polymeric Matrix:

Poly (Ɛ-caprolactone)

Acyclovir

Omega-3 Fatty Acids

FIGURE 11 Example of a skin dressing for the healing of herpes infections made of PCL electrospun fibers blended with acyclovir and

omega-3 fatty acids. Reproduced with permission from Costa et al. (2019)
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application. The results obtained were compared with pure PHBV fibers soaked with EPO and dry PHVB fibers used as
a control. The skin moisture increased about 20% on patches soaked with oil when a blended (PHVB + EPO) mem-
brane was used, as it was more hydrophilic than a pure PHBV membrane, thus permitting faster oil transport thorough
fibrous material to the skin (Kaniuk et al., 2022). Another study comparing hydrophilic and hydrophobic skin patches
indicated similar results. PA6-hydrophilic, PS-hydrophobic, and composite membranes based on PS and PA6 fibers
were manufactured to be used as skin patches in the sandwich system, that is, with one membrane on the other (see
examples of the layer configurations in Figure 12a–e). The patches containing PA6 fibers showed better skin hydration
with borage oil, compared with PS-based materials. Apart from hydrophilicity, the structure of the fibrous membrane
played an important role. Borage oil incorporated within the PS cotton-like membrane could be released with difficulty
(Krysiak, Knapczyk-Korcak, et al., 2020). For electrospun PLC with different fiber arrangements, random and aligned,
both porous and smooth fibers were used with hemp oil to improve skin moisturization. Here, PCL patches showed that
skin hydration increased by about 20% after a 6 h experiment. The designed sandwich system made of porous random
and smooth aligned PCL fibers showed the greatest oil release and best mechanical properties (see example in
Figure 12f; Metwally et al., 2020). In addition, the topical electrospun polyimide (PI) patches loaded with blackcurrant
seed oil were tested to verify the effective gamma linoleic acid transport and skin hydration. PI fibrous membranes were
also soaked in oil, as described in previous studies, and a 6 h skin hydration test was also performed. Remarkably, this
study showed how the skin moisture changed every 1 h. After 3 h, skin test results showed the beginning of a plateau
level when SC became saturated with blackcurrant seed oil (see Figure 12g,h; Sroczyk et al., 2021). An additional analy-
sis of skin treatment with the electrospun patches was performed with thermal camera images. The skin test with
PHBV + EPO fibers soaked in EPO showed an efficient oil release after 3 h. After patches were applied to the skin, their
temperature was similar to that of the body, whereas—after 3 h fibrous membrane release—the oil and patch tempera-
ture was lower than the skin (Figure 12i; Kaniuk et al., 2022). All the mentioned patches, based on PHBV, PA6, PS,
PCL, and PI electrospun fibers loaded with oils, behave as reservoirs with a slow oil release, and therefore can be used
as skin moisturizing bandages in AD. Moreover, these materials are flexible, very stretchable, provide thermal insula-
tion, and protect the skin from scratching and external infections.

9 | PROSPECTIVE APPLICATION OF ELECTROSPUN FIBERS AS PATCHES
FOR TOPICAL SKIN TREATMENT

Up to now, in the biomedical field, electrospun fibers are mostly used in regenerative medicine (Sell et al., 2007;
Szewczyk, Metwally, et al., 2019) as drug delivery systems (X. Lin et al., 2013; L. Liu et al., 2016) and dressings for
wound healing (Gizaw et al., 2018; Paquin et al., 2015; Teixeira et al., 2020). The growing number of skin problems has
led to a search for new treatment methods and materials. In this review, we showed the properties of electrospun mem-
branes and compared them with the requirements for skin patches or bandages. The high surface area-to-volume ratio
(Stachewicz et al., 2015), porosity (Eichhorn & Sampson, 2010), and high loading capacity (Arag�on et al., 2019) are sig-
nificant factors advising the use of electrospun membranes for topical skin treatments. Expect single-nozzle
electrospinning, side-by-side and co-axial nozzles are applied for manufacturing modified drug delivery systems
(Z. M. Huang et al., 2006; H. Xu et al., 2022). Moreover, by selecting suitable polymers, biocompatible (Y. Wang
et al., 2016), and even biodegradable (J. Li et al., 2009) materials can be manufactured. Depending on the type of drug
or active agent incorporated into electrospun fibers, the latter can be used for different applications. Both antibiotics
(Turan & Guvenilir, 2022) and moisturizing substances (Sroczyk et al., 2021) can be combined within fibers. In AD, the
skin is dry with some lesions, usually with bacteria colonies; therefore the possibility of using electrospun fibers as drug
delivery systems is promising for AD treatment. Furthermore, electrospun membranes provide an opportunity to con-
trol and predict their medicine release (Hu & Cui, 2012); therefore patches can be designed according to AD require-
ments. Stimuli responsive polymers are excellent materials for drug release on demand activated by external factors,
like light or heat (Nakielski et al., 2020). In addition to the beneficial effect of the incorporated substances, the
electrospun membrane itself showed many valuable aspects. First, it reduces the water vapor transmission rate in vitro,
being permeable to air, thus maintaining a proper level of skin hydration and preventing maceration. Electrospinning
can be used to produce side-by-side fibers, which are both hydrophobic and hydrophilic (Knapczyk-Korczak
et al., 2021). Their asymmetric wettability makes it possible to transport the fluids in one direction, from the hydrophilic
to hydrophobic side. Thus the sweat or possible wound exudates would be removed from the skin surface and prevent
fibrous membrane adhesion to the skin (Shao et al., 2021). Moreover, these membranes are easily stretchable, so they
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FIGURE 12 Scheme of patches used for skin moisture tests: (a) single PS membrane, (b) single PA6 membrane, (c) composite PS-PA6

membrane; sandwich system made of: (d) PS membrane placed on skin and PA6 membrane on top, (e) PA6 membrane placed on skin and

PS membrane on top. Reproduced with permission from Krysiak, Knapczyk-Korcak, et al. (2020). (f) Schematic of the smooth PCL (sPCL)

and porous PCL (pPCL) sandwich patches with hemp oil. Reproduced with permission from Metwally et al. (2020). (g) Skin hydration before

and after 6 h fibrous patches were soaked in blackcurrant seed oil. (h) Representative image of the experimental arrangements of patches on

volunteers. Reproduced with permission from Sroczyk et al. (2021). Heat transmission rates through PHBV, PHBV + 5%EPO, and PHBV +

10%EPO electrospun fibers and samples with an additional EPO: (i) just after patch and oil application, (j) after 3 h of wearing the patch.

Reproduced with permission from Kaniuk et al. (2022)
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adjust to movement and handling and are comfortable (Krysiak, Kaniuk, et al., 2020; Krysiak, Knapczyk-Korcak,
et al., 2020; Metwally et al., 2020; Sroczyk et al., 2021). Currently, AD treatment is focused on topical treatments with
lotions, emulsions, or ointments being applied to the skin several times a day (Parekh et al., 2021). The topical drug
delivery system based on electrospun fibers is able to provide a sustained release, reducing dose frequency and
preventing many side effects.

10 | CONCLUSION

In this review, we showed some widespread skin problems, with a focus on eczema, which are affecting more and more
people all over the world. We focused on AD and its topical treatment with electrospun patches. There are numerous
requirements for materials to be used for dermal dressings. These patches must be biocompatible, breathable, and
reduce TEWL. Besides the material properties themselves, the possibility of drug loading is much appreciated.
Electrospun fibers have all the advantages mentioned above, which are widely described in this review. The method for
the incorporation of bioactive molecules into fibers determines both the drug release and the treatment effect.
Electrospinning provides many opportunities to entrap the drug into the fiber structure and, by changing the polymer
or process itself, to control the medicine release. We also underlined the importance of in vitro release studies, as well
as characterizing the release models and kinetics which are practical for dose prediction for in vivo tests. Moreover, all
the factors affecting the active agent release were correlated and the complexity of designing topical drug delivery pat-
ches was emphasized. We showed various examples of electrospun fibrous membrane application in topical and trans-
dermal drug delivery, and also suggested their use for wound healing materials. Lastly, we combined the AD
requirements for dressings with electrospun fiber properties to demonstrate the prospect of using these materials for
eczema treatment.
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