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GōMartini 3: From large conformational
changes in proteins to environmental bias
corrections

Paulo C. T. Souza 1,2 , Luís Borges-Araújo1,2, Christopher Brasnett 3,
Rodrigo A. Moreira4, Fabian Grünewald 5, Peter Park 3,6, Liguo Wang 3,
Hafez Razmazma7,8, Ana C. Borges-Araújo 9, Luis Fernando Cofas-Vargas 10,
Luca Monticelli 7, Raúl Mera-Adasme11, Manuel N. Melo 9, Sangwook Wu12,13,
Siewert J. Marrink 3 , Adolfo B. Poma 10 & Sebastian Thallmair 14

Coarse-grained modeling has become an important tool to supplement
experimental measurements, allowing access to spatio-temporal scales beyond
all-atom based approaches. The GōMartini model combines structure- and
physics-based coarse-grained approaches, balancing computational efficiency
and accurate representation of protein dynamics with the capabilities of
studying proteins in different biological environments. This paper introduces
an enhanced GōMartini model, which combines a virtual-site implementation
of Gō models with Martini 3. The implementation has been extensively tested
by the community since the release of the reparametrized version of Martini.
This work demonstrates the capabilities of the model in diverse case studies,
ranging from protein-membrane binding to protein-ligand interactions and
AFM force profile calculations. The model is also versatile, as it can address
recent inaccuracies reported in the Martini protein model. Lastly, the paper
discusses the advantages, limitations, and future perspectives of the Martini 3
protein model and its combination with Gō models.

The understanding of how proteins fold and perform their functions
selectively, efficiently, and modulated by interactions with other bio-
molecules depends on the knowledge of their structure and dynamics.
Despite tremendous progress in the experimental field1,2, molecular

modeling techniques have conquered their own space as an important
and complementary set of approaches to study proteins2,3. In parti-
cular, given the limitations in obtaining experimental high-resolution
atomistic details from short to long time scales, all-atom (AA)
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molecular dynamics (MD) simulations have become widely used to
study protein dynamics and even folding of simple systems4,5. Because
of the high computational costs associated with AA MD, these are
usually limited to studying phenomena occurring on time scales of
1–100 µs (depending on the protein and/or system size)6,7. Thus, a
broad range of important biological phenomena remains out of reach.
For instance, these include the long-range motion of protein domains
as well as induced-fit mechanisms involving protein-ligand or protein-
protein interactions. Systems involving transmembrane or peripheral
membrane proteins can be even more challenging, as protein
dynamics in a lipid bilayer environment can be slowed down, coupled
to membrane fluctuations, and possibly dependent on lipid
composition8,9. AA approaches also struggle with interpreting single-
molecule force spectroscopy (SMFS) data, requiring extensive sam-
pling of non-equilibrium pulling processes in nanomechanical
studies10–12. Similarly, in the case of disordered proteins or domains,
integrating small-angle x-ray scattering (SAXS) with MD data requires
the determination of whole ensembles of conformations which can be
difficult to obtain with AA methods13,14. Enhanced sampling methods
andGPUparallel computing help to reach longer timescales and better
sampling with AA approaches15–17. However, when considering biolo-
gical length- and timescales, they are still limited to rather local
processes.

One attractive alternative to AA protein models is the use of
coarse-grained (CG) approaches. CG models are simplified repre-
sentations which, due to a reduction of explicit degrees of freedom
and a smoother interaction landscape, offer a substantial simulation
speed-up. As a result, CG models can reach length- and timescales
which are orders of magnitude larger than AAmodels. CG approaches
offer a wide range of resolutions and strategies to define their
interactions18–20. For instance, structure-based proteinmodels, like Gō-
type models21–23, define their interactions based on a known and
usually folded structure. The potential energy (UGō) in the Gō model
for proteins is constructed based on the native structure of the protein
as follows, UGō =

PNC
i<j V ðσij , εÞ, where NC denotes the set of native

contacts and V ðσij , εÞ is a Lennard-Jones (LJ) 12-6 potential. σij is given
for each NC and depends on the distance between specific NC pairs
(i.e., σij = rij=2

1=6). The ε represents the energy scale of the NCs and is
usually uniform for all pairs. Gō-like models are a useful tool for
modeling conformational changes in proteins such as folding pro-
cesses, thermal unfolding, or mechanical response24–26. However,
environmental effects are usually neglected18. On the contrary,
physics-based models, such as the well-known Martini force field27–29,
can be used to model protein dimerization and aggregation as well as
interactions with lipid bilayers and other biomolecules8,9,18,30. With
each protein residue being represented by 1–5 beads, Martini still
retains chemical specificity, because the beads are parametrized using
experimental thermodynamic data such as partitioning free energies
of small compounds between polar and apolar environments. While
bonded potentials are parametrized and validated using atomistic and
experimental data27–30, traditional Martini protein models exhibit lim-
itations in accurately representing stably folded proteins, often relying
on a harmonic elastic network (EN) to maintain structural stability31.
Although the dynamic accuracy of ENs can be improved via neural
network-based structure predictions32, extensive tests have also shown
the combination of Martini with ENsmay also contribute to inaccurate
protein−protein interactions31,33. The observed stickiness of
proteins34–36 in Martini 2 may also affect their accessible conforma-
tional ensemble.

A possible way to keep a good compromise between high com-
putational performance, accurate protein dynamics, and reliable
interactions with the environment is the combination of structure-
based and physics-based coarse-grained approaches. A recent exam-
ple for this is the combination of Gō and Martini 2 models, called
GōMartini37. Several studies have shown that GōMartini models can be

parametrized to reproduce protein flexibility from atomistic bench-
mark simulations37–39. In addition, GōMartini has also shown great
potential to study the nanomechanical stability of proteins33,40,41.
However, it has limitations in reproducing longer-range conforma-
tional changes37. In addition, themodel inheritedparts of the stickiness
limitations of Martini 233.

Here, we present the virtual-site implementation of an enhanced
GōMartini model, which can be combined with the latest iteration of
Martini, together with a diverse set of applications and comparisons to
EN models and the previous GōMartini 2 model. Moreover, the fully
reparameterizedMartini 3model for proteins is presented, pointing to
which improvements in the model may enable more accurate predic-
tions of protein packing and protein interactions42,43. The GōMartini
implementation together with Martini 3 has already shown that it can
capture subtle changes in protein dynamics caused by interactions
with membranes44, single point mutations45 and mechanostability46.
We also show how the virtual-site implementation can be used to
implement an environmental bias to correct recently described inac-
curacies of the model, such as underestimated dimensions of intrin-
sically disordered proteins (IDPs)47,48 and low hydrophobicity of
certain amphiphilic small peptides49. The paper is structured as fol-
lows: first, we discuss the Martini 3 protein model, followed by the
changes in the enhanced GōMartini 3 model as well as the improved
virtual-site implementation facilitating high parallelization. We further
demonstrate the power of the GōMartini 3 model using four case
studies: (i) binding of a Pleckstrin homology (PH) domain to PI(4,5)P2-
enriched membranes, (ii) binding of benzene to T4 lysozyme, (iii) an
allosteric pathway in Cu,Zn superoxide dismutase, and (iv) AFM-SMFS
force profile calculations for the case of protein complexes such as
antigen:antibody and dockerin:cohesin systems. Next, we give a per-
spective on how GōMartini 3 models can be further optimized and,
moreover, how virtual Gō particles can be used to introduce envir-
onmental bias corrections through changes in the interaction with
water beads. In the final section, we discuss the advantages, limita-
tions, and future prospects of the approach and the overall develop-
ment of the Martini 3 protein model.

Results
The Martini 3 Protein Model
The Martini 3 protein model is the natural evolution of the previous
Martini 2 iteration29, which now leverages the improvements intro-
duced with theMartini 3 force field. However, it can still be considered
as a prototype model, just like the current Martini 3 lipids, since the
model has not been fully updated with the current parametrization
rules. In particular, the core of the protein model is still based on a
single particle backbone (BB), which is placed at the center of mass
(and not the center of geometry) of the N, Cα, Cβ, and O atoms of the
underlying atomistic backbone, and to which 1-5 side chain (SC) beads
may be attached. This is in line with the original implementation of the
Martini protein force field28 and differs from the ELNEDIN model31,
where the BB bead was placed at the position of the Cα atom. To
connect consecutive amino acid residues, a harmonic bond or con-
straint, depending on the secondary structure, is placed between their
BB beads. Angle and dihedral potentials are then placed over 3 or 4
consecutive BB beads, respectively, to define the secondary structure-
dependent backbone torsion behavior. This set of BB bonded para-
meters – composed of the bond lengths, angles, dihedral angles, and
their respective force constants for each of the secondary structure
motifs –was inherited from the original implementation of theMartini
protein force field28. These were parameterized from a representative
set of ~ 2000 proteins from the protein data bank (PDB), on which the
Define Secondary Structure of Proteins (DSSP) algorithm50 was used to
determine the secondary structuremotif associatedwith each residue.

In the original implementation of the Martini protein force field,
the BB particle type depended on the secondary structure motif
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associatedwith a respective residue28. When free in solutionor in a coil
or bend it was represented by a highly polar P5 bead; BB particles in
beta strands or turns were represented by intermediately polar Nda
beads with hydrogen-bonding capacities; and in helices by inter-
mediately polar N0 beads without hydrogen-bonding capacities, with
the C- and N-termini of a helix represented by intermediately polar Na
and Nd beads with hydrogen-bond acceptor (Na) and donor (Nd)
capacities, respectively. This choice was made to better represent the
inter-backbone hydrogen bond character of each residue when pre-
sent in a specific motif — i.e., the hydrogen bonds established within a
helixwould reduce the polar character of the amide backbone group28.
In contrast, thereto, all backbone beads are represented by polar P2
beads in Martini 3, regardless of the underlying secondary structure
motif. The exceptions to this rule are charged terminal backbone
beads — which are represented by charged Q5 beads with hard ion
features — and GLY, ALA, VAL, and PRO residues. These four amino
acids use different bead types to better represent slight differences in
chemical group polarity and size. The GLY backbone is mapped as a

smaller SP1 bead to represent the loss of the side chain (but keeping
similar polarity compared to the default P2 backbone), while the PRO
backbone is mapped as a smaller SP2a, due to the lack of hydrogen-
donor capabilities. ALA and VAL are mapped as smaller SP2 beads to
avoid overmapping issues, which could be caused by their side chain
particles being mapped quite close to the backbone33.

The side chains have been completely revisited for the Martini 3
protein model, following the modified parameterization guidelines
established with the Martini 3 release and making use of the larger
number of additional bead types and sizes specific formappings finer
than 4-to-143. The side chain models were parameterized from their
backbone-less analogs and calibrated considering their molecular
volume, partitioning behavior, solvent properties, and miscibility
trends. The mapping and bead assignments of the Martini 3 protein
model are shown in Fig. 1. The parameterization of the side chain
analogs is described in detail elsewhere43,51. To illustrate the quality of
the current side-chain models, partitioning free energies of their
analogs in three different water/oil systems are compared with

Fig. 1 | Mapping and bead chemical types of the Martini 3 protein model. The
colors indicate the main classes of bead chemical types: P (polar, in red), N
(intermediately polar, in blue), C (nonpolar, in gray), and Q (charged, in green).

Different bead sizes are also indicated, ranging from the bead with the largest radii
(regular, no symbol) to small (S) and tiny (T) beads.
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experimental data in Supplementary Table 1 and Supplemen-
tary Fig. 1.

Like in previous Martini protein models, the side chains are con-
nected to the BB bead via harmonic bonds or linear constraints, and
their dynamics are controlled by two angles spanning thefirst SC bead,
the BB bead, and the BB bead of the two neighboring residues (-BB BB
SC1 and +BB BB SC1). In theMartini 3 proteinmodel, the use of the side
chain dihedral corrections (side chain fix – scFix)52 becomes standard
for proteinmodels with defined secondary and tertiary structures. The
scFix restrains the torsional flexibility of the side chains by adding
dihedral potentials spanning the first SC and BB beads of consecutive
residues (SC1 BB + BB + SC1, SC1 BB +BB+ +BB, and SC1 BB -BB --BB)
and thus preventing unrealistically high side chain flexibility52. The
dihedral equilibrium angles are set at the value obtained from the
atomistic reference structure used to build the Martini model.

The Martini 3 protein model still requires the use of a tertiary
structure bias, such as an EN or Gō-like model, to maintain the native
folded structure of proteins. The current EN implementation for
Martini 3 applies harmonic bonds between BB beads based on a cutoff
criterion andwith a single force constant for all bonds. Standard values
of 0.85 nm and 700 kJ/(mol nm2) are recommended for the upper
distance cutoff and force constant, respectively. The value of the
recommended force constant was slightly increased in relation to
500 kJ/(mol nm2) commonly used in Martini 2, as in certain scenarios,
this value could be too low, inducing an increased level of stickiness33.
Apart from the distance cutoff, a residue pair must be separated by at
least two residues for an EN bond to be applied between them. For
instance, residue i can be bound to residue i + 3, which corresponds to
a sequence distance of k = 3. While the current EN successfully main-
tains folded structures, it also prohibits studies which may involve
conformational changes or unfolding due to the unbreakable harmo-
nic bonds which are used to build the network.

Martini 3 protein models have been validated against a large
variety of systems, including test cases reported in the main
publication43 and a series of spin-off studies published in separate
works42,53–56. Examples of performed validations are: aggregation levels
of soluble proteins in water and polyleucine helices in lipid bilayers,
dimerization-free energies of transmembrane (TM) peptides, binding
of ions43 and small molecules to proteins42, biomolecular condensates
in different ion concentrations57, and lipid interactions with trans-
membrane and peripheral proteins53–56.

Enhanced GōMartini Model With Improved Implementation
The improved implementation of the Martini Gō-like model relies on
the use of virtual interaction sites, which are constructed using the
position of the BB bead as a reference. The virtual interaction sites are
solely used to define the interactions within the Gō-like model, which
are encoded as Lennard-Jones (LJ) potentials between virtual site pairs.
By default, these particles do not interact with any other beads in the
system. As an extended feature, the use of virtual sites allows changing
specific interactions between proteins (BB particles) and other beads
in the Martini interaction table without compromising the integrity of
the original force field. For example, we show that a secondary
structure-specific water bias can be applied to improve the properties
of IDPs.

The major advantage of using virtual interaction sites is that it
enables the use of non-bonded cutoffs as implemented in GROMACS.
In the original 2017 implementation of the GōMartini model37, the LJ
potentials were defined in GROMACS as pair potentials within the
protein topology. These pair potentials are treated internally like
bonded potentials, and consequently, no cutoff is applied to them.
This is not problematic as long as theminimumof the potential is close
to or below 1 nm, and the distance of the connected beads stays in the
region of this minimum position. However, because the GōMartini
model aims to allow formoreconformationalflexibility— including the

dissociation of some of the native contacts — the lack of a cutoff can
severely restrict the applicability of the model. One of these restric-
tions was the incompatibility of the original implementation with
increasing parallelization due to the specificities of the domain
decomposition implementation in GROMACS. In practice, the paral-
lelization of a simulation with a moderately-sized transmembrane
protein, such as the light-harvesting complex II, embedded in a small
membrane patch with a system size of ~ 19.700 CG beads38 was
restricted to about 10 processors. Our implementation based on vir-
tual interaction sites circumvents this limitation at the minor cost of
describing the BB of each amino acid by two CG beads instead of one.
Considering the overall number of CG beads present in a typical sys-
tem, the proportion of BB beads is usually a few percent. Thus, dou-
bling the number of BB beads only slightly increases the total number
of CG beads in the system. Note that while oligomeric proteins such as
dimers, trimers, etc., can be modeled using the virtual-site imple-
mentation presented here, crowded environments such as the cytosol
of a cell or oligomers composed of hundreds of monomers cannot be
handled.

Besides the improved implementation, the Gō-like model itself
was also modified to improve the structure and dynamics of the pro-
tein models. In the following, we describe the features adapted in the
GōMartini 3 model. While the contact map calculation remains unal-
tered from the original implementation – defined by residue overlap
(OV) and restricted chemical structural units (rCSU) criteria37 – con-
tacts in the contact map are now only included in the GōMartini 3
model, if they are within a certain distance range in the reference
structure. We used a range between 0.3 – 1.1 nm. The lower boundary
was chosen to avoid regions with excessively high bead density. These
can create artifacts due to increased interactions with the surround-
ings, especially with other high bead density regions33. The upper
boundary was set to the non-bonded cutoff used in Martini simula-
tions. Thus, only contacts which have their minimum position within
the non-bonded cutoff are included in the model. Note that the
underlying distance is measured between the BB beads of the Martini
protein model. Thus, contacts are rarely excluded based on the lower
boundary, while a few contacts are usually excluded due to the upper
boundary.

The minimum sequence distance of the original model is k = 337.
In our implementation, we used a minimum graph distance of k = 4,
since at k = 3 the relative positions of BB particles can still be largely
defined by bonded terms. Note that in the graph distance space of
Martinize2 – the tool for automatic Martini protein topology
generation58 where we implemented the enhanced GōMartini 3
model –, are not only sequential BB–BB bonds considered, but also
disulfide bridges. In any case, we recommend k = 3 in cases where the
protein flexibility in loops is too high because no dihedrals are
defined there.

Furthermore, regular non-bonded interactions – i.e., the Martini
bead-bead interactions – between pairs of BB beads are excluded in
the enhanced GōMartini 3 model if the amino acids have a contact
according to the contact map. The reason for this choice is that the
minimum position rmin of the sum of two LJ potentials, one from
GōMartini and another one from the regular non-bonded Martini 3
interactions, is effectively at the larger rmin of the individual LJ
potentials if the depths (ε) of the potentials are comparable (see
Supplementary Fig. 2 and Supplementary Notes 2). As long as the
distance between the BB beads in the reference structure is larger
than the rmin of the regular non-bonded LJ potential, this does not
impact the protein structure. However, if the reference structure has
a shorter rmin the protein structure gets distorted. Excluding regular
non-bonded interactions between BB beads connected in the
GōMartini 3 model avoids this distortion. Overall, adding these
exclusions is an upgrade relative to the previous GōMartini 2
implementation, as it improves protein packing in regions involving
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backbone-backbone interactions, such as beta-sheets (see Supple-
mentary Fig. 10 and Supplementary Discussion 5).

Case Studies: Showing The Advantages Of GōMartini 3
In the first case study, we investigated the high membrane binding
affinity of the PH domain of the phospholipase C PLCδ1. It is a per-
ipheral membrane protein and representative of the phosphoinositol
phosphate (PIP) binding family of PH domains. The PLCδ1 PH domain
discussed here favorably binds PI(4,5)P2

59–61. Figure 2A shows the
PCLδ1 PH domain with a PI(4,5)P2 lipid in its crystal structure binding
pocket embedded in a POPCbilayer. UnbiasedMDsimulations starting
from the membrane-bound structure confirm the high affinity of the
PLCδ1 PH domain to a single PI(4,5)P2 lipid (Supplementary Fig. 3),
which has also been shownpreviously based on atomistic aswell as CG
simulations44,53,59–61. We used three different structural bias models.
Besides the GōMartini model, two different EN models with a cutoff
distance of 0.8 nm were used. One was described by bonds of type 6
and a force constant of 500 kJ/(mol nm2), hereafter EN6, while the
other one had bonds of type 1 and a force constant 700 kJ/(mol nm2)
(hereafter EN1; for details of the models see Supplementary Meth-
ods 1). All three models confirm the strong binding of the PLCδ1 PH
domain to PI(4,5)P2. In the case of GōMartini and the EN1, the protein

unbinds in one replicaeach, but it is able tofind thePI(4,5)P2 lipid again
and re-binds to it (Supplementary Fig. 3).

In order to quantify the binding affinity of the PLCδ1 PH domain,
we calculated the potential of mean force (PMF) for the protein-lipid
unbinding following the protocol of Naughton et al.62. Figure 2C
depicts the corresponding PMFs along the distance between the lipid
head group and the protein center of mass obtained with the three
structural bias models. All three models confirm the strong affinity of
the PLCδ1 PH domain to the PI(4,5)P2 head group with a minimum at a
protein-membrane distance of d ≈ 1.30–1.33 nm. The GōMartini model
exhibits a minimum distance of d = 1.31 nm, while it is slightly shifted
for the EN models (EN1: d = 1.30 nm, EN6: d = 1.33 nm). Overall, the
three models agree on the location of the PMF minimum. The PMFs
exhibit further differences between the three models. First, the error
bars are larger in the case of GōMartini. This is expected because it
contains fewer bonds than the ENmodels and because the LJ potential
allows for more flexibility so that, in extreme cases, contacts can dis-
sociate completely. As this increases the accessible conformational
space, more sampling time is required to achieve the same level of
error. Second, the depth of the minimum differs between the models.
While the PMFs of the GōMartini model and the EN1 model are the
same within the error bars around the global minimum (minima at

Fig. 2 | PI(4,5)P2 binding of the PLCδ1 PH domain studied at the CG
Martini level. A Setup of the simulation box containing a POPC bilayer (gray) with
one PI(4,5)P2 (orange) in the binding pocket of the PLCδ1 PH domain (red) solvated
inwater (light blue transparent surface).BMagnified viewof PLCδ1 PHdomainwith
the green arrows indicating the vectors used to determine the orientation: mem-
brane normal z (left), α-helix115,129 (middle), and α-helix15,24 (right). C Potential of
mean force for the PI(4,5)P2 binding of the PLCδ1 PH domain. The protein is
modeled with the GōMartini model (red) as well as two different elastic network
models of type 6, force constant of 500 kJ/(mol nm2), cutoff 0.8 nm (violet), and of
type 1, force constant 700kJ/(mol nm2), cutoff 0.8 nm (blue). Solid lines

represented the mean values; the shaded area the standard deviation from boot-
strapping with N = 100. D Probability distribution of the protein-membrane dis-
tance evaluated for ten replicas of 2 µs for each protein model. The distance is
measured between the PI(4,5)P2 head group and the center of mass of the protein.
Solid lines represent the mean value; the shaded area the standard error of the
mean calculated for N = 10 replicas. E Orientation of the PLCδ1 PH domain mea-
sured by evaluating the probability distributions of the angles between α-helix15,24/
α-helix115,129 and themembrane normal z. The colors in (D, E) are the same as in (C).
Source data are provided as a Source Data file.
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− 26.3 ± 1.4 kJ/mol and − 26.7 ± 0.9 kJ/mol, respectively), the PMFof the
EN6 has the highest minimum at − 21.1 ± 0.6 kJ/mol. In order to better
understand the effect of bond type (and exclusions) on binding affi-
nity, an additional PMF calculation was performed using bond type 1
with an EN force constant of 500 kJ/(mol nm2) (instead of 700 kJ/(mol
nm2)). Excluding LJ interactions (bond type 1) lowers the PMF mini-
mum by about 15 kJ/(mol nm2) (Supplementary Fig. 4). This result
confirms an observation reported recently that EN models can over-
estimate the aggregation between proteins if the force constant is too
low (here 500 kJ/(mol nm2)) and the non-bonded interactions in the
network are excluded33, due to a high bead density which can result in
an overestimation of the interaction energy. This problem can be
substantially increased when combined with the Martini 2 model
(Supplementary Fig. 5 and Supplementary Discussion 1).

A characteristic of several PH domains is the existence of two
binding modes to PIP lipids: a tightly bound structure corresponding
to the crystal structurebinding pocket and a loosely bound structure59.
Two different PIP interaction sites are known for PH domains: the
canonical C-site and an alternative A-site which is the less common
binding site. For the tightly aswell as the loosely bound structure, both
orientations have been detected59. The PLCδ1 PH domain studied here
preferentially orients its C-site towards the membrane at shorter and
longer PI(4,5)P2 protein distance59. Figure 2C shows that the three
models differ also in the binding strength of the loosely bound struc-
ture. While the GōMartini model exhibits the highest stabilization, the
EN models show a reduced stabilization by more than 50%. To better
understand the changes in orientation between the tightly and loosely
bound structures, we analyzed the angles between two α-helices - α-
helix15,24 and α-helix115,129 - and the membrane normal z for two win-
dows of the umbrella sampling depicted in Fig. 2E. For the tightly
bound structure, the probability distributions of the angles show a
good agreement (upper panels, protein-membrane distance
d = 1.3 nm). This changes at the loosely bound structure (lower panels,
d = 2.1 nm). Here, the probability distributions of the α-helix15,24-z
angle differs between the three models. The GōMartini model stabi-
lizes two orientations at 45° and 145°. Also, EN6 stabilizes two orien-
tations (75° and 145°), while for the commonly used elastic network
model EN1, only one orientation similar to the tightly bound structure
is observed. This suggests that the GōMartini model, aswell as the EN6
model, allow the protein to better adjust to the loosely bound struc-
ture, which stabilizes the interaction with the membrane.

Engineered mutants of T4 lysozyme are known as important
benchmark systems to investigate ligand binding63. In particular, the
L99Amutant is a well-studied case64–66, inwhich themutation creates a
small artificial cavity that can accommodate benzene and indole
derivatives67–69. It is our second test case for small molecule binding.
Recently, we showed that the Martini 3 force field can accurately
predict the L99A T4 lysozyme ligand-binding pocket and at least four
binding pathways42. In addition, a nearly quantitative agreement of the
binding free energy was obtained for nine different systems, including
different ligands and the double mutant L99A/M102Q. Given the high
similarity of apo and holo states of mutants of T4 lysozyme, which
presents a ΔRMSD of 0.2 Å, the system was modeled using the EN
approach42. However, recent atomistic studies using τ-Random
Acceleration MD simulations indicated that maybe such a rigid CG
approach was not fully adequate70. In particular, it seems that ligand
dissociations can involve intermediate metastable protein conforma-
tions, which can possibly impact dissociation pathways and rates70.
Our main hypothesis for this discrepancy was the limited flexibility of
the EN approach, which possibly suppressed the small and local con-
formational changes necessary to open the binding pathways in the
intermediate metastable states.

In order to verify this idea, we repeated the Martini 3 MD simu-
lations involving benzene binding to L99A T4 lysozyme using our
enhanced GōMartini approach. The main results are presented in

Fig. 3. A total sampling of 0.9ms per system was used here, with the
GōMartini model calibrated to show an overall flexibility similar to the
EN model. Distribution of the average protein backbone RMSF indi-
cates that the GōMartini model was even slightly less flexible (see
Fig. 3A) than the ENmodel. However, comparing the RMSF per residue
(Fig. 3B) shows a slightly different pattern of flexibility, with the
GōMartini model showing more rigid helical regions, but a slightly
more flexible region around the L99A T4 lysozymebenzene pocket (C-
terminal domain on the bottom of the structures displayed in Fig. 3B
andD). This increased flexibility in the pocket seems to indeed have an
impact on ligand binding, with clear local minima being observed in
the PMF profile obtained with GōMartini (Fig. 3C). These are not
observed with the EN model. It is worth mentioning that the binding
free energy of the global minimum is almost identical between both
models. The additional local minima observed with the GōMartini
model are located at distances of 0.5 and 0.9 nm from themain pocket
(located at ~ 0.2 nm in the PMF). Free energy estimates based on ligand
densities indicate that the localminimumaround0.5 nm is located in a
pre-pocket near the dissociationpathways betweenhelicesCDandDG,
which also seems to be the most populated metastable intermediate
for benzene observed in atomistic τ-Random Acceleration MD
simulations70. Although the EN model shows a local minimum at
0.65 nm, the free energy for this minimum is less than 5 kJ/mol, which
reduces its significance compared to the deeper minima found in the
GōMartini model. This result strongly suggests that the GōMartini
approach can better capture subtle conformational fluctuations of the
protein that are involved in induced-fit binding mechanisms. Further
simulations using Gō potentials with the Martini 2 model indicate this
version ofMartini is not suitable for such applications (Supplementary
Fig. 6 and Supplementary Discussion 2).

The third test case is copper-zinc superoxide dismutase (SOD1),
an example for allosteric path detection. SOD1 is a critical enzyme
responsible for catalyzing the conversion of superoxide anions into
hydrogen peroxide and molecular oxygen71,72. It has gained significant
attention due to its connection with amyotrophic lateral sclerosis
(ALS), a neurodegenerative disorder73. Over 100 differentmutations in
theSOD1 genehavebeen identifiedas causes for familial variants of the
disease74, but the precise molecular mechanisms underlying their
pathogenicity remain a subject of active debate within the scientific
community. It has been proposed that protein aggregation72, aberrant
pro-oxidant catalysis75, andmetal dyshomeostasis76may be involved in
the pathogenicmechanism.The proposed pathogenic processes listed
have in common that they have been linked to the loss of Zn(II) ions
from the holoprotein77–83. Surprisingly, only a subset of ALS-linked
SOD1 mutations occurs close to the metal site84, raising questions
about the molecular mechanisms involved in Zn(II) loss.

In its active dimeric form, each SOD1 monomer contains a Cu(I)/
(II) ion, critical for catalytic function, and a Zn(II) ion, primarily serving
a structural role. Close to these metal ions and the active site is the
electrostatic loop (EL), which is known to be destabilized in several
ALS-linked mutants71,85. We have recently shown that a combination of
the virtual site GōMartini approach and the Martini 3 model can pro-
vide insights into howsubtle structural perturbations in SOD1, induced
by mutations such as G93A, located 4 nm away from the catalytic site,
might occur. These perturbations could increase the likelihood of the
EL detaching from its native position and exposing the metal sites to
water. Through extensive 480 μs CG MD simulations for both wild-
type and G93A mutant SOD1, an allosteric pathway was identified
explaining how the distant G93A mutation affects the EL45. Here, we
revisit this system to investigate whether similar results can be
obtained using simpler EN models. Figures 4A and 4B reveal that
overall flexibility trends in the GōMartini and EN models are compar-
able for wild-type SOD1. However, the GōMartini model exhibits
reduced flexibility in the β-barrel core compared to the EN model,
while the EL region displays the opposite trend. Strikingly, flexibility
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comparisons between wild-type and G93A mutant (Figs. 4C and 4D)
demonstrate that the GōMartini model presents a more complex
profile of the RMSF difference with increased stabilization around the
mutation site and higher flexibility in multiple loops, including the EL.
To elucidate the allosteric pathway through which these changes
happen, we found that there were differences in residue-residue dis-
tance distributions connecting the mutation site and the EL when
G93A mutant and wild-type are compared when using the GōMartini
model (Fig. 4F). In contrast, our EN model failed to identify any dif-
ferences connecting the mutation site and the EL. These results high-
light the superior capability of Gō models in capturing subtle
structural dynamic changes. Moreover, they suggest that the GōMar-
tini approach has a promising potential to study long-range alterations
in dynamics induced by single point mutations, even for ones intro-
ducing subtle molecular modifications such as the addition of a single
methyl group, as exemplified by the G93A mutation of SOD1.

Our fourth test case is an antigen:nanobody complex which we
use to probe mechanical stability. The mechanical stability of proteins
in enveloped viruses is of great relevance for virus-cell interaction86 as
emphasized for instance in studies on the SARS-CoV-2 spike (S)
protein87. SMFS experiments played a key role in unveiling this rele-
vance and in enhancing our understanding of the molecular evolution
of the SARS-CoV-2 variants88. The key region of the S protein that is
associated with cellular recognition is the so-called receptor binding
domain (RBD), and in particular, this protein domain has presented
key mutations in each of the variants of concern that enhanced the
binding affinity of the entire S protein to the cellular receptor.

Here, we employed the GōMartini 3 approach for probing the
interaction of an RBD-nanobody at a lower pulling speed than typically
accessible by AAMD simulations, and furthermore, we avoided to apply
position restraints on theRBDas they donot correspond to typical AFM-

SMFS protocols. We have selected the GōMartini 3 approach due to its
enhanced efficiency compared to its predecessor, GōMartini 2, which is
implemented on the Martini 2 framework. This improvement makes it
well-suited for studying significant conformational changes in proteins,
particularly in nanomechanical and folding simulations (see Supple-
mentary Fig. 7–10 and Supplementary Discussion 3–5). The GōMartini
steeredMD (SMD) simulations were conducted under similar conditions
(without restraints), and we only fixed the position of one residue in the
RBD, whereas the pulling residue was part of the nanobody. We cali-
brated the strength of the LJ potential (εLJ) in the GōMartini model
following the AA SMD studies by Nguyen and Li89. The GōMartini model
was applied for both proteins as well as to define the protein complex
interface. Note that in the AA reference study, position restraint
potentials along all BB atoms in the RBD were applied, and a very high
pulling speed was employed compared to the SMFS experiments. In this
regard, the GōMartini SMD simulations reproduced quite well the
average value of the rupture force, Fmax, using the same pulling speed.
Restraining the positions of certain groups of atoms is not equivalent to
AFM-SMFS experiments and it is only a convenient way to avoid the
protein unfolding in AA MD simulations. Thus, the use of a larger MD
simulation box is recommended to capture the full dissociation process.
Such simulations have a high cost in AA MD, and thus, large protein
complexes undergoing conformational changes still suffer from limited
sampling in SMD. We removed all artificial position restraints and per-
formed the same study using the GōMartinimodel. The next stepwas to
assess the impact of these artificial position restraints on the nano-
mechanics of protein complexes. Our average rupture force is about
~300 pN below the value reported by Nguyen and Li (Fmax ~ 925 pN) (see
Table 1 and Fig. 5A).

In fact, we showed how restraints have a negative impact on the
mechanical stability of the protein complex, as they will overstabilize

Fig. 3 | Unbiased simulationsof ligandbinding toL99AT4 lysozymewithelastic
network and GōMartini models. A Distribution of the average protein backbone
RMSF for the EN (blue) andGōMartini (red)models.BAverage RMSFper residue of
the protein backbone bead (BB) for simulations performedwith EN (left panel) and
GōMartini (right panel) models. C Radial ligand-receptor PMFs obtained with

benzene using EN (blue) and GōMartini (red) models. D Benzene density around
L99A T4 lysozyme obtained from averaging 0.9ms of CG simulations for EN (left
panel) and GōMartini (right panel) models. The blue, cyan, and red isosurfaces can
be translated to the free energy values shown at the color map. Source data are
provided as a Source Data file.
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the protein complex which then will not give comparable results with
SMFS experiments. In a second study by Golcuk et al.90, position
restraints were applied on a smaller number of non-hydrogen atoms
located at the RBD:H11-H4 interface. This resulted in the rupture force
being similar to the one obtained from our unrestrained GōMartini
simulations at a lower pulling speed (see Fig. 5B), which is still about
four orders ofmagnitude larger than the typical pulling speed in SMFS
experiments (~ 10−9 nm/ps)88. Note that in the AA SMD studies, a
handful of replicas were performed whereas at the CGMartini level of
resolution a large number of replicas can be run at the same compu-
tational effort as the few AA SMD replicas.

The nanomechanical characterization pulls at constant speed one
side of the complex (i.e., nanobody) while the RBD remains anchored

in space and this process perturbs the bound conformation of the H11-
H4 nanobody starting from the pulling direction involving residues
around LYS-128 (see Fig. 5C, D). The analysis of the protein chain at
Fmax revealed the stretching of the receptor binding module (residues
424-495), which is the region that is mostly in contact with the ACE2
receptor, such that part of the RBD is perturbed by the nanobody
before dissociation. We identified several hydrophobic interactions as
the most relevant ones for the buildup of Fmax: VAL-483/SER-57, GLU-
484/LYS-52, PHE-486/LEU-106, TYR-489/SER-103, TYR-489/TYR-104,
and PHE-490/VAL-102 (see Fig. 5E). An additional nanomechanical
study was performed with the dockerin:cohesin protein complex sys-
tem, with the results displayed at the Supplementary Results 2. Our
nanomechanical profiles captured the two most prominent dissocia-
tion pathways observed in by previous all-atom SMD simulation91.

Perspectives: How To Improve GōMartini And The Pro-
tein Model
The first perspective case focuses on improving contact maps and the
strength of interactions. The combination of a Gō-like network with
the Martini CG force field can be effectively employed to capture
conformational changes. However, the choice of parameters to build
the network is not obvious. To address this question, we explored the
possibility of improving the key parameters of the GōMartini model:
the strength of the interactions (εLJ) and the contactmap. A convenient
possibility is to fine-tune these parameters based on AA MD simula-
tions instead of a single experimental structure. Nonetheless, it is
worthnoting that the initialGōMartinimodel can still exhibit a biasdue

Table 1 | Nanomechanical characterization of the RBD:H11-H4
complexes with and without position restraints at different
pulling speed (vpull) in SMD. The number of replicas is given
next to Fmax values

SMD (vpull = 5 x 10-4 nm/ps, kb = 600kJ/mol∙nm2) Fmax (pN)

CHARMM3689 w/ restraints 926 ± 15 (n = 5)

GōMartini w/ restraints 946 ± 75 (n = 50)

GōMartini w/o restraints 664 ± 45 (n = 50)

SMD (vpull = 105 nm/ps, kb = 60kJ/mol∙nm2)

CHARMM3690 w/ restraints 508 ± 136 (n = 8)

GōMartini w/o restraints 413 ± 43 (n = 50)

Fig. 4 | Comparison of the effect of elastic network and Gō models in the
allosteric pathways of SOD1. A, B Flexibility of the protein backbone of the WT
with the elastic network (A) andGōMartini (B) model. Snapshots were taken every
1 μs. The color scale represents the average backbone RMSF per residue.
C, D Change in RMSF between the WT and G93A with the elastic network (C)
and GōMartini (D) model. Blue indicates rigidification in G93A. Red indicates

increased flexibility. E, F Matrix representation of the integrated absolute dif-
ference in the distance distributions between all backbone beads. Results are
presented for the EN (E) and GōMartini (F) model. The bottom left triangle
represents the full data set. In the top right triangle, only values of > 0.3 are
depicted; all other values are colored blue. Source data are provided as a
Source Data file.

Article https://doi.org/10.1038/s41467-025-58719-0

Nature Communications |         (2025) 16:4051 8

www.nature.com/naturecommunications


to its starting configuration, thereby directing the simulations toward
the native conformation. A common issue encountered in this context
pertains to thedefinitionof unnecessaryGōbondswithin loop regions,
mainly attributed to the tightly packed nature of these regions in the
crystallographic and cryo-EM structures. Consequently, the native
contacts may underestimate the flexibility of loop regions. Employing
dynamical contact analysis of the AAMD simulations could distinguish
between stable and transient contacts within the protein structure on
the timescale of the AA simulation.

As a first exploration of how GōMartini parameters could be refined
considering a dynamic contact analysis, several benchmark studies,
including soluble (as per previous work by Poma et al.37,39,40) and trans-
membrane proteins ranging from 76 to 4160 residues, were explored
here. We initially focused on optimizing the effective depth of the LJ
potential (εLJ) while preserving all Gō potentials, aiming to bring the
standardGōMartinimodel in closer agreementwith theprotein dynamics
observed in AA simulations, particularly in terms of RMSF. Notably, the
optimal εLJ value exhibited significant variation across different systems,
highlighting the importance of tailoring εLJ values to individual protein
models rather than employing a uniform value across all systems.

As shown in Fig. 6, we computed the RMSF for the Cα atoms and
BB beads in the AA and CGmodels, respectively, for three benchmark

proteins: titin I-band (1TIT), glycoside hydrolase (3W0K), and the
transmembrane domain of Ist2. Upon comparison of the original
GōMartini model (blue lines) with the CHARMM36m AA reference
(black), it becomes evident that although using specific εLJ values
calibrated for each protein significantly improved the original
GōMartini models, they still fail to capture the dynamics of several
loop regions observed in AA simulations. Indeed, RMSF analysis indi-
cates that these regions remain relatively rigid in standard GōMartini
models compared to AA simulations. Note that the choice of atomistic
force fields is not restricted to CHARMM36m, but it can be any pre-
ferred force field of the user or experimental data providing insights
into protein flexibility.

To overcome this challenge and improve the accuracy of the
GōMartinimodels, we further optimized themby checking the contact
frequencies aroundeach residue throughout anAAMDsimulation (see
Supplementary Methods 5 for more details). The results of this opti-
mization are summarized in Supplementary Table 2. Figure 6 shows a
good agreement between the modified GōMartini model (red lines)
and the CHARMM36m AA reference (black), which demonstrates that
the modified GōMartini model accurately captures characteristic
fluctuations across most residues and is flexible enough to mimic the
flexibility observed in AA MD simulations. It is important to highlight

Fig. 5 | Nanomechanics of the RBD:H11-H4 complex studied by GōMartini
simulations at different pulling speeds. A Force-displacement profiles for
RBD:H11-H4 complex at vpull = 5 × 10-4nm/ps in SMD simulations using the GōMar-
tini model, with and without position restraints of the BB beads of the RBD. The
pulling SMD spring constant was set to 600 kJ/(mol·nm2). Data show themean, and
thewhiskers are the standarddeviationof themean value obtained fromN = 50 for
each case, respectively. B Same as in (A), but the dissociation of the complex is
carried out at vpull = 10-5nm/ps, and the pulling SMD spring constant was set to
60 kJ/(mol·nm2). Data show the mean and the whiskers are the standard deviation
of the mean value obtained from N = 50. The inset in A and B shows the reference

AA SMD data, note that the x-axis shows the distance (D) between the center of
mass of groups pulled in AA SMD protocol, whereas in the GōMartini study, the
displacement is associated with increase of z-value along the pulling direction.
C Structure of the RBD:H11-H4 complex placed in a box of CG Martini water
represented as blue beads in the initial bound state with F =0pN. The fixed LYS-528
residue in the RBD and the LYS-128 residue in H11-H4 used for pulling are high-
lighted by red beads.D Structure of the complex at Fmax ~ 434 pN. EMagnified view
of the last protein segments in contact before the full dissociation of the protein
complex at d ~ 6 nm. The structures in (C–E) are taken from a replica simulatedwith
vpull = 10-5nm/ps. Source data are provided as a Source Data file.
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that, in the case of ubiquitin, cohesin, and aquaporin (see Supple-
mentary Fig. 11), the method did not substantially improve the flex-
ibility of the protein. Overall, it appears that investigations of systems
featuring substantial conformational transitions require fine-tuning of
Gō networks, shown here, and the possibility of flexible secondary
structure, not included in current models.

We explored the option to use the Gō virtual sites to add water
bias in IDPs and biomolecular condensates as a second perspective
case. While the Martini 3 protein model has already greatly improved
upon the previous iteration, two years after release, room for
improvement has been identified regarding some specific aspects of
the model. Studies have reported that Martini 3 underestimates the
radius of gyration (Rg) of IDPs and multidomain proteins in solution
when compared to experimental SAXS data47,48. Simultaneously, it
has also been shown recently that the behavior of transmembrane
domains might be unstable in Martini 3, specifically in the case of
transmembrane alpha-helical peptide insertion49,92,93. For both cases,
scaling of protein-water interactions, which was a common mitiga-
tion strategy employed in Martini 2, was suggested to resolve the
issues. Thomasen et al.47 found that increasing protein-water inter-
actions by 10% results in improved agreement with SAXS data for
IDPs and multidomain proteins, while Cabezudo et al.92 found that
reducing protein-water interactions by 10% resulted in the correct
insertion of transmembrane peptides. However, scaling interactions
has the major downside of impacting all pair interactions that were
altered, and not just the ones responsible for the unintended model
behavior — i.e., scaling the P2-W pair interaction impacts not only
protein BB-water interactions but also the interactions involving any
other molecule containing P2 beads. This causes major transfer-
ability issues for the model and, as such, should be avoided if
possible.

Although the virtual interaction sites built on top of BB beads are
typically used only to define interactions to other sites for tertiary
structure preservation, they additionally offer the possibility to effec-
tively modify interactions between BB beads and other Martini beads
in a site-specific manner. For example, by defining an interaction
between a BB virtual site and water beads, it is possible to effectively
increase the strength of the interaction between protein backbones
andwater. The strength of the resulting non-bonded interactionwill be
the sum of the P2-W and virtual site-W interactions. As the interaction
is defined only between the virtual site andwater beads, the increase in
the strength of this interaction is restricted to P2 beads in the protein
backbone only, and no other molecules are affected. Further, this
approach is sufficiently versatile that it can be applied in only specific
residues of proteins, such as transmembrane or disordered domains.

To showcase this, we tested the Rg of select IDPs using the
enhanced GōMartini implementation. We used the set of IDPs from
Thomasen et al.47 to validate our approach against an existing one. The
IDPs were coarse-grained, and virtual Gō sites included on the BB
particles. An additional LJ interaction between the virtual Gō sites and
water beads was added, with ε =0.5 kJ/mol, which, when summed
to the already existing BB-water interaction roughly corresponds to a
10% increase of the interaction. Although this value seems the same as
proposed by Thomasen et al.47,48, it is only applied to backbone-water
interactions, while previous approaches applied the changes to the
whole protein.

To further improve the model, we also developed a refined set of
bonded parameters for backbones and side chains using AA simula-
tions, as these are not implemented for coiled structures inMartinize2
(Supplementary Fig. 12). The addition of either component individu-
ally goes someway to improving the radius of gyration of the target set
of IDPs, reducing the mean absolute error with respect to the

Fig. 6 | Improving GōMartini to match AA models. RMSF comparison between
original GōMartini (with εLJ optimized), modified GōMartini (with the removal of
Gō interactions in loops), and AA simulations for three proteins: titin I-band
(1TIT), glycoside hydrolase (3W0K), and the transmembrane domain of Ist2. Solid
lines represented the RMSF mean values; the shaded area the standard deviation
(N = 2 for the AA simulations and N = 3 for the CG ones). The mean absolute error

(MAE) for loops and structured regions, calculated as the average of the
absolute differences between the RMSF values of GōMartini models and AA
simulation, is highlighted in the insets. The bottom-right panel presents the
flexibility of the protein backbone beads during simulations using the modified
GōMartini model for glycoside hydrolase (3W0K). Source data are provided as a
Source Data file.
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experimental reference across the set from 1.35 nm to 1.25 nm in the
case of the additional bonded parameters, and to 0.36 nm with the
additionof theGō site dedicated towater interactions (Supplementary
Figs. 13 and 14). However, as we show in Fig. 7A, B, the combination of
these extra parameters together further improved the Rg of the
benchmark set with respect to the experimentally measured values,
with a final mean absolute error of 0.28 nm.

To additionally validate the use of virtual sites in improving the
behavior of Martini IDPs, we carried out simulations of a known phase
separating IDP. Recent work from Dzuricky et al. designed an artificial
IDP thatwoulddemonstrate liquid-liquidphase separation basedon an
octapeptide repeating unit94. In Fig. 7C, we show a phase-separated
systemof this protein after 5 µs, where the optimized IDPmodel above
has been used for the WT20 construct (ie., 20 octapeptide repeats
using the primary so-called ‘wild-type’ sequence). In contrast, Fig. 7D
shows that without the optimization of the IDP described above, the
phase separationof themodel is visiblydifferent, beingmore compact.
This system in fact, does not form a liquid-like condensate but a solid-
like aggregate, as evidenced by the analysis of the incoherent scat-
tering curves in Supplementary Fig. 15.

As a further example of how increasing protein BB-water inter-
actions can aid recapturing experimental behavior, we simulated a
system of two FL dipeptides linked by a disulfide moiety. This system
was shown to undergo liquid-liquid phase separation in the recent
work of Abbas et al.95. Figure 7E shows that native Martini 3 could
capture the condensate formation with a coexisting dense and a dilute
phase. However, the resulting condensate was too dry (~ 10% water
weight content) compared with the experimental data (~62%). To
alleviate this problem, again, we introduced virtual Gō sites on the BB
beads, carrying an additional interaction with the water beads. As
shown in Fig. 7E, increasing the BB-water interactions increases the
water content of the condensate without affecting the phase

separation. With an 8% increase in the strength of this interaction
(corresponding to ε =0.3464 kJ/mol), thewaterweight content already
is above 50%, much closer to the experimental findings. Overall, these
results demonstrate that beyond universal rescaling, the strength of
the BB-water interaction can be fine-tuned to better reproduce the
properties of biomolecular condensates.

In the third perspective case, we employ the Gō virtual sites to
add water bias in TM helices and beta-sheet peptides. As mentioned
in the previous section, there have been reports of issues sur-
rounding the transmembrane insertion of some helical peptides
using Martini 349,92,93,96. The solution previously proposed to over-
come these issues was again to apply a rescaling of peptide-water
interactions, similar to what has been done for IDPs. Here, we have
also tested our GōMartini implementation, changing only the BB-
water interactions. Four WALP α-helices – 16, 19, 23, and 27 residues
in length, termed WALP16, WALP19, WALP23, and WALP27 – were
coarse-grained using our GōMartini implementation and simulated
embedded in a dimirystoylphosphatidylcholine (DMPC) membrane,
as done by Spinti et al.49. To facilitate the observation of WALP
ejection from the membrane, a temperature of 310K was used,
instead of the 300K used by Spinti et al.49. A second set of these
systems was run where an additional LJ interaction between the vir-
tual Gō sites in helical residues and water beads were included, with
ε = −1.0 kJ/mol, so effectively reducing the interactions with water to
improve peptide insertion. The reduced LJ interaction substantially
stabilized the transmembrane conformation of the four WALPs and
reduced the TM peptide ejection in comparison to the control
simulations (Fig. 8A, B and Supplementary Fig. 16).

Given the need to rescale BB-water interactions with both helical
and coil protein segments, we aimed to assess whether beta-strand
segments could also benefit from the rescaling of their BB-W interac-
tions. To do so, we tested how the aggregation of RAD16-I is currently

Fig. 7 | Improving IDP global dimensions and condensation using Martini 3
with GōMartinimodel-based interaction rescaling. A Radii of gyration of the IDP
benchmark set of Thomasen et al. Results are compared between the experimental
value (blue) to both the native Martini model (purple) and optimized Martini
IDP+Gō model with additional bonded parameters (green). For the experimental
data, the error bars indicate the experimental uncertainty taken from ref. 47.
B Illustrations of the increase in ensemble dimensions of ACTR comparing (left)

native Martini 3 and (right) the final model for IDPs with additional bonded and
non-bonded potentials. C,D Illustrative snapshots of a condensate (with improved
IDPparameters) and anaggregate (with defaultMartini 3 parameters) of an artificial
IDP (WT20) known to phase separate. E Snapshots of FLssLF peptide systems with
varying increases in the strength of the BB-water interactions. Left; native Martini
(0% increase); middle: 6% increase; right: 8% increase of protein BB-water interac-
tions. Source data are provided as a Source Data file.
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performing with Martini 3. RAD16-I is a synthetic amphipathic peptide
that adopts a beta-strand structure in solution. It has been shown that
RAD16-I associates to form a very stable beta-sheet in solution, even
culminating in the formation of nanofibers with increasing peptide
concentration97,98. We assembled a simple system containing two
copies of RAD16-I and followed their aggregation into a 2-strand beta
sheet over the course of the simulation (Fig. 8D, E). As expected, with a
GōMartini 3 model applied between the two chains, we can accurately
reproduce the 2-strand beta sheet assembly. However, in the absence
of any bias, we do not observe stable sheet assembly. Tomitigate this,
we applied an additional LJ interaction between the virtual Gō sites in
strand residues andwater beadswith ε = −0.5 kJ/mol. This reduction of
BB-W interactionswas sufficient to obtain sheet assembly similar to the
one observed with the interchain Gō model. Note that while the fluc-
tuations of the interface are lower for the interchain Gō model com-
pared to thewater bias correction, it requires a priori knowledge of the
interface. Thus, the water bias correction is more generally applicable,
still capturing the majority of the interface contacts.

Discussion
Despite attempts to explore multiple-state conformations states99 or
to enhance the accuracy of Martini protein models through approa-
ches such as polarizable29,100, titratable101,102, and even possibly
foldable100 versions, the combination of standard Martini with a bias,
such as an EN or a Gō model, remains the most attractive and useful
option due to its computational performance and compatibility with
large libraries of Martini models.

The virtual-site implementation of the enhanced Gō-like model
with Martini 3 was initially introduced as a proof of concept in the
works involving SOD145 and light-harvesting complex II38, being offi-
cially adopted as the Gō approach tested during Martini 3 develop-
ment. Since the release ofMartini 3, themodel hasbeen recommended
and included in our tutorials103 and thus been extensively tested by the
modeling community. However, the key features of the approach and
the underlying Martini 3 protein model had not been presented until
now. Themain goal of this work was to finally detail all the advantages
of the current implementation in relation to ENs and the previous
GōMartini 2 implementation. Concerning the advantages in relation to
ENs, we clearly show here how the improved conformational flexibility
— stemming from the use of asymmetric potentials with finite dis-
sociation energies — can be used to study long-range allosteric chan-
ges in proteins, protein-small molecule binding, and protein-
membrane binding. These kinds of applications are still scarce within
the Martini community, and we foresee more studies in the future
showing the benefits of the more accurate protein flexibility intro-
duced by GōMartini 3. However, it is important to highlight that this
approach is currently not suitable for systems consisting of hundreds
of copies of the same protein, given that the same Gō bonds which
stabilize certain folded states will also wrongly impact protein-protein
interactions. To circumvent the impact on protein-protein interac-
tions, a unique proteinmodel for eachmonomer is required. For small
oligomers suchas dimers, trimers, etc., this strategy is easily applicable
whereas it becomes impracticable for systems containing hundreds of
monomers. While unique protein models for hundreds of copies will

Fig. 8 | Improving transmembrane peptide insertion and beta-sheet aggrega-
tion. Tilt angle distributions from simulations of WALP peptides inserted in DMPC
membranes using the GōMartini model with either (A) no additional LJ interaction,
or (B) an additional LJ interaction between the virtual Gō sites and water beads of
ε = − 1.0 kJ/mol; tilt angle states close to 0° correspond to TM configurations,
whereas those close to 90° correspond to peripherally membrane-adsorbed ones.
C Representative WALP16 configurations, both fully inserted in its preferred
transmembrane configuration and in its peripherally membrane-adsorbed state.
WALP16 backbone shown in blue, with side chains in white. Membrane phosphate

beads are represented in orange. D Normalized average contacts between two
RAD16-I peptide beta strands. Solid lines show the running averages of 500 frames,
while the shaded area shows the running standard deviation. Simulations were run
with a GōMartini model applied between the two chains (red), with an additional LJ
interaction between the virtual Gō sites and water beads with ε = −0.5 kJ/mol
(green), and without any structural or interaction bias (blue). E Representative
RAD16-I strand configurations, both aggregated and dissociated. Each backbone
chain is colored either brown or green, with the side chains colored in a lighter
shade of the same color. Source data are provided as a Source Data file.
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remedy the impact on protein-protein interactions, the number of
protein-protein interface combinations may possibly explode beyond
what can be handled by this approach. For instance, a simulation box
with 100 copies of the same protein, with each protein with two
protein-protein interfaces, eachwith 10 contacts,would need to have a
total of 10*(100!/(100-2)!) = 99,000 interface contacts to be defined.
Thus, simulations of crowded membranes8 and even future cell-
simulations104 may still rely on simple EN approaches. Note that a work
building on the pre-release of the GōMartini 3 model presented here
tackled this challenge and provided a solution for systems with many
copies of the same protein, such as amyloid fibrils105.

In the Supplementary Discussion, we provide a comparison
between GōMartini 2 and GōMartini 3 for protein-lipid binding (Sup-
plementary Discussion 1), protein-ligand binding (Supplementary
Discussion 2), a nanomechanics test case (Supplementary Discus-
sion 4), and β-hairpin folding (Supplementary Discussion 5). The
results show clear improvements of the GōMartini 3 model, such as no
unspecific ligand binding and no overstabilization of protein-protein
and protein-lipid contacts. These improvements are nevertheless
intertwined with the improvements of the Martini 3 force field. The
lowerRMSDof the foldedβ-hairpin of0.17 nm (GōMartini 3) compared
to 0.24 nm obtained with GōMartini 2 is particularly due to the
improvements in the model, namely the exclusion of the regular non-
bonded interactions for the Gō-like bonds. Although nanomechanics
studies have been performed beforewith GōMartini 2, our results here
reinforce its accuracy and show some advantages in reproducing
conformational transitions for simulations mimicking AFM profiles.
TheGōMartini 2 implementation by Pomaet al. captured the unfolding
profile of the I27 domain of titin, type I cohesin domain, and ubiquitin
with experimental forces equal to 204 pN, 480 pN, 230 pN,
respectively37. Although GōMartini 2 correctly reproduced the expec-
ted trends, the forces were twice as large due to the speed of the SMD
simulation (e.g., ~ 10-3nm/ps). In this regard, the current virtual site
implementation is more convenient as it allows for the full integration
of GROMACS106 and OpenMM107 parallelization, and thus, one can use
lower pulling speeds with the SMD protocol of ~ 10-5nm/ps, which is
significantly closer to the pulling speed of SMFS experiments of ~ 10-

9nm/ps, without compromising computational cost.
In addition to the gain in computational performance and numer-

ical stability in relation to the previous GōMartini 2, the use of virtual
sites provides the flexibility to introduce corrections to the backbone-
water interactions. In contrast to recently published approaches, we
suggest using only water interaction biases in relation to the backbone
beads. One of the key reasons is the overall quality of the water/oil
partitioning estimates of side chains (Supplementary Fig. 1 and Sup-
plementary Table 1), which does not show any particular trend of being
too hydrophilic or too hydrophobic, with average errors below ~ 3 kJ/
mol. On the other hand, the hydrophobicity of the protein backbone has
always been under debate, as its capability of forming internal hydrogen
bonds in secondary structure motifs may affect its partitioning to dif-
ferent environments. This idea was one of the main assumptions of the
original Martini 2 implementation28 and was recently also incorporated
in the SPICA CG model108,109. Although some of our results presented
heremaypoint out that theMartini 3model could benefit from the same
approach, a broader view of peptides and proteins in different contexts
indicates that water biases dependent on the secondary structure are
not general. As a temporary solution, based on our preliminary findings,
we suggest increasing the interactions between backbone-water for
intrinsically disordered motifs by 1.0 kJ/mol while decreasing the inter-
actions by 1.0 kJ/mol for simple helical transmembrane peptides. Intra-
chain β-sheets can be stabilized with standard GōMartini 3 interactions,
while interchain interactions could benefit from reduced water inter-
actions of 0.5 kJ/mol and/or the use of standard Gō-like bonds. These
solutions are not generic and need to be usedwith caution. For instance,
soluble globular proteins with high helical content, such as lysozyme34,

may aggregate too much if we consider the correction indicated for
transmembrane proteins in this work. In other cases, such as protein or
small disordered peptide dimers, the solution may be beneficial,
although a direct application of an interchain Gō-like network can be
more accurate. Indeed, in the case of protein complexes, several
studies39,40 reported the need to model the complexes with additional
interchain Gō-like bonds at the interface either using the GōMartini
approach or alternative Gō models (i.e., OLIVES110). The combined
representation of structure-based models at the interface of protein
complexes led to the capture of large conformational changes under
nanomechanical probing39,40, as it is studied by SMFS. Many aspects of
the current protein model are being revisited now, including further
improvements in side chain self-interaction, improved backbone tor-
sions and side chain rotamers, and more detailed backbone models.
These improvements take advantage of the specific features of Martini
3, including different bead sizes and labels.

One additional aspect touched by our work is the possibility of
refining GōMartini parameters, i.e., the depth of the potentials and
contact map. We show that the use of specific potential depths εLJ and
improvements in the contact map based on multiple reference struc-
tures obtained for instance, from atomistic simulations, can greatly
improve the overall flexibility of the models. Automatic refinement of
these parameters may be possible via approaches based on particle
swarm optimization strategies such as CGCompiler111 and SwarmCG112.
Similar ideas can be developed considering AI-based approaches
instead of atomisticMD references, such as the recent implementation
of ENs using AlphaFold confidence scores32. It is promising to further
expand this kind of approach in the future, because it may be the key
for the simultaneous representationofmultiple conformational states.
One recent implementation in this direction involves replacing the
single-basin Gō model with a multiple-basin Gō model113 or at least a
double-well potential. This modification may allow large conforma-
tional changes, enabling a more accurate representation of the tran-
sitions between stable folded states of proteins.

A last important remark regarding the virtual site approach is
related to our view for future protein model development in the
Martini force field: development of Martini protein models and bias
approaches, such as GōMartini and EN models, should be decoupled.
In previous iterations, these two aspects were interconnected in a way
that biases in secondary and tertiary structure were fully integrated in
the model, even affecting bead types and mapping28,31. Such integra-
tion blocked further development, as any attempts to change the
model would need to involve developing both the core model and the
bias. For instance, improving protein flexibility to allow secondary
structure changes inMartini 2 woulddepend ondramatically changing
fundamental aspects of themodel as bead types depend on secondary
structure, and ENs were of paramount importance for beta-sheet sta-
bility. Therefore, we advocate for a complete decoupling of the two
developmental pathways. While the protein models should follow the
typical building block rules and validation of Martini models, the
structural biases should always come as an additional experimental/
theoretical potential applied on top of the model, used to bias the
simulated ensembles. This approach guarantees that the Martini pro-
tein model can independently evolve, with further improvements
hopefully resulting in the use of less/weaker biases. Although the
ultimate aspiration remains the creation of a bias-free Martini protein
model, we recognize the enduring importance of approaches such as
GōMartini as fundamental tools for accurately modeling proteins
within the Martini universe.

Methods
General Workflow To Set Up The GōMartini Model
In order to build a GōMartini 3 model for a protein, a two-step proce-
dure has to be followed. First, a contactmap specifying theOV and rCSU
contacts can be obtained from the web server http://pomalab.ippt.pan.
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pl/GoContactMap/39,40 (which is replacing the previous one114: http://info.
ifpan.edu.pl/~rcsu/rcsu/) or via the ContactMapGenerator program
available at https://github.com/Martini-Force-Field-Initiative/GoMartini/
tree/main/ContactMapGenerator, using the default settings114,115. Subse-
quently, Martinize2 can be used to obtain the CG coordinates and
topology files from the atomistic reference structure and the contact
map116. Box 1 summarizes this workflow to set up the GōMartini 3
models. In order to activate the GōMartini model for the structure bias
in Martinize2, the ‘-go’ flag has to be specified. In addition, the contact
map file can be provided after the ‘-go’ flag. Note that the format of the

contact map has to adhere to the specifications outlined in the Supple-
mentary Notes 2. The Gō model can further be fine-tuned by adjusting
the biasing strength (‘-go-eps’), the upper and lower cut-off distance
(‘-go-up’ and ‘-go-low’), as well as the residue distance (‘-go-res-dist’).
If these flags are omitted, Martinize2 uses the default values described
in the Results section. The default value for the potential depth is still
the one recommended in the original GōMartini 2 implementation:
εLJ = 9.414 kJ/mol. In contrast to the previous implementation,Martinize2
utilizes the graph residue distance instead of the sequence distance,
which are the same for almost all cases except those where amino acids

BOX 1

General workflow to set up the GōMartini model
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are connected through the side chains (e.g., in the case of disulfide
bridges). Aside from the definition of the intra-molecule parameters,
Martinize2 writes the atom types and non-bonded interactions required
to run a simulationwith theGōMartinimodel. Thefile nameof thesefiles
is preceded with the molecule name (by default ‘molecule_0’), which is
also used in the naming of the virtual sites. Utilizing the ‘-go-moltype’
flag the name can be adjusted such that when martinizing multiple
different proteins, the Gō definitions are compatible. More details
including an example and tips and tricks are provided on theMartinize2
github page (https://github.com/marrink-lab/vermouth-martinize). The
enhanced GōMartini 3 model using virtual sites is also implemented in
MAD, theMartini Database117, which also includes the option tomanually
remove or add Gō interactions, allowing the user to include, for
instance, additional experimental information which may correct issues
originating from the reference structure.

Adding Virtual Site Water Bias
As previously mentioned, the virtual site approach underlying the
enhanced GōMartini 3 model can also be used to specifically fine-tune
interactions between Martini beads. For instance, it can be used to
modify the strength of the protein-water interaction. Using the ‘-water-
bias’ flag inMartinize2 allows to automatically generate the BB virtual
sites and non-bonded interaction parameters required for the water
bias. Whereas the water bias can be combined with the GōMartini
model, it does not require it. For example, adding water bias with an
EN is also possible. The water bias can be added depending on the
secondary structure element, with its strength defined using the
‘-water-bias-eps’ flag. The water bias defines the depth of the LJ
potential between the virtual site and the water bead. The values can
be positive (to effectively increase the water-BB virtual site interac-
tions) or negative (decreasing water-BB virtual site interaction). The
default value for the strength of the water bias inMartinize2 is zero, so
the user needs to define it. Some suggestions are presented in the
perspective section of the Results. Finally,Martinize2 also supports the
definition of intrinsically disordered regions (IDRs) using the ‘-id-
regions’ flag. A special water bias can be defined for these regions with
the previous flag using ‘idr’ instead of a secondary structure assign-
ment. Defining IDRs is useful when a protein contains both a folded
and a disordered domain because Martinize2 might still detect some
(transient) secondary structure in the disordered domain.

Martini 3 IDPs From Sequence
Lastly, Martini 3 CG protein models for IDPs can also be generated
directly from a sequence fasta file using Polyply118. As a fully disordered
protein has no reference structure, a contact map is not necessary for
this method of generation. Instead, Polyply gen_params automatically
generates themolecule itpfile fromthe sequencealready including the
virtual sites for the addition of an appropriate water bias and the
automatic addition of additional backbone dihedral potentials. As
Polyply should not be generally used to generate topologies of folded
proteins, these parameters are added automatically (i.e., without any
additional flag specifications) when Polyply is used with the Martini
3.0.0 forcefield library. The systemcoordinates (e.g., of a solvated IDP)
can subsequently be generated using Polyply gen_coords (Box 1). The
Polyply-generated files can be used directly, only externally requiring a
further definition of the extra interactions between the BB virtual sites
and water as in the case of Martinize2 and described in more detail in
theprevious section. An example of how to usePolyply to generate and
use these parameters is available on the PolyplyGitHub wiki. The
Polyply route is especially convenient for high-throughput simulations
of many different disordered proteins.

General Simulation Settings
All simulations were performed with the program package
GROMACS106 (versions 2018.x to version 2023.x). Settings for the CG

simulations follow the updated set ofMartini run parameters119 using a
time step of 20 fs. Specifically, the Verlet neighbor search algorithm
wasused toupdate theneighbor list, with a cutoff of 1.1 nm for thenon-
bonded interactions. Coulombic interactions were treated using
reaction-field electrostatics with a dielectric constant of 15. The
Parrinello–Rahman barostat120 (coupling parameter of 12.0 ps) and the
velocity-rescaling thermostat121 (coupling parameter of 1.0ps) were
used to maintain pressure and temperature, respectively. More tech-
nical details about the system setups, simulation settings, and analysis
for each specific test case are given in the Supplementary Methods.

Martini Models And System Setup
All simulations were performed using the open-beta122 or more recent
development versions of Martini 3 force field43, with the proteinmodels
generated by Martinize29 (for open-beta test cases), Martinize258 (for
folded proteins simulated with the final Martini 3 release) or Polyply118

(for IDPs simulated with the final Martini 3 release). Except for IDP and
biomolecular condensate systems, bonded parameters are still depen-
dent on the secondary structure, which is calculated by the DSSP
approach50 using an atomistic reference structure. In addition, the side-
chain dihedral corrections scFix52 are included for all secondary struc-
ture elements. The contact maps for the GōMartini models were gen-
erated using the contact map approach proposed by Cieplak and co-
workers114 (http://info.ifpan.edu.pl/~rcsu/rcsu/) or the recent imple-
mentation from the Poma group39,40 (http://pomalab.ippt.pan.pl/
GoContactMap/). Besides the enhanced implementation of the GōMar-
tini model, we also employed two different EN models to maintain the
structural protein scaffold in the case of the PH domain, T4 lysozyme,
and SOD1. Slightly modified versions of these two EN settings are typi-
cally used in combinationwith theCG forcefieldMartini28,29,31,33. Here,we
want to focus solely on the impact of the structural biasmodels. Thus, all
otherbondedparameters of theproteinmodels are unchangedbetween
the Gō-like and the EN models. The EN models are set up based on a
distance cutoff criterion between the BB beads in the CG reference
structure of the protein. Harmonic potentials are used to constrain the
protein flexibility and to maintain the protein structure. These can be
applied in two different ways: (i) either the non-bonded interactions
between the BB beads connected by a harmonic potential are excluded,
or (ii) theharmonicpotentials acton topof thenon-bonded interactions.
In the first case, the bond type corresponds to a regular chemical bond,
i.e., bond type 1 in GROMACS. In the second case, bond type 6 is used in
GROMACS. Here, we used the GROMACS bond types to distinguish
between the different settings, namely EN type 1 and EN type 6,
respectively. See more details about the protein models used in each
specific test case in the Supplementary Methods.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data generated in this study, including system setups, force field
parameters, andGROMACS input files have been deposited on Zenodo
and are publicly available: https://doi.org/10.5281/zenodo.11198318.
The PDB accession codes in this work are given as follows: 5XRN, 4IU3,
1UBQ, 1TIT, 1AOH, 3W0K, 4CSK, IST2, 1MAI, 181L, 2C9V, 6ZH9, 1GB1
and 6QMB. Source data are provided as a Source Data file. Source data
are provided in this paper.

Code availability
The codeused to generate the proteinmodels is available at github.com/
marrink-lab/vermouth-martinize, pomalab.ippt.pan.pl/GoContactMap/,
github.com/Martini-Force-Field-Initiative/GoMartini/tree/main/
ContactMapGenerator, and https://github.com/marrink-lab/polyply_1.0/
wiki/Tutorial:-Martini-3-IDPs---proteins.
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