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Featured Application: A novel geometry reconstruction based on micro-CT imaging
allows directly incorporating the microstructure of porous materials in discrete element
simulations.

Abstract: Sintered porous materials present challenges for any modeling approach applied
to simulate their damage evolution because of their complex microstructure, which is crucial
for the initialization and propagation of microcracks. This paper presents discrete element
simulations of the damage evolution of a NiAl-based material reconstructed by micro-CT
imaging. A novel geometry reconstruction procedure based on micro-CT images and the
adapted advancing front algorithm fills the solid phase using well-connected irregular and
highly dense sphere packing, which directly represents the microstructure of the porous
material. Uniaxial compression experiments were performed to identify the behavior of
the NiAl sample and validate the discrete element model. Discrete element simulations
based on micro-CT imaging revealed a realistic representation of the damage evolution
and stress–strain dependency. The stress and strain of the numerically obtained curve
peak differed from the experimentally measured values by 0.1% and 4.2%, respectively.
The analysis of damage evolution was performed according to the time variation rate of
the broken bond count. Investigation of the stress–strain dependencies obtained by using
different values of the compression strain rate showed that the performed simulations
approached the quasi-static state and achieved the acceptable accuracy within the limits
of the available computational resources. The proposed stress scaling technique allowed
a seven times increase of the size of the time step, which reduced the computing time by
seven times.

Keywords: porous materials; NiAl; discrete element method; bonded particle model;
micro-CT imaging; reconstruction of material microstructure
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1. Introduction
The numerical discrete element method (DEM) explicitly represents materials as

assemblies of discrete particles or elements whose interactions dictate the overall behavior
of the system [1]. In the DEM, each particle is assigned mass, geometry (which usually is
as simple as a sphere [2] or a more complex shape [3]), and material properties, which are
related to the contact interaction between particles governed by several contact laws. At
the simplest level, the interaction is often modeled using an elastic spring, accompanied
by tangential (shear) interaction with friction law [4]. To model solid materials, particles
adhere to one another due to cohesive forces, assigning a cohesive bond between particles
at the contact points. This approach is particularly suited for materials whose mechanical
response is governed by the movement, contact, and breakage of individual grains or
aggregates, such as granular soils [5], rocks [6], concrete [7], composites [8], and many
other materials. Cohesive interactions enable crack initiation and propagation simulation
by defining bonds that resist tensile and shear forces until failure [9]. When the force across
a bond exceeds a critical value, the bond is broken, thereby simulating the initiation of
microdamage. The accumulation of such breakages can eventually lead to macroscopic
fracture. Recently, such an approach of modeling damage evolution by using DEM has
been utilized widely [10].

Concrete fracture phenomena and their statistically varying character were investi-
gated in [11], examining the complex processes of failure mechanisms, crack propagation,
and damage evolution using the 2D discrete element model. In [12], a three-dimensional
DEM particle-based cohesive crack model was developed to model the mixed-mode frac-
ture process of brittle materials, aiming to simulate the material transition from a solid
phase to a particulate phase. Damage and fatigue crack growth simulation of quasi-brittle
materials were performed using a continuum damage model implemented in a discrete
element code [13]. In [14], shale disk samples were studied under Brazilian test conditions
using a 3D digital image correlation system (DIC) together with an inherently anisotropic
model established within a DEM framework. Damage evolution and crack propagation
of more advanced material, a fiber composite, was simulated in [8] concerning various
fracture modes, such as fiber–matrix debonding, ply-to-ply delamination, matrix cracking,
and fiber rupture. Thus, various DEM models are not limited to the analysis of granular ma-
terials, but can be effectively applied to studying cohesive powders [15], sea ice failure [16],
the hardening/softening behavior of soil [17], starch agglomerates [18], high temperature
resistant concrete [19], and coupled multi-physical problems [20].

Despite the efficiency of the mentioned DEM models in predicting the damage evolu-
tion of brittle materials, they are formulated based on regular/spherical discrete elements,
which do not have any physical representations and were utilized only as the meshing
structural feature. In the last several years, we can find more sophisticated approaches
aimed at representing the damage of materials consisting of microstructural objects, such as
grains [21,22] or aggregates [23–26]. The micro objects can be modeled as Voronoi polyhe-
dra designed to resemble grains [21], accounting for the grain-scale heterogeneity observed
in natural granular rocks. Grain-scale heterogeneity reproduced by Voronoi tessellation has
also been discussed in [22]. Most of these grain-scale models exploit several reconstruction
techniques to obtain the actual representation of the material microstructure, starting from
optical microscopy [21,27] and ending with X-ray micro-computed tomography (micro-CT)
imaging [23,24,26]. The exact arrangement of structural features, such as grains, particles,
fibers, pores, or additional phases is crucial in the context of microcracking initialization
and subsequent propagation. Micro-CT involves analyzing microstructural images to
capture the complete 3D distribution of material components [28]. With a spatial resolution
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of up to 100 nm and the ability to scan objects as large as 200 mm in diameter, X-rays
provide precise, slice-by-slice mapping of the sample.

This proposed paper takes the advantage of integrating DEM simulation with micro-
CT imaging, showing significant potential in the modeling of fracture behavior and damage
evolution of complex porous materials manufactured by the powder metallurgy route. A
bonded particle model, formulated in Section 2.1, has been employed to reproduce the
deformation and final degradation of a porous nickel aluminide (NiAl) sample during a uni-
axial compression test. The details of the experimental measurements have been provided
in Section 2.2. The novel reconstruction procedure of the porous sample microstructure
based on micro-CT images and the adapted advancing front algorithm have been outlined
in Section 2.3. Section 3 discusses the results of the DEM simulations, and the conclusions
are given in Section 4.

2. Materials and Methods
2.1. Formulation of the Discrete Element Model

Compared with continuum-based methods, the significant advantages of the DEM are
the ease of introducing discontinuities with little computational effort and the possibility to
model highly complex systems using the simple laws on individual particles without any
predispositions to where cracks may occur and propagate.

2.1.1. Governing Relations of the Discrete Element Method

The DEM governs a system, which can be considered an assembly of discrete particles
interacting with one another in the frame of Newtonian mechanics. An arbitrary particle i
in the system of N particles undergoes translational and rotational motion as follows:

mi
d2xi
dt2 = Fi, Ii

dωi
dt

= Mi, (1)

where t is time, and mi and Ii are the mass and the moment of inertia of the particle,
respectively, while the vectors xi and ωi determine the position of the center of the particle
i and the rotational velocity around the particle’s center of mass. The vectors Fi and
Mi represent the resultant force and the resultant moment, acting in the center of the
particle i. Equation (1), along with the specified initial conditions, presents a universal
mathematical model, capturing a large amount of problems encountered by the DEM and
various extensions.

The forces acting on the particle may be classified into the forces induced by the
external fields, the contact forces between the contacting particles, and the bond forces
between the bonded particles. Thus, the resultant force can be expressed by the external
forces, the sum of the contact forces Fc

ij between the contacting particles that are indicated

by subscript j = 1, Nc, and by the sum of the bond forces Fb
ik between the bonded particles

that are indicated by subscript k = 1, Nb:

Fi = mig +
Nc

∑
j=1,j ̸=i

Fc
ij +

Nb

∑
k=1,k ̸=i

Fb
ik, (2)

where g is the acceleration due to gravity. Thus, in the present work, the electromagnetic
force, the aerodynamic force, and other external forces [29], except for the gravity force, are
not considered.
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The rotational motion is governed by the respective moments. The moment of the
particle i can be restricted by the contribution of moments Mc

ij of the contacting particles

and by the contribution of moments Mb
ik of the bonded particles:

Mi =
Nc

∑
j=1,j ̸=i

Mc
ij +

Nb

∑
k=1,k ̸=i

Mb
ik. (3)

In the case of granular flows, there are no bonded particles, therefore, Nb, Fb
ik, and

Mb
ik are always equal to zero. In the case of the media discretized by the bonded particles,

both counterparts can be not equal to zero. The moment and the force acting between two
particles i and j can be expressed as the sum of the normal and tangential components:

Fo
ij = Fo

ij,n + Fo
ij,t, (4)

Mo
ij = Mo

ij,n + Mo
ij,t, (5)

where Fo
ij,n and Fo

ij,t are the normal and tangential vector components of the force acting
between the particles i and j, and Mo

ij,n and Mo
ij,t are the normal and tangential components

of the moment, respectively. The superscript o can be equal to c and b in the case of the
granular flows and the bonded particles, respectively.

2.1.2. The Bonded Particle Model

The bonded particle model, based on a parallel bond [9], is implemented to numerically
simulate the uniaxial vertical compression of NiAl samples. The parallel bond can be
envisioned as a set of elastic springs uniformly distributed over the circular cross-section
in 3D, lying on the contact plane and centered on the contact point. Thus, parallel bonds
can transmit both the force and the moment between the bonded particles. When the
parallel bond is formed between the particles i and j, the contact force and the moment
are initialized to zero. Each subsequent increment of relative displacement and relative
rotational velocity produces the increments of the force and the moment that are added
to the current values. Thus, in each time step l + 1, the normal bond force Fb,l+1

ij,n and the

tangential bond force Fb,l+1
ij,t can be obtained, adding the increments of the normal bond

force ∆Fb,l+1
ij,n and the tangential bond force ∆Fb,l+1

ij,t to the normal contact force Fb,l
ij,n and the

tangential contact force Fb,l
ij,t of the previous time step l, respectively:

Fb,l+1
ij,n = Fb,l

ij,n + ∆Fb,l+1
ij,n = Fb,l

ij,n + kb
ij,n A∆ul+1

ij,n , (6)

Fb,l+1
ij,t = Fb,l

ij,t + ∆Fb,l+1
ij,t = Fb,l

ij,t − kb
ij,t A∆ul+1

ij,t , (7)

where A is the cross-sectional area of the bond, and kb
ij,n and kb

ij,t denote the normal and the

tangential stiffness of the bond, while ∆ul+1
ij,n and ∆ul+1

ij,t are the increments of the relative normal
displacement and the relative tangential displacement during the time step l + 1, respectively.

In each time step l + 1, the normal moments Mb,l+1
ij,n and the tangential moments Mb,l+1

ij,t ,

as well as their increments ∆Mb,l+1
ij,n and ∆Mb,l+1

ij,t , are computed as follows:

Mb,l+1
ij,n = Mb,l

ij,n + ∆Mb,l+1
ij,n = Mb,l

ij,n − kb
ij,t J∆θl+1

ij,n , (8)

Mb,l+1
ij,t = Mb,l

ij,t + ∆Mb,l+1
ij,t = Mb,l

ij,t − kb
ij,n I∆θl+1

ij,t , (9)
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where Mb,l
ij,t and Mb,l

ij,t are the current values of the normal and tangential components of the

moment at the previous time step l, respectively, and ∆θl+1
ij,n and ∆θl+1

ij,t are the increments
of the normal and tangential components of the relative rotational velocity at the time step
l + 1, respectively, while I and J are the moment of inertia and the polar moment of inertia
of the parallel bond’s cross-section, respectively.

The parallel bonds break instantaneously when the maximum tensile stress σmax
ij

exceeds the tensile strength σc or the maximum shear stress τmax
ij exceeds the shear strength

τc, leading to microcrack formation between the two particles. The expressions of the
maximum tensile stress and the maximum shear stress, acting on the bond, are derived
from the beam bending theory, which gives the criteria of the bond failure formulated as

σc < σmax
ij =

−Fb
ij,n

A
+

∣∣∣Mb
ij,t

∣∣∣
I

R, (10)

τc < τmax
ij =

∣∣∣Fb
ij,t

∣∣∣
A

+

∣∣∣Mb
ij,n

∣∣∣
J

R, (11)

where R is the bond radius and Fb
ij,n is the scalar value of the normal component of the bond

force, which can cause bond breakage only in the case of tension. The bond is broken such
that a microscopic crack is created to represent the failure of the material at this particular
bond. The above consideration is very useful for explicitly simulating the initiation of
spontaneous and random microscopic cracks in a brittle material, because there is no need
to artificially describe any microscopic flaws and cracks at the beginning of a numerical
simulation. Other details and the implementation of the bonded particle model can be
found in [9,19].

2.1.3. The Computation of the Forces and Moments for Granular Flows

After the breakage of the bonds, contacting particles interact according to the granular
flow model. Moreover, parallel bonds (6–9) act in parallel with the granular portion of the
force–displacement behavior, when the depth of the overlap between the particles is more
than zero. Thus, the implemented granular flow model is outlined as follows. In the case of
granular flows, a model for the normal contact force depends on the contact geometry and the
properties of the particle’s material. In general, the normal contact force Fc

ij,n can be expressed
as the sum of the elastic (Fij,n,elastic) and viscous components. The elastic counterpart of the
normal contact force is computed according to the formula as follows:

Fij,n,elastic =
kp

i,nkp
j,n

kp
i,n + kp

j,n
δij,nnij, (12)

where nij is the unit normal vector, δij,n is the depth of the overlap between the particles i
and j in the normal direction, and kp

i,n and kp
j,n are the normal stiffnesses of the contacting

particles i and j, respectively.
The computation of the tangential contact force is more complex, since the phenomena

of tangential deformation, as well as static and dynamic friction, have to be considered.
The most popular approach comprises the evolution of the tangential contact force Fc

ij,t
divided into the parts of static friction Fij,t,static and dynamic friction Fij,t,dynamic:

Fc
ij,t = −tij min

(∣∣Fij,t,static
∣∣, ∣∣Fij,t,dynamic

∣∣), (13)
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The dynamic friction force is directly proportional to the normal component of the
contact force:

Fij,t,dynamic = −µ
∣∣Fij,n

∣∣tij, (14)

where tij is the unit vector of the tangential contact direction and µ is the friction coefficient.
The static friction force Fij,t,static can be calculated by summing up the elastic counterpart
Fij,t,elastic and the viscous damping counterpart. The elastic counterpart of static friction
can be obtained as follows:

Fij,t,elastic = −
kp

i,tk
p
j,t

kp
i,t + kp

j,t

∣∣δij,t
∣∣tij, (15)

where
∣∣δij,t

∣∣ is the length of the tangential displacement, while kp
i,t and kp

j,t are the tangential
stiffnesses of the contacting particles i and j, respectively.

Finally, the moment of the interacting particles (3) is computed as follows:

Mc
ij = dcij × Fc

ij, (16)

where dcij is the vector pointing from the particle’s center to the contact center. The details
and implementation of the outlined granular flow model can be found in the refs. [9,30,31].

2.2. Preparation of NiAl Sample for DEM Simulations

The discrete element model was verified by the experimental results of a uniaxial com-
pression test of a cube-shaped sample. Nickel aluminide was selected as a representative
porous material. The NiAl sample was manufactured using the powder metallurgy tech-
nique based on Spark Plasma Sintering (SPS), related to resistive heating in an electrically
conductive matrix. Densification of the material occurs at elevated temperatures in the
presence of uniaxial pressure. The process of material compaction occurs due to diffusive
mass transport mechanisms because of the generated Joule heat, which is a consequence of
the flow of electric current through the usually graphite punches and dies [32]. This type of
heating allows for high heating rates (up to 1000 ◦C/min), lower sintering temperatures,
and much shorter processing times than conventional methods [33]. The method can
effectively synthesize materials from metallic, ceramic, and composite powders [34,35].

Nickel aluminide (NiAl—Goodfellow) gas-atomized powders with an average particle
size of 10 µm diameter and purity of 99.9% were selected for sintering. The main advantage
of the SPS process is that it reduces uncontrolled grain growth at elevated temperatures
and avoids undesirable structural changes when sintering reactive materials. The details of
the manufacturing procedure are presented in [28]. The powder was loosely filled into a
graphite die with an inner diameter of 26.0 mm and closed tightly with graphite punches.
Graphite foil that was 0.5 mm thick was used as a die–powder spacer. Then, the NiAl
powder was heated at a rate of 100 K/min to the target sintering temperature, reaching
1200 ◦C for a sintering time of 10 min. The sintering process conducted in a vacuum
atmosphere was supported by an external pressure of 5 MPa. Afterwards, the samples were
naturally cooled down. The final 25.0 mm diameter discs were cut and ground for further
investigations. The density of the sintered materials was estimated using the Archimedes
method. The average density of the NiAl material sintered in presented conditions was
determined from 10 measurements and was 4620 kg/m3. This represents 78.1% of relative
density, assuming a theoretical density of 5910 kg/m3.

To reconstruct the actual microstructure of the NiAl sample, the X-ray computed tomog-
raphy (micro-CT) was carried out by the EasyTom system (RX Solutions (Chavanod, France))
using an open transmission X-ray source with a tungsten target and a diamond window at the
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tube voltage of 160 kV. The CT was performed for the sample volume of 2 × 2 × 2 mm3 with a
voxel size of about 1.8 µm. In total, 2880 projections were taken using a PaxScan 2520DX Varian
(Varex Imaging (Salt Lake City, UT, USA)) flat panel detector. The images were acquired in the
continuous cone beam single circle acquisition mode with an additional 32 reference images.

Finally, the NiAl sample was subjected to the uniaxial compression test at room
temperature using a Zwick Roell Z005 (ZwickRoell (Ulm, Germany)) universal testing
machine equipped with a 1 kN force transducer. The experiments were conducted under
displacement control with a strain rate of 10−3 s−1. The tests were performed on cubic-
shaped samples of 2 × 2 × 2 mm3 (Figure 1).
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Figure 1. NiAl sample subjected to uniaxial compression at (a) the beginning of the loading stage
(initial state), and (b) the end of the loading stage (damaged state).

2.3. Development of a Geometrical Model of the NiAl Microstructure Based on Micro-CT Images

A geometrical model, realistically representing the material microstructure, is espe-
cially important because the properties of the material strongly depend on the particle
packing used. Generation of a well-connected densely packed irregular assembly of parti-
cles is the key to successful DEM simulations. In the present research, particle packings of
porous NiAl material are generated by the adapted advancing front algorithm according to
micro-CT images. The proposed reconstruction procedure of the porous NiAl microstruc-
ture consists of four main steps, illustrated in Figure 2:

• Process the micro-CT scan for geometrical reconstruction of the NiAl sample (Figure 2a).
• Define the boundaries of the solid phase by the particles (Figure 2b).
• Fill the volume of the solid phase by irregular highly dense particle packing (Figure 2c).
• Remove the temporal particles from the pores (Figure 2d).

In the first step, the geometry of the NiAl sample is reconstructed by segmenting micro-CT
images. Defining the representative volume element (RVE) also requires careful consideration
to ensure statistical homogeneity of the microstructural elements (solid and pores). Based on the
homogeneity analysis of sintered NiAl, we selected a sample comprising 100 × 100 × 100 voxels
(183 × 183 × 183 µm3). Confirmation of the reliability of the images obtained is provided by the
high agreement of the sinter porosity obtained by density measurement and volumetric image
analysis, 21.8% and 21.9%, respectively. The solid and pore phases are identified by using phase
masks and applying the threshold value. Figure 2a shows the segmented 3D model obtained
from processing the initial micro-CT scan.



Appl. Sci. 2025, 15, 5260 8 of 17
Appl. Sci. 2025, 15, 5260 8 of 17 
 

  
(a) (b) 

 
(c) (d) 

Figure 2. Reconstruction of NiAl sample geometry based on micro-CT imaging: (a) segmented mi-
cro-CT scan; (b) boundaries of the solid phase defined by the particles; (c) volume of the solid phase 
filled by irregularly located red particles; (d) final particle packing of the porous NiAl sample. 

In the second step, the boundaries of the solid phase are defined by the particles. 
Pores are regularly filled by temporal particles of equal size (blue particles in Figure 2b). 
Each particle is placed in a voxel center of the micro-CT scan. Naturally, the accuracy of 
pore geometry is limited by the voxel size. The top and bottom boundaries of the sample 
are represented by regularly located particles (red particles in Figure 2b) to obtain smooth 
boundary surfaces that are loaded by moving two rigid plates during simulations. In our 
experience, rough surfaces produced by irregular packing of particles cause intensive in-
itiation of microcracks on the loaded boundary, which might lead to premature sample 
failure. Other boundaries of the sample are traditionally represented by using planes, 
which causes rough surfaces formed from irregularly located particles in the final packing. 

In the third step, the volume of the solid phase is filled by irregularly packed particles 
of defined size or radius distribution. A well-connected highly dense sphere packing (Fig-
ure 2c) is generated by using the adapted advancing front algorithm [36] for filling arbi-
trarily complex geometries. 

In the fourth step, regularly packed particles are removed from the pores. These tem-
poral particles were generated to define surfaces between the pores and solid phase in the 
second step. The generated porous NiAl sample of 183 × 183 × 183 μm3 is represented by 
an assembly of 188,190 irregularly packed particles of radius 1.5 μm (Figure 2d, Dataset S1). 

The radius of particles is not strictly limited by the voxel size, which is a great ad-
vantage of the proposed geometry reconstruction procedure. A larger size of particles 

Figure 2. Reconstruction of NiAl sample geometry based on micro-CT imaging: (a) segmented
micro-CT scan; (b) boundaries of the solid phase defined by the particles; (c) volume of the solid
phase filled by irregularly located red particles; (d) final particle packing of the porous NiAl sample.

In the second step, the boundaries of the solid phase are defined by the particles. Pores
are regularly filled by temporal particles of equal size (blue particles in Figure 2b). Each
particle is placed in a voxel center of the micro-CT scan. Naturally, the accuracy of pore
geometry is limited by the voxel size. The top and bottom boundaries of the sample are
represented by regularly located particles (red particles in Figure 2b) to obtain smooth
boundary surfaces that are loaded by moving two rigid plates during simulations. In
our experience, rough surfaces produced by irregular packing of particles cause intensive
initiation of microcracks on the loaded boundary, which might lead to premature sample
failure. Other boundaries of the sample are traditionally represented by using planes,
which causes rough surfaces formed from irregularly located particles in the final packing.

In the third step, the volume of the solid phase is filled by irregularly packed particles
of defined size or radius distribution. A well-connected highly dense sphere packing
(Figure 2c) is generated by using the adapted advancing front algorithm [36] for filling
arbitrarily complex geometries.

In the fourth step, regularly packed particles are removed from the pores. These temporal
particles were generated to define surfaces between the pores and solid phase in the second
step. The generated porous NiAl sample of 183 × 183 × 183 µm3 is represented by an
assembly of 188,190 irregularly packed particles of radius 1.5 µm (Figure 2d, Dataset S1).

The radius of particles is not strictly limited by the voxel size, which is a great ad-
vantage of the proposed geometry reconstruction procedure. A larger size of particles
allows performing simulations of the considered RVE with a smaller number of particles,
which can significantly shorten the computing time. This advantage is crucial for DEM
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simulations based on micro-CT images, because the material microstructure often requires
high resolution images, leading to a large number of particles. In the present research, the
diameter of the particles was larger than the voxel size by 64%, which allowed achieving
acceptable accuracy of simulations within the limits of available computational resources.

The proposed reconstruction is based on the collection of voxels representing the
exact microstructure of the NiAl sample. The characteristics of the grains (size, shape, and
distribution) are the same in the preparation of 2D scans, creation of the 3D model defined
as the collection of 2D scans, segmentation procedure, and final particle packing (Figure 2).
It can be noticed the powder particles or grains have a spherical shape after sintering,
with sizes ranging from several to tens of micrometers. NiAl grains are connected by
small necks, which are also reproduced by micro-CT analysis as important microstructural
features. Finally, the porosity can be characterized by an open type at the same level as the
experimental one. All of the mentioned microstructural issues lead us to conclude that the
modeling has been carried out on real experimental data, reflecting the representative state
of the material in a reliable way.

3. Results and Discussion
A numerical investigation of the deformation and damage evolution of the NiAl

sample was conducted using discrete element analysis based on micro-CT imaging. A large
number of particles and small time steps make micro-CT-based DEM computations very
time consuming. Naturally, parallel computing is perceived as an obvious way to increase
computational capabilities. However, the selection of an efficient parallel algorithm is highly
dependable on the considered problem and the method used [37–39]. Double-precision
DEM computations were performed using the developed GPU code [19] on the NVIDIA®

Tesla™ P100 GPU Computing Accelerator. Geometry reconstruction, DEM simulation, and
visualization of results were performed on the computational infrastructure [39] of the
Vilnius Gediminas Technical University.

A uniaxial compression test of a cube-shaped NiAl sample was simulated using
the developed discrete element model based on micro-CT imaging. The NiAl sample
of 183 × 183 × 183 µm3 was represented by an assembly of 188,190 particles of radius
1.5 µm (Figure 2d). The irregularly packed sample was subjected to slow uniaxial vertical
compression by moving two rigid plates. The compression strain rate was 53 s−1, which
was found to be sufficiently low to obtain quasi-static loading. In other directions, the
deformations are free.

The main material properties of NiAl were measured in the experimental research.
The parameters of the DEM model were considered as follows. The density of the NiAl
particles is equal to 5910 kg/m3. Poisson’s ratio of NiAl is equal to 0.3; therefore, the
ratios of normal to shear stiffness of the particles and bonds are considered equal to 3.0.
The friction coefficient of the NiAl particles is assumed equal to 0.3. According to initial
calibrations, the elasticity moduli of the particles and bonds are equal to 25 × 109 Pa, which
results in the slope angle of the numerically obtained stress–strain curve being close to
that of the experimentally measured one. The normal stiffness of the bond is computed
by using the values of the bond elasticity modulus and radii of bonded particles [9]. The
tangential stiffness of the bond is obtained by dividing the normal bond stiffness by 3.0,
because of the relevant Poisson’s ratio value. In the normal and tangential directions, the
bond strength values are equal to 3 × 108 Pa and 3 × 109 Pa, respectively. According to
the initial calibrations, carefully selected bond strength values have a crucial influence
on the accurate prediction of the stress peak and following fall-down of the macroscopic
stress–strain curve. The greatest challenge is to capture small deviations of the stress–strain
curve from the line, avoiding premature fall-down of the curve. In such a complex case,
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typical of the slightly ductile behavior of materials, calibration of the bond strength values
might be required to correct the value of the bond elasticity modulus, which governs the
slope angle of the numerical stress–strain curve.

3.1. Stress–Strain Dependency and Comparison with the Experimental Measurements

DEM simulations of the uniaxial compression test were performed to obtain numerical
results as close as possible to the experimentally measured response of the NiAl sample. The
macroscopic response of the sample subjected to uniaxial compression load is represented
by the stress–stain dependency. The total force of particles on the compressing plate is
divided by the area of the sample to compute the stress values. The average strain is
obtained by dividing the prescribed displacement of either the upper or lower compressing
plates by the initial height of the sample. Figure 3 shows the quantitative comparison of
the numerical results with the experimental measurements.
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scopic stress–strain curves; (b) the percentage of broken bonds.

Figure 3a presents the stress dependency on strain obtained from the experimental
uniaxial compression test (the curve “EXP”) and that obtained from DEM computations (the
curve “DEM”). Three snapshots of particles colored according to their percentage of broken
bonds at different stages of loading are included. Figure 3b presents the count of broken bonds,
which describes the damaging process and supplements the stress–strain curve. During the
performed simulations, the count of broken bonds Nbb increases from 0 to 19,504. In the
generated discrete element packing, the total count of bonds is equal to 441,954.

Initially, when the strain varies from 0.000 to 0.010, the count of broken bonds is
negligibly small (Figure 3b). Therefore, the elastic behavior of the material is dominant,
and the numerical stress–strain curve is linear (Figure 3a). When the strain rises from 0.010
to 0.0261, the count of broken bonds exponentially increases (Figure 3b) and some random
microcracks initiate (the second snapshot in Figure 3a), which leads to slow weakening of
the sample. The macroscopic stress–strain curve starts deviating from the line, but only
small differences can be observed (Figure 3a). In this strain interval, the experimental
stress–strain curve shows some features of ductile behavior. However, the low value
of the index B15 [40], equal to 0.51%, indicates more brittle behavior of the considered
NiAl material. Finally, when the strain values exceed 0.0261, the count of broken bonds
grows very quickly (Figure 3b) and macroscopic tensile cracks form in the sample (the
third snapshot in Figure 3a). The macroscopic stress–strain curve falls down, indicating
the beginning of the sample failure (Figure 3a). DEM simulations accurately predict the
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highest stress in the stress–strain curve. The difference between the numerically and
experimentally obtained values does not exceed 0.213 MPa, which is less than 0.1% of the
highest experimentally measured stress value. However, the strains of the stress peaks
obtained numerically and experimentally differ by a significant value, equal to 0.0011,
which is 4.2% of the experimentally measured strain.

3.2. Analysis of Damage Evolution

Figure 4 shows the distribution of broken bonds visualized by particles colored accord-
ing to their percentage of broken bonds. The count of broken bonds divided by the count
of total bonds is employed as a data attribute of each particle to visualize damaged zones
of the sample, where particles become weakly tied to their neighbors. In order to better
examine the differences between the crack propagations, the frontal surface is segmented
by horizontal and vertical planes that intersect in the center of the surface. The resulting
four regions are numbered as follows: “I”, “II”, “III”, and “IV”. According to Figure 4, four
time intervals, [t1; t2], [t2; t3], [t3; t4], and [t4; t5], are considered, where t1 = 1.0 × 10−5 s,
t2 = 1.9 × 10−5 s, t3 = 2.4 × 10−5 s, t4 = 2.5 × 10−5 s, and t5 = 2.6 × 10−5 s. In Figure 4a,b,
orange ellipsoids and polygons mark some cracks that do not propagate in time period
[t2; t3]. Red arrows show the main shear-dominated microcracks, whose lengths are more
than four times larger than the distance between the centers of particles.
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Crack propagation can be investigated taking into account the time variation rate of
the broken bond count. In the time interval [ti; tj], it can be computed by using the formula
∆Nbb

∆t =
Nbb(tj)−Nbb(ti)

tj−ti
, where the difference of the broken bond count ∆Nbb is divided from

the time interval length ∆t. The proposed indicator is relevant to the average propagation
speed of a unit length crack in micromechanics. In the first time interval [t1; t2] of 9 µs, the
strain rises from 0.010 to 0.0197 (Figure 4a), while the count of broken bonds increases from
54 to 2740. The time variation rate of the broken bond count is equal to 305 1/µs, which
indicates the time interval of slow microcrack propagation. In the second time interval
[t2; t3] of 5 µs, the strain grows from 0.0197 (Figure 4a) to 0.025 (Figure 4b), while Nbb

increases from 2740 to 7147. The time variation rate of the broken bond count increases till
881 1/µs, which is 2.9 times faster than that in the above introduced time interval of slow
microcrack propagation. Thus, it can be called the time interval of medium microcrack
propagation. Since individual bonds have a discrete nature, the microcracks formed in the
neighborhood are also discrete and might be not connected.

In the third time interval [t3; t4] of 1 µs, the strain grows from 0.025 (Figure 4b) to 0.0261
(Figure 4c), while Nbb increases from 7147 to 9146. The time variation rate of the broken
bond count reaches 2028 1/µs, which is 6.7 times faster than that in the time interval of
slow microcrack propagation and 2.3 times faster than that in the time interval of medium
microcrack propagation. Figure 4c shows the formation of macrocracks that are mainly
concentrated in the left upper region “I”. Therefore, it can be considered as the time interval
of microcrack transfer to macrocracks. In the fourth time interval [t4; t5] of 1 µs, the strain
rises from 0.0261 (Figure 4c) to 0.0271 (Figure 4d), which leads to the fastest growth of
the broken bond count, from 9146 to 19,453. The time variation rate of the broken bond
count equals 10,307 1/µs, which is 5.1 times faster than that in the previous time interval of
microcrack transfer to macrocracks. Macrocrack propagation is caused by the high increase
of the broken bond count in the whole macrocrack propagation volume; therefore, the last
interval can be called the time interval of fast macrocrack propagation.

We made a detailed qualitative analysis of the accumulation of shearing cracks. While
the strain level is less than 0.010, a negligibly small amount of bonds are broken and
no detailed analysis of cracks is required. However, as the uniaxial compression load
increases, multiple new microcracks initiate, propagate, and eventually coalesce into longer
macrocracks. The initiation, accumulation, and propagation of shearing microcracks can
be observed in the left upper region “I”, as presented in Figure 4a–d. At the end of the
time interval of slow microcrack propagation, seven microcracks are already detected in
this region (Figure 4b). Five microcracks are detected on the right upper surface region
numbered by “II” at the end of the time interval of medium microcrack propagation, shown
in Figure 4b. However, in the time interval of fast macrocrack propagation, the number
of observed microcracks reaches ten and twelve, as presented in Figure 4c,d, respectively.
Figure 4c,d shows that, during the time interval of fast macrocrack propagation, the
smallest increase of microcrack number is observed in the bottom right surface region “III”.
Different crack propagation in different regions is caused by asymmetrical distribution of
material pores, directly implemented in the discrete element packing by using the micro-CT
scan. Figure 4c,d shows that the main macroscopic shearing cracks form during the time
interval of microcrack transfer to macrocracks, and propagate during the time interval
of fast macrocrack propagation in the surface regions “I” and “IV” of the sample. Some
macroscopic cracks suddenly propagate, leading to final failure of the sample. It is worth
noting the fragmentation of the sample into more than two parts, which is common to
failure patterns observed in uniaxial compression experiments of brittle materials.
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3.3. Proposed Stress Scaling Technique

Scaling of DEM parameters according to similarity conditions allows increasing the
size of the time step constrained by an explicit numerical time integration scheme, which
can substantially reduce computing time. It is shown that two models will obey the same
governing Equation (1) if they satisfy the major similarity condition for DEM [41]:

m1l1
F1t2

1
=

m2l2
F2t2

2
(17)

where l1, m1, t1, and F1 and l2, m2, t2, and F2 are the characteristic length, mass, time, and
force of models 1 and 2, respectively. For the considered mechanical system, only three
dimensions are independent. If l1 = l2, m1 = m2, t1 = t2, and Fsc = F1/sc, then

sc·F1

sc
= sc·Fsc = sc·σsc·Asc = σ1·A1 = F1 (18)

where sc is the scaling factor, Fsc is the force magnitude computed with scaled-down values
of parameters, σsc is the stress computed with scaled-down values of parameters, and Asc

is the characteristic area of the scaled model, which is proportional to the square of the
characteristic length and equal to A1. Thus, it is necessary to multiply the stresses of the
scaled model from the scaling factor in order to get the stresses of the model with the
original values of the parameters. In the present research, the values of the elastic moduli
and bond breakage parameters (10–11) are scaled down by the scaling factor.

Figure 5 shows the accuracy of the proposed scaling technique. The curves “EXP” and
“DEM” represent the stress dependency on strain obtained from the experimental uniaxial
compression test and that attained from DEM computations with the original values of
parameters, respectively. The curve “DEM (reduced)” represents the DEM computations
with 50 times reduced values of elastic moduli and bond breakage parameters (10–11). The
curve “DEM (scaled)” is the stress–strain curve of “DEM (reduced)”, for which the stresses
are scaled 50 times. It is worth noting that DEM computations with 50 times reduced
values of parameters can be performed with a

√
50 = 7.07 times larger time step. Thus,

DEM computations with the reduced values of parameters lasted seven times shorter than
those with the original values of parameters. When the strain rises from 0.010 to 0.0261, the
curves “DEM” and “DEM (scaled)” almost coincide, which proves the high accuracy of the
proposed scaling technique up to the time interval of fast macrocrack propagation, leading
to the beginning of the sample failure. However, the stress peaks of the curves “DEM” and
“DEM (scaled)” differ by 7.92 MPa, which is 3.2% of the highest stress value obtained in
DEM computations with the original values of parameters. Thus, the accuracy of scaling
requires further research in the case of fast macrocrack propagation and the sample failure.
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3.4. Compression Strain Rate for Quasi-Static Loading

Usually, in the experimental uniaxial compression test, the velocity of the compressing
plates is lower than that in DEM simulations because of computing time limitations. How-
ever, computations performed with inappropriately high values of compression velocity,
which can be expressed by the strain rate, are not able to properly simulate the quasi-static
nature of the compression process.

Figure 6 presents the stress dependencies on strain obtained by using different values
of the compression strain rate that vary from 53 s−1 to 1058 s−1. The curve “EXP” obtained
from the experimental measurements is plotted for completeness reasons. All curves
obtained for different values of the compression strain rate almost coincide up to the
strain value of 0.025, which indicates the end of the time interval of medium microcrack
propagation. However, some differences can be observed for higher strain values closer to
the stress peaks. Thus, the compression strain rate can influence the numerical results in
the time intervals of microcrack transfer to macrocracks and fast macrocrack propagation.
The curve obtained by using the highest value of the compression strain rate, which equals
1058 s−1, highly differs from the other curves. However, the differences between the curves
obtained by using the small values of 53 s−1 and 106 s−1 can be treated as negligible. Thus,
the computations performed by using the compression strain rate, which is close to 53 s−1,
approach the quasi-static state and achieve the acceptable accuracy within the limits of
available computational resources.
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4. Conclusions
In the present paper, the damage evolution of the porous NiAl material is simulated by

using the DEM and the micro-CT imaging-based reconstruction of the material microstruc-
ture. Based on the performed geometry reconstruction, DEM simulations, and analysis of
damage evolution, some observations and concluding remarks may be drawn as follows:

• The DEM supplemented by the micro-CT imaging-based reconstruction of the porous
NiAl microstructure revealed a realistic representation of the damage evolution and
stress–strain curve.

• While the count of broken bonds was negligibly small, the elastic behavior of the
material was dominant, and the numerical stress–strain curve was linear.

• When the strain increased, the count of broken bonds exponentially grew, and some
random microcracks initiated, which led to slow weakening of the sample and small
deviations of the macroscopic stress–strain curve from the line.
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• At the end of the investigated strain interval, the formation and propagation of macro-
scopic cracks caused the fall-down of the stress–strain curve, which indicated the begin-
ning of the sample failure. The numerically obtained stress and strain of the curve peak
differed from the experimentally measured values by 0.1% and 4.2%, respectively.

• At a high compression load, the propagation of macrocracks, caused by a high in-
crease of the broken bond count in the whole macrocrack propagation volume, led
to fragmentation of the sample into more than two parts, which is common to failure
patterns observed in uniaxial compression experiments of brittle materials.

• The developed stress scaling technique, based on scaled-down elastic moduli with
bond breakage parameters and scaled-up stress values, allowed a seven times increase
of the size of the time step, which reduced the computing time by seven times. The pro-
posed scaling was very accurate until the time interval of fast macrocrack propagation.
However, the stress peaks of the original and scaled curves differed by 3.2% of the
highest stress obtained in DEM computations with the original values of parameters.

• The analysis of stress–strain dependencies obtained by using different values of the
compression strain rate showed that the computations performed with a compression
strain rate close to 53 s−1 approached the quasi-static state and achieved acceptable
accuracy within the limits of the available computational resources.
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19. Pacevič, R.; Kačeniauskas, A. The performance analysis of the thermal discrete element method computations on the GPU.

Comput. Inform. 2022, 41, 931–956. [CrossRef]
20. Baniasadi, M.; Baniasadi, M.; Peters, B. Coupled CFD-DEM with heat and mass transfer to investigate the melting of a granular

packed bed. Chem. Eng. Sci. 2018, 178, 136–145. [CrossRef]
21. Xu, T.; Fu, T.-F.; Heap, M.J.; Meredith, P.G.; Mitchell, T.M.; Baud, P. Mesoscopic damage and fracturing of heterogeneous brittle

rocks based on three-dimensional polycrystalline discrete element method. Rock Mech. Rock Eng. 2020, 53, 5389–5409. [CrossRef]
22. Li, X.F.; Li, H.B.; Liu, L.W.; Liu, Y.Q.; Ju, M.H.; Zhao, J. Investigating the crack initiation and propagation mechanism in brittle

rocks using grain-based finite-discrete element method. Int. J. Rock Mech. Min. Sci. 2020, 127, 104219. [CrossRef]
23. Jin, C.; Yang, X.; You, Z. Automated real aggregate modelling approach in discrete element method based on X-Ray computed

tomography images. Int. J. Pavement Eng. 2017, 18, 837–850. [CrossRef]
24. Suchorzewski, J.; Tejchman, J.; Nitka, M. Discrete element method simulations of fracture in concrete under uniaxial compression

based on its real internal structure. Int. J. Damage Mech. 2018, 27, 578–607. [CrossRef]
25. Xue, B.; Pei, J.; Zhou, B.; Zhang, J.; Li, R.; Guo, F. Using random heterogeneous DEM model to simulate the SCB fracture behavior

of asphalt concrete. Constr. Build. Mater. 2020, 236, 117580. [CrossRef]
26. Suchorzewski, J.; Nitka, M. Size effect at aggregate level in microCT scans and DEM simulation—Splitting tensile test of concrete.

Eng. Fract. Mech. 2022, 264, 108357. [CrossRef]
27. Nguyen, N.H.T.; Bui, H.H.; Kodikara, J.; Arooran, S.; Darve, F. A discrete element modelling approach for fatigue damage growth

in cemented materials. Int. J. Plast. 2019, 112, 68–88. [CrossRef]
28. Nosewicz, S.; Jurczak, G.; Wejrzanowski, T.; Ibrahim, S.H.; Grabias, A.; Węglewski, W.; Kaszyca, K.; Rojek, J.; Chmielewski, M.
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