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The concept of topological derivative is introduced and applied to optimal design 

of structural elements and to study the material microstructure evolution. For structural 
design the objective function and constraints provide the optimal design, for material 
microstructure the free energy and dissipation function generate the process of evolution 
such as phase transformation, crack growth or void generation. Three general modes of 
topology variation have been considered: generation of new elements, removing of the 
existing elements and a substitution of the existing elements by new elements. The cases 
of infinitesimal and finite topology variations have been discussed and illustrated by 
examples. 
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1. INTRODUCTION 
 

The problems of optimal design taking the account of topology modifica-
tion have recently been studied for both  material and structural elements. For a 
material element the topology variation corresponds to the introduction of voids, 
inclusions, cracks, nucleation of different crystalline phases, etc. For a structure 
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the topology variation corresponds to the introduction or removing of members, 
connecting nodes, supports etc., and to the replacement of the existing elements 
by new elements. 

The uniform treatment of topology and shape optimization for a material 
element can be obtained by assuming a microstructure with its parameters opti-
mized at the element level, for instance, by homogenization technique and with 
the spatial evolution of microstructure generated by a global solution for the 
whole structure. A simplified approach of this type is based on the artificial den-
sity distribution specifying the microstructure evolution in terms of one scalar 
variable, cf. [1], [2], [3]. The stiffness moduli are assumed to be proportional to 
the relative material density raised to some power. A number of numerical 
schemes have been developed within the homogenization method using the pe-
nalization of intermediate densities (SIMP-method). An alternative approach 
such as bubble method proposed in [13], generates the topology variation by the 
introduction of voids into the structure domain with subsequent optimization of 
their position, size and shape. An alternative variant of this method was pre-
sented in [27], where the concept of gradual removal of the material in order to 
obtain the optimal design is used. This approach based on evolutionary strategy 
(ESO) proved efficient in effective redesign of structural elements. The concept 
of virtual topology variation and topological sensitivity derivative for truss and 
beam structures was introduced in [5], [6], [7], [19] by specifying a class of ad-
missible topologies in the redesign process. The optimal support and loading 
conditions were considered in [14] and [21]. The topological sensitivity deriva-
tive provides the gradients of objective function and constraints with respect to 
topology parameters. This derivative provides the conditions for the acceptance 
or rejection of a new topology. Once a new topological structure is accepted, the 
usual shape and material optimization is performed in order to determine the 
optimal configuration, the cross-sectional and material parameters. The case of 
void generation in an elastic material was studied in [24], where analytical ex-
pressions for the topological sensitivity derivative were derived. The evolution-
ary algorithms combined with the boundary element method were developed in 
[9] and applied in topology and shape optimization. The review of optimal to-
pology design of truss or plate structures was provided in [16]. 

The combined shape and topology optimization was recently developed 
by applying the level-set-based method originally devised in [23] for numerical 
analysis of evolving interfaces, cf. [25] and [26]. In fact, the shape sensitivity for 
an assumed integral of state fields is expressed in terms of boundary energy or 
mutual energy of primary and adjoint states, cf. [11] or [22]. The optimality con-
ditions then require uniform values of generalized energy on the varying bound-
ary. In the level-set method, the structure boundary is assumed to coincide with 
the iso-values of the assumed scalar function Φ  representing the generalized 
energy with higher values within the structure domain and lower values in its 
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its exterior. The generation of voids is then naturally induced in domains of 
lower values of Φ  than the assumed design value. 
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In the next section we shall discuss the concept of topological derivative 
and the associated optimality conditions. The implications in material science 
are discussed in Section 3. In Section 4 problems of topology, shape and 
reinforcement optimization of disk and plate structures are discussed and 
illustrated by simple examples. 
 
 
2. TOPOLOGICAL SENSITIVITY DERIVATIVE AND ITS 
APPLICATION 
 
 In structural design problems, we usually introduce different classes of 
parameters, such as material parameters mη , size parameters dη , (such as length 

, area , volume V  or mass ), shape parameters eL eA e eM sη , orientation and 
position parameters αη . Let us assume that we introduce a new element in the 
structure, such as void, crack or inclusion of a specified shape. In beam or plate 
structures this element may be represented by introduced bar, segment, or stiff-
ener. Consider a global state functional ( )αηηηηΠΠ ,,,, mu , sdε=  such as a 
potential or complementary energy, mutual energy of two states, etc. The topo-
logical derivative specifies the variation of Π  with respect to the size parameter 
assuming the shape parameters as fixed. We have the topological derivatives  
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These derivatives specified at vanishing size parameters depend on shape pa-
rameters of the void or inclusion. To illustrate this dependence, consider an ex-
ample of an elliptical cavity in a plane sheet loaded biaxially by the principal 
stresses 21  ,σσ  oriented along the principal ellipse axes, Fig. 1. The increment 
of sheet compliance  measured by the release of potential energy  due to 
void presence is expressed as follows for the plane strain condition 
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where ν ,E  denote the elastic moduli, abA π=  is the ellipse area and a/b=η  
is the shape parameter. The topological derivative now equals 
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From (2.3) it follows that for the specific cases we have: 
 a a 
i) for ,,0,0 , ∞==== Πη ATb

a
b  

(crack along x–axis); 
 

ii) for ,,0, , ∞==∞== Πη ATa
a
b  

(crack along y–axis); 
 

iii) for ( ) , 
2
31,1 21

2
2

2
1

2

, 



 −+

−
=== σσσση Π

E
vT

a
b

A  

(circular cavity of radius a = b). 
 

y

σ1

σ2

b a

a) b)

x

T A,Π

O η=

   
Fig. 1. Biaxially loaded plane sheet: a) introduction of elliptica

of the topological sensitivity derivative on a shape 
The minimum of the topological derivative can be specifie
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From (2.3) it follows that the topological derivative depends on the cavity shape, 
reaching infinite values for 0=η  and ∞=η  (cracks) and a minimum for the 
specific value 12 σση = . In fact, this ratio specifies the optimal cavity shape 
for the prescribed stress biaxiality. Further, for the case of crack, there exists a 
topological derivative with respect to crack length. Setting successively b = 0 
and a = 0 in (2.2) we obtain 
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and the topological derivatives grow linearly with the crack length. The topo-
logical derivatives associated with an arbitrary state functional and generation of 
spherical or circular cavities were derived in [24] and [8], and expressed in terms 
of primary and adjoint states. 

Consider now a more general case of introduction of a new topological 
structure within the design domain, such as an inclusion (or bar and stiffener). 
Assume this structure as an element of volume V  and parameters 

 specifying its shape, orientation and material properties. As-
sume the potential energy  of the structure to grow linearly with V , so that 
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( )le pUV ,ε=∆Π , (2.6)
 

where  is the strain state within the element. Assume the cost function to be a 
non-linear function of V , composed of the installation cost  and the material 
cost , so that 
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where  grows non-linearly with V  and ( ei VC ) e ( )em VC  depends linearly on V , 
Fig. 2. Consider the problem of maximization of the global structure stiffness 
with constraint set on the element cost, so that we have 

e

 

max      subject to     ( le pV ,,ε∆Π ) 00 ≤−CC  . (2.8)
 

Introducing the Lagrangian ( )0CCL −−= λ∆Π , where 0≥λ , the optimality 
conditions provide 
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Fig. 2. Non-linear cost function: optimality conditions at points A and O: a) concave 
cost function, b) convex cost function 

 
Fig. 2 illustrates the optimality condition (2.9). The gradient of the poten-

tial energy equals U , thus, the straight line of this slope should be tangent 
to the cost function 

( lp,ε
( eVC
)
)λ . This specifies point A and also the volume (and 

size) of the inclusion, Fig. 2a. On the other hand, when the inclusion of vanish-
ing volume V  is introduced, the line of slope U  is tangent to the cost 
function at the point O. Assuming 

0=e 0

( )lp,U ε  to be a monotonic (quadratic) func-
tion of , it is seen that for the concave cost function the optimality condition at 
O occurs at larger strain than at A, Fig. 2a. On the other hand, for a convex cost 
function, Fig. 2b, the generation of inclusion of vanishing size at the point O 
occurs at lower strain value as compared to a finite size inclusion corresponding 
to the point A. So, for a concave cost function, the nucleation of inclusion re-
quires a higher specific energy and stress or strain levels than the generation of 
inclusion of the finite size. This means that for an increasing stress induced by 
loading the generated inclusion must be of finite size. We shall call this case the 
finite topology transformation. On the other hand, for the convex cost function, 
the inclusion is generated from its initial vanishing size and grows consecutively 
for increasing stress levels. We shall call this case the infinitesimal topology 
variation. We have 
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and the optimality condition provides 
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The next step would require the maximization of ∆Π  with respect to the con-
figuration and cross sectional parameters  with the optimality conditions 
(2.9). 

lp

The problem of material or element replacement can be formulated in 
terms of the concept of finite topological transformation. Let us assume that the 
material volume V  is removed from the location 1 and placed at the location 2 
of a higher strain energy. The optimality condition now provides 

e

 

( ) ( ) ( )eill VCpUpU λ=− ,, 12 εε , (2.12)
 

where  and  denote the strain states at locations 2 and 1. A similar condi-
tion applies when two material elements are exchanged between the locations 1 
and 2. 

2ε 1ε

The case of discontinuous cost function can be treated assuming a finite 
topology transformation. Assume that 
 

emi VcCC +=  , (2.13)
 

where  is constant. Introducing the Lagrangian iC
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assume that a finite transformation corresponds to the balance of global stiffness 
increase and cost. Setting L = 0, we obtain 
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The first equation provides the volume (size) of an element, the inequality pro-
vides the condition for the generation of a rotation new element. 
 
 
3. APPLICATION IN MATERIAL SCIENCE: NUCLEATION AND 
GROWTH 
 

The concept of topological sensitivity derivative discussed in the previous 
section can now be applied in material science, namely to the process of nuclea-
tion and growth of new phases, such as nucleation of a liquid from the vapour, 
solidification, phase transformation (such as austenite – martensite in carbon 
steels), recrystallization, crack generation, etc. The new phase usually, generates 
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as a volume or plane element of a finite size and then grows in a kinetic process, 
cf. [15]. 
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Fig. 3. Nucleation of liquid droplets from a vapour: a) spherical droplet, b) variation of 
free energy with droplet size 

 
Consider the simplest process of liquid droplet formation in a vapour 

phase, Fig. 3. Assume the free energy associated with the formation of droplet in 
the form 
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where 23
3
4 4, rSrVe ππ ==  denote the volume and surface of the droplet, α  

denotes the difference of specific free energies of vapour and liquid and γ  is the 
specific surface energy of the droplet. Fig. 3b presents the variation of free ener-
gies with the droplet volume. From the stationary condition we obtain 
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that is the critical size specifying stable droplet configuration. In fact, droplets of 
radius  cannot nucleate, as it would increase the free energy with respect 
to the vapour free energy. 

srr <

The nucleation of solid polycrystalline grain is more complex since there 
is interaction between size and shape dependence of free energy, but the finite 
size is a natural effect of new phase generation. 
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Instead of deriving the stable size of droplet, we may also consider a 
transformation at the same energy level, namely a finite transformation from 
vapour phase to droplet phase at G = const (that is from point O to point B in 
Fig. 3b). We have a condition 
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which provides larger value of the droplet radius.  
The other example is associated with the crack nucleation process. It is 

well known that in Griffith theory the existence of cracks of length (or diameter) 
2a in material or structure is assumed. However, the nucleation would require 
infinite stress values, contrary to general observations. Fig. 4 presents the poten-
tial energy variation dependent on the crack length. 
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Fig. 4. Plane crack under tensile stress: a) element and crack dimensions, b) potential 

energy and dissipation variation 
 
For a wide plate loaded uniaxially we have, Fig. 4a 
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where  denotes the potential energy release due to crack presence and l∆Π
as γ∆Π = 2  represents the surface energy or the dissipated energy in the  proc-

ess of  crack growth. The critical crack length is specified by the condition 
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and for  there is unstable crack growth at constant stress with associated 
decrease of the free energy. The constant energy transformation now corre-
sponds to  and 
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The topological transformation occurs along the path OB, Fig. 4b. The concept 
of finite crack generation can be used in deriving the rupture stress of an ele-
ment. Consider a plane element of length L, width 2b and unit thickness under 
uniaxial stress σ . Assume that at the critical stress value cσσ =  the element 
breaks into two pieces, with the crack length 2a = 2b. Assuming , we 
have 
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and 
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Thus the critical stress will increase for decreasing length of the element. 
The present discussion exhibits the general concept of topology transfor-

mation in material science and optimal design. The objective and cost functions 
specify the problem types of optimal design. In material structure the free energy 
and the dissipation functions play a similar role. These two research areas should 
interact to develop general methodology in the analysis and optimization of ma-
terial structures. 

 
4. OPTIMAL DESIGN OF DISK AND PLATE STRUCTURES 
 
 The concept of topological derivative can be applied in optimization of 
disk and plate structures. In this Section the problem of optimal topology and 
shape design and the problem of optimal reinforcement are discussed.  
 
4.1. Optimal design of topology and shape  
 Consider a general optimization problem of the form 
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Gmin ,      subject  to       00 ≤−CC , (4.1)
 

where G is the objective functional (function), C denotes the global cost and C0 
is the upper bound on the global cost. When ∆Π−=G  it corresponds to the 
problem (2.8). Introducing the Lagrangian ( )0CL CG −+= λ , where 0≥λ , the 
optimality conditions with respect to shape and dimensional parameters, can be 
presented in the form analogous to (2.9). The optimal values of these design 
parameters and of Lagrange’s multiplier λ can be determined in the incremental 
process of gradient optimization.  

Then, we try to introduce topology modification. The condition of intro-
duction of an infinitesimally small circular hole of area 0A  at the arbitrary point 
x, using the concept of  topological derivative, takes the form 
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where , , ( )xL
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0,  are the topological derivatives, respectively of 
the Lagrangian, the objective functional G and the cost functional C. Moreover, 
a new small hole should be introduced at a point, where ( )xL

A0,T  reaches the 
minimum value (cf. bubble method [13]). 

However, in order to accelerate the optimization process, finite modifica-
tions can be applied. Here, the approach presented in [8] is used. Now, the prob-
lem consists in introduction of finite holes of an unknown size and shape to-
gether with the introduction of finite changes of other boundaries. It is assumed, 
that domains of relatively small values of the topological derivative of the La-
grangian, which is expressed by (4.2), should be removed. As for the redesign 
path related to the constant cost C0 and minimum of the objective function G, the 
multiplier λ achieves its minimum at the optimal point, then for the finite varia-
tions of the design we can introduce the design quality function Λ (cf. [20]). 
Now, assuming that for a redesign process considered here 0<C∆ , the prelimi-
nary problem can be presented as follows 
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while the condition of acceptance of the finite topology modification takes the 
form 
 

λΛ < . (4.4)
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Here, A denotes the unknown area of the hole and µ (µ ≥ 0) is the scaling factor 
controlling amount of the removed domain. When µ tends to infinity, the whole 

domain for which 
C
G
δ
δλ −>  will be removed. On the other hand, when µ = 0, 

the condition (4.4) related with the problem (4.3) becomes analogous to the con-
dition (4.2) and corresponds to introduction of infinitesimally small holes. 

After finite topology modifications only an improved structure is ob-
tained, so additional standard shape and dimensional optimization should be 
done. 

In order to perform this optimization process we need topological deriva-
tives of the objective functional G and the constraints with respect to the intro-
duction of infinitesimally small circular hole. Here, the expressions for topologi-
cal derivatives, which were derived in [8] and [24] using adjoint method, are 
presented. 

Let A ⊂ R2, be a domain occupied by an elastic disk with a boundary 
Γ =Γu∪ΓT. It is subjected to surface traction T0 on ΓT and on boundary Γu dis-
placements u0 are given. Consider for example a functional of strain ε  and dis-
placement  in the form u
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T
A

dfdAFG
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Γ  uε . (4.5)

 

Introduce now an adjoint structure of the same shape as the primary structure, 
but subjected to initial generalized stresses , namely haiai σ=N
 

ε∂
∂

=
FaiN      in A, (4.6)

 

where  is the corresponding initial stresses and h is the thickness of the disk. 
The field of the initial generalized stresses induces the field of the global gener-
alized stresses , where  is the field of the elastic generalized 
stresses. The boundary conditions are assumed as follows 

aiσ

araia NNN += arN

 

0T =0a  on ΓT ,    on Γ0u =0a
u . (4.7)

 

Finally (cf. [8]), the topological derivative of the functional (4.5) takes the form 
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where 1σ , 2σ , ,  are the principal stresses at the considered point, re-
spectively for the primary and adjoint structures, and α is the angle between 
corresponding principal directions. Here, all quantities are calculated at the point 

x and the expression 

a
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a
2σ

∫
π

θ
π

2

0
 F

2
1 d=0F  should be determined separately for each 

form of the function F. In the case of the strain energy U, the adjoint structure is 
the same as the primary one and (4.8) becomes 
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Next, consider a flexural plate whose middle surface occupies the domain 
A ⊂ R2, with a boundary Γ. The plate is subjected to a transverse load p  in A, 
whereas either generalized traction T

0

0 or displacements are specified on Γ. Here, 
Kirchhoff’s theory of thin plates is used. Consider a case when the functional of 
curvatures  and transverse displacements w is of the form κ
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In this case the adjoint structure is subjected to initial bending moments , 
and transverse load , namely 
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Furthermore, we assume that on the boundary Γ  the adjoint plate is supported in 
the same way as the primary one. The field of the initial moments  induces 
field of the global moments M

aiM
araia MM += , where is the field of  elastic 

moments. Finally (cf. [8]), the topological derivative of the functional (4.10) 
takes the form 

arM

 

( ) ( )( ) ( )( )[ ]

,

2cos212

0
2

2
30

212121213, 0

a
h/

h/

aaaaG
A

wpfdxF

αMMMMMMMM
Eh

T

−−∫−

+−−+++=

−

x
 (4.12)

 

where , , ,  are the principal moments at the point x, respec-
tively for the primary and adjoint structures, and α is the angle between corre-
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sponding principal directions. Moreover,  is defined in the same way as in 
(4.8), x

0F
3 denotes axis normal to the middle surface and h is the thickness of the 

plate. When G coincides with the strain energy, and 0=f ,  on bound-
ary  of a new hole, the topological derivative reduces to the form 

00 =p

ρΓ

)[ ]22 M

d)

e)

f)
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0
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The formulas for the topological derivatives of cost functionals and func-
tionals of stresses and reactions can be found in [8]. 
 
4.2. Example: optimization of topology and shape of a plane beam–
like structure  

 
10kN
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1,
2
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Fig. 5. History of optimization of a plane beam-like structure: a) initial structure, 
b)÷e) succesive finite modifications, f) final design 

 
Let us consider an optimal design problem (4.1) for the plane structure 

shown in Fig. 5a, where G corresponds to the global strain energy U and the cost 
C is proportional to the global material volume (cf. [8]). The structure is made of 
steel, where the Young modulus E = 2.1⋅105 MPa and the Poisson’s ratio ν = 0.3. 
The initial structure domain is divided into 2880 finite elements.  The structure 
is simply supported at end points of the lower boundary and loaded by a concen-
trated force F = 10kN at the mid-point of the upper boundary, Fig. 5a. 

The history of optimization is shown in Fig. 5. The optimal structure, pre-
sented in Fig. 5f, is obtained after 5 finite modifications and final correction of 
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the shape. The ratio of the strain energies of the initial and optimal designs is 
275.1)()( =optinit UU . 

 
4.3. Optimal design of reinforcement 
 The problem of optimal reinforcement was previously analyzed in [10], 
[12], [17]. In this subsection the problem of optimal reinforcement of disks and 
bending Kirchhoff plates is discussed in view of results presented in [4]. Two 
types of reinforcement are considered here, namely the introduction of fibers 
into disks and introduction of ribs into plates. The optimization problem of the 
form (4.1) is considered. In order to find optimal reinforcement, a heuristic algo-
rithm has been proposed in the paper. At first, using topological derivative, an 
initial location of a new fiber or a rib is determined. Next, in order to correct 
their positions and to determine other parameters characterizing stiffened struc-
ture, the standard optimization procedure is performed. Usually, the optimal 
position of the stiffener differs insignificantly from its initial position.  

Now, using the adjoint structure method, the respective formulas for the 
topological derivatives of the assumed functionals of strains, curvatures and 
displacements, expressed by (4.5) and (4.10), will be provided.  

 
Fig. 6. Geometry of the disk reinforced by the fiber 

 
Consider, similarly to Subsection 4.1, an elastic disk, but made of fibrous 

composite, which can be treated as an orthotropic material (Fig. 6). Now, the 
stress–strain relation in the principal directions of orthotropy can be written as 
follows 
 

εσ 0Q= , (4.14)
 

where  is the reduced stiffness matrix. Assume that on the interface S0Q C sepa-
rating domains of different materials properties, we have 
 

[ ] 0u = ,      [ ] [ ] 011 == ttεε ,     [ ] [ ] 022 == nnσσ ,     [ ] [ ] 021 == ntσσ , (4.15)
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where  denotes the jump of the enclosed quantity on S  calculated as a dif-
ference of the respective values in the matrix and in the fiber. Moreover, n, t are 
the directions normal and tangential to . The values of the ‘reduced stiff-
nesses’ , Q , ,  in terms of engineering constants , , 
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The engineering constants of a composite, in view of (4.15), can be determined 
by using the rule of mixtures (cf. [18]), namely 
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where fν , mν , , , ,  are the Poisson’s ratios, Young and 
Kirchhoff moduli, respectively for the fiber and matrix materials. Moreover, V , 

 denote the non-dimensional, volumetric fiber and the matrix fractions, 

fE mE fG mG

f

mV
( )1+V =mfV .  
Consider now the functional (4.5) of strains and displacements and assume the 
non-dimensional, volumetric fiber concentration V  as the topological parame-
ter. The topological derivative should be determined at the point corresponding 
to zero concentration of fibers i.e. 

f

0=fV . So, using the adjoint method, where 
adjoint structure is defined by (4.6), (4.7), the topological derivative takes the 
form (cf. [4]) 
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where the integral is calculated along the line l corresponding to the position of 
new fiber, while a denotes width of the domain cooperating with the fiber (Fig. 
6). This domain was assumed, to be of small dimension. Moreover, derivatives 
of particular components of the reduced stiffness matrix Q  at the point 

, in view of (4.16) and (4.17), are equal to 

0

0=fV
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where ( )[ ]mfmfmf
m

m EEEEB νν
ν

ν
 2

1
22

2 +−
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=  .   

Consider now, similarly as in Subsection 4.1, an elastic plate. It is made of 
an isotropic material, but after the introduction of a rib it behaves as the 
orthotropic structure. Now, the constitutive relation in the principal directions of 
orthotropy can be written as follows 
 

κ0DM = , (4.20)
where  is the stiffness matrix. Assume that on the interface  separating rib 
and remaining part of the plate, the continuity conditions are of the form 

0D CS

 

[ ] 0=w ,   [ ] [ ] 011 == ttκκ ,   [ ] [ ] 022 == nnMM ,   [ ] [ ] 021 == ntMM , (4.21)
 

where the last condition sometimes is assumed in the form [ ] [ ] 021 == ntκκ , or 
in the mixed form. Now, using the homogenization theory, (cf. [18]), the aver-
aged stiffness moduli of the plate in the domain cooperating with the rib, speci-
fied by dimension a (Fig. 7), take the form 
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Fig. 7. Geometry of the plate structure reinforced by the rib 

                                       
Consider now the functional of curvatures and displacements (4.10) and choose 
the width of the rib  as the topological parameter. The topological derivative 
should be calculated at the value 

2a
02 =a . Thus, using the adjoint structure 

method, specified by (4.11), the topological derivative takes the form (cf. [4]) 
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The particular components of the stiffness matrix  are expressed by (4.22). 
Taking into account that derivatives of these components can be determined in 
the form 

0D
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the topological derivative is presented by the formula  
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where 
( )

( )3
1

3
32112

hhEDr −
−

=
ν

. 

The formulas for the topological derivatives of cost functionals and the 
functionals of stresses and reactions can be found in [4]. 
 
4.4. Example: reinforcement of plate by ribs 
 The rectangular plate (3000mm×2000mm) shown in Fig. 8a has been ana-
lyzed (cf. [4]). The structure is made of steel (the Young’s modulus is E = 
2.05⋅105 MPa and the Poisson’s ratio is ν = 0.3). Its initial thickness is 15 mm. 
The plate is clamped on three edges, while fourth (upper) edge is free. Trans-
verse load varies linearly along the height of the plate.  

Here, the optimization problem (4.1) corresponds to the minimization of 
the strain energy of the structure with a constraint imposed on the total volume 
of the plate, where C0 corresponds to the initial volume. Also, geometrical con-
straints limiting the minimum distance between the non-intersecting ribs to 200 
mm and the minimum thickness of the plate to 10 mm, have been used (cf. [4]). 
 



 248 Zenon Mróz, Dariusz Bojczuk 
 

20
00

a)

300015kN/m2

1

5
3

6

4 2 4

b)

 
 

Fig. 8. Optimal design of plate reinforced by ribs: a) geometry of the plate, b) optimal 
layout of ribs 

 
Rectilinear ribs of cross-sectional dimensions: width a2 = 50 mm, total 

height h3 = 40 mm, have been introduced into positions, which are specified 
from the solution of the problem of the initial localization. In the first stage, 
seven ribs are introduced, and next, slight correction of their position is per-
formed. The constraint imposed on the minimum thickness of the plate is active. 
Fig. 8b shows the layout of the ribs and the order of their introduction. The ratio 
of the strain energies of the initial and optimal designs is 354.2)()( =optinit UU .  
 
 
5. CONCLUDING REMARKS 
 

 The application of topological derivative in material science and optimal 
design has been discussed in the paper. Finite topology modification approach 
based on topological derivative has been formulated in particular. In the case of 
material science, topological derivative is used to describe the process of nuclea-
tion and growth of new phases and the process of crack nucleation. In the case of 
optimal design, approaches based on topological derivative are applied in the 
problems of topology and shape optimization and the problems of reinforcement 
optimization for disk and plate structures.  

Examples shown in the paper confirm the applicability and usefulness of 
the topological derivative approach. It is noticed, that, usually, the application of 
the finite modifications essentially reduces computation time required for the 
generation of improved or optimal designs. 
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