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A B S T R A C T

Our manuscript is related to use Caputo fractional order derivative (CFOD) to investigate results of non-linear
mode in plasma. We establish results for both temporal and spatial approximate solution. For the require
results, we use reduction perturbation method (RPM) to find the analytical solution of the dust acoustic shock
waves. Further, using the same technique we find the solitary wave potential and compared the solutions
obtained with another very useful technique known as Homotopy perturbation method (HPM). The comparison
of results for both approaches are more precise and agreed with the exact solution of the problem. Finally,
we present graphical representation for different fractional order for both temporal and spatial approximate
solution.
1. Introduction

Numerous authors have examined the dust acoustic (DA) waves’
nonlinearity [1–7]. The inertialess electron and ions in the dust-
electron-ion plasma providing restoring force that can propagate DA
nonlinear mode while inertia is provided to the mode by heavy dust
particle. Therefore, the linear modes of the dust acoustic are small
as compare to the electron and ion thermal speeds [8,9]. Both the
compressive solitary waves and the rarefactive waves are generated in
the nonlinear regime. Theoretically, according to Ergun et al. [10] these
kinds of nonlinear structures are important in the electric fields of the
auroral downward zone. The Freja satellite and Viking [11] spacecraft
data shows that the electrostatics nonlinear modes are present in the
ionospheric magnetic field where each solitary wave have different type
of velocities depend on the solitary wave amplitude. When a stationary
dust component is present, a novel type of wave mode called the dust
ion acoustic (DIA) mode [12] is produced. This mode’s phase velocity
is somewhere between ion and electron thermal velocities. Boltzmann
distributed plasma species have been used to examine the linear and
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nonlinear dynamics of DA waves in general. However, measurements in
the space plasma environment revealed the presence of non-thermally
equitable electrons and ions. The fact that these energetic particles are
significantly non-thermal has been uncovered. Such particles have been
found to cause a divergence from the Boltzmann distribution at high
altitudes, in the solar wind, and in many space plasmas [13].

Plasma is the combination of different species like electron, ion (+ve
or -ve) may be positron, dust (+ve, -ve) etc. When their is some time
external forces like electric field, magnetic field, gravitational field etc,
that can be transfer some charged particles from one place to another
place and creates a difference of temperature, number density and
pressure due to which variety of waves are generated in a plasma. So
plasma is not linear in nature, the wave generated in plasma is linear
or nonlinear. Most researchers interested in the study of non-linear
regimes like to study soliton, shock, dipolar, tripolar, quadropolar
vertices and chaos, etc [14–18]. Shock is the type of nonlinear structure
that produce in the medium when the waves speed is greater than
the speed of sound. The shock waves produce in a medium where
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dissipation is greater as compare to dispersion [19–22]. A solitary wave
is a dip or hump-shaped structure that moves through a medium with a
constant shape and speed. This structure has its own type of amplitude
or width, amplitude is related to the strength of the wave or energy
while its width to the dispersion property of the wave [23–26]. When
in a medium dispersion property is larger as compared to dissipation
then solitary wave can be generated.

Fractional calculus (FC) is becoming an indispensable tool for mod-
eling various phenomena in Science and Engineering [27]. FDEs are
essential for describing processes related to memory effects. This insight
is relatively new, and over the last three to four decades, there has been
a rise in active activity investigating different facets of FC and FDEs.
The FDEs provide a wealth of modeling and simulation possibilities
when compared to integer-order differential equations. The Mittag-
Leffler kernel is used by the authors [28] as an approximation solution
to the fractional advection–dispersion equation, which is characterized
by the fractional derivative. They describe the qualitative character-
istics, such as the solution’s existence and uniqueness, and conduct
their research using the double integration approach. Additionally,
they examine how the behavior’s fractional order affects the diffusion
process.

One popular mathematical tool for studying nonlinear wave phe-
nomena is the reductive perturbation method, sometimes called the
numerous scales method. Numerous scientific fields, including as fluid
dynamics, plasma physics [29–31], and nonlinear optics, have found
use for this technique. The study of nonlinear differential equations
makes use of the sophisticated analytical tool known as the homotopy
perturbation method (HPM). This approach, which combines the ideas
of perturbation theory and homotopy, has drawn a lot of interest
from scientists and engineers in a variety of scientific and engineering
domains because it can solve nonlinear problems effectively and pre-
cisely. The revolutionary work of [32] in his article titled ‘Homotopy
Perturbation Technique’’ is credited with the development of the HPM’’.
He suggested building a homotopy with an auxiliary parameter that
regulates the solution’s convergence as a general framework for solving
nonlinear differential equations. The solution to the initial problem can
be found by iteratively solving the resulting perturbation equation [33,
34].

The reductive perturbation method and HPM are used in this study
while these both methods have shown its efficiency in [35–37] based
on Caputo fractional order derivative [38].

Definition 1.1 ([38]). Caputo fractional order derivative of a function
𝑓 ∈ 𝐶[0,∞) for 𝛼 ∈ (0, 1] is described by

𝑐𝐷𝛼
0+𝑓 (𝑡) =

1
𝛤 (1 − 𝛼) ∫

𝑡

0
(𝑡 − 𝑥)−𝛼𝑓 (1)(𝑥)𝑑𝑥. (1)

In this article we firstly, compare RPM with HPM technique and
using CFOD in the HPM solutions and obtained the temporal as well
as spatial solution for the dust acoustic non-linear mode. This article
is organized in the following sections. In Section 3 we used Homotopy
perturbation method with subsections for temporal and spatial solu-
tions. In these sections we also present its graphical analysis, and at
the end we discuss its conclusion.

2. Reduction perturbation method

The basic set of magnetohydrodynamics (MHD) equation that can
described the fluid with charges species are the continuity equation to
gives the time rate of flow for the dynamics species of the plasma. The
dynamics specie in our model is dusts while other species like ion and
electrons are consider non-Maxwellian (superthermal).

𝜕 𝑛 + 𝜕 (𝑛 𝑢 ) = 0, (2)
𝑡 𝑑 𝑥 𝑑 𝑑 l
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In Eq. (2), 𝑛𝑑 is the dust density and 𝑢𝑑 is the dusts drift in the fluid.
Momentum equation in the MHD equation described the dynamics of
the dusts, is given by,

𝜕𝑡𝑢𝑑 + 𝑢𝑑𝜕𝑥𝑢𝑑 + 𝑒𝜕𝑥𝜙 = 0, (3)

Eq. (3) 𝜙 is the perturbed potential and moment of the dust is taken in
one dimension that is 𝑥-axis. Due to the charge in equation how much
potential is created in the plasma is described by the Poisson’s equation

𝜕2𝑥𝜙 = (𝜇𝑛𝑒 −𝑍𝑑𝑛𝑑 − 𝛿𝑛𝑖). (4)

Eq. (4) has some parameter like 𝑛𝑒 electron density, 𝑍𝑑 dust charge
number, 𝜇 = 𝑛𝑖0∕𝑍𝑑0𝑛𝑑0, and 𝛿 = 𝑛𝑒0∕𝑍𝑑0𝑛𝑑0. According to Kappa
distribution the number density of electron and ion in the plasma can
be written as

𝑛𝑒 =
[

1 − 𝛷
(𝜅𝑒 − 3∕2)

]1∕2−𝜅𝑒

𝑛𝑖 =
[

1 −
𝜏1𝛷

(𝜅𝑖 − 3∕2)

]1∕2−𝜅𝑖
.

(5)

In the given set of equations, 𝑒, 𝛷, 𝑇𝑒, 𝑇𝑖, 𝜅𝑒, and 𝜅𝑖 are the electron/ion
charge, perturbed potential, electron, ion temperature and special index
for the electron and ion kappa distribution, in that order. Moreover
𝑛𝑒0, 𝑛𝑖0, 𝑛𝑑0, and 𝑍𝑒0 are the unperturbed number densities of elec-
tron, ion, dust and unperturbed charge of the dust particle. Using the
stretching coordinates as follow by Taniuti and Washimi [26], 𝜉 =
𝜖
1
2
(

𝑥
𝜆0

− 𝑡
)

, 𝜏 = 𝜖
3𝑥
2 . Also 𝜖 > 0 is a small parameter in the stretching

coordinates which shows the delicacy of amplitude and 𝜆0 is the phase
velocity of the wave. The different parameters of plasma can be written
in the power series of infinitesimal parameter 𝜖 as;

𝑋 =
∞
∑

𝑛=0
𝜖𝑛𝑋(𝑛) (6)

Where, 𝑋 may be 𝑛𝑑 , 𝑢𝑑 , 𝜙, and 𝑍𝑑 while, in the given series 𝑢0𝑑 , and
𝜙0 are zeros in value and 𝑛𝑑 and 𝑍𝑑 are non-zero. Using (2)–(6) by
comparing 𝜖(1) both sides of the equations, we can write continuity
equation as

− 𝜕𝜉𝑛𝑑 + 1
𝜆0

𝜕𝜉 (𝑛𝑑𝑢𝑑 ) + 𝜖𝜕𝜏𝑛𝑑𝑢𝑑 = 0, (7)

the momentum equation

− 𝜕𝜉𝑢𝑑 +
𝑢𝑑
𝜆0

𝜕𝜉𝑢𝑑 + 𝜖𝑢𝑑𝜕𝜏𝑢𝑑 +
𝑍𝑑
𝜆0

𝜕𝜉𝛷 + 𝜖𝑍𝑑𝜕𝜏𝛷 = 0, (8)

nd Poisson’s equation
𝜖
𝜆20

𝜕2𝜉𝛷 + 2𝜖2
𝜆0

𝜕2𝜉𝜏𝛷 + 𝜖3𝜕2𝜏𝛷 = 𝜇𝑎𝜅𝑒 𝑒
𝛷 −𝑍𝑑𝑛𝑑 − 𝛿𝑎𝜅𝑖 𝑒

−𝛷. (9)

Where, 𝑎𝜅𝑒 = (𝜅 −1)∕(𝑘−3∕2) 𝑎𝜅𝑖 = 𝜏𝑎𝜅𝑒 , and 𝜏1 = 𝑇𝑒∕𝑇𝑖. The next higher
order with respect to 𝜖 in our reductive perturbation method, we can
write equation of continuity as

− 𝜕𝜉𝑢
(2)
𝑑 +

𝑛(0)𝑑
𝜆0

𝜕𝜉𝑛
(2)
𝑑 + 1

𝜆0
𝜕𝜉 (𝑛

(1)
𝑑 𝑢(1)𝑑 ) + 𝜕𝜏 (𝑛

(1)
𝑑 𝑢(1)𝑑 ) = 0, (10)

the dust momentum equation

− 𝜕𝜏𝑢
(2)
𝑑 +

𝑍(0)
𝑑
𝜆0

𝜕𝜉𝛷
(2) +

𝑢(1)𝑑
𝜆0

𝜕𝜉𝑢
(1)
𝑑 +𝑍(0)

𝑑 𝜕𝜏𝛷 + 𝜂𝑣𝜕
2
𝜉𝛷 = 0, (11)

here 𝜂𝑣 is the coefficient of dissipative effect in plasma.
1
𝜆20

𝜕2𝜉𝛷 − 𝑎𝜅𝑒 (𝜎𝑖 + 1)𝛷(2) +𝑍(0)
𝑑 𝑛(2)𝑑 = 0. (12)

y coupling (8)–(12), we can get the generalized non-linear partial
ifferential in the form of

𝜏𝛷 + 𝐴𝛷𝜕𝜉𝛷 + 𝐵𝜕3𝜉𝛷 + 𝐶𝜕2𝜉𝛷 = 0. (13)

e have neglected the second order perturbed potential in our calcu-

ation.
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2.1. Shock by reduction perturbation method

The non-linear structure just like a shock can be obtained in a
medium by neglecting dispersive effect as compared to dissipation.
From (13), when we neglect 𝐵 coefficient term then we can get non-
linear partial differential equation (PDE) in the form of

𝜕𝜏𝛷 + 𝐴𝛷𝜕𝜉𝛷 + 𝐶𝜕2𝜉𝛷 = 0. (14)

The exact solution of non-linear PDE Eq. (14) is given as

𝛷 = 𝛷𝑚

(

1 − tanh
(

𝜉
▵

))

, (15)

where ▵= 2𝐶∕𝑢0 is the width and 𝛷𝑚 = 𝑢0∕𝐴 is the shock wave
amplitude.

2.2. Soliton by reduction perturbation method

When we neglected the dispersion greater as compared to dissipa-
tive effect in the fluid then Eq. (13) can be written as,

𝜕𝜏𝛹 + 𝐴𝛹𝜕𝜉𝛹 + 𝐵𝜕3𝜉𝛹 = 0. (16)

The exact solution of the corresponding Eq. (16) is given as

𝛹 = 𝛹0𝑆𝑒𝑐ℎ
2
(

𝜉
▵1

)

, (17)

where, 𝛹0 = 𝑢0∕𝐴, and ▵1=
√

4𝐵∕𝑢0 are the amplitude and width of
the corresponding non-linear structure (soliton).

3. Solution by homotopy perturbative method

Korteweg–de-Vries (KdV) burger type of equation is given as

𝜕𝛷
𝜕𝑡

+ 𝐴𝛷𝜕𝛷
𝜕𝜉

− 𝐶 𝜕2𝛷
𝜕𝜉2

= 0, (18)

o solve (18) by Homotopy Perturbative Method (HPM) method we will
ollow the following method. Generally homotopy for a given nonlinear
ifferential equation can be written with fractional derivative as

(𝛷, 𝑡) = 𝜕𝛼

𝜕𝑡𝛼
𝛷− 𝜕𝛼

𝜕𝑡𝛼
𝛷0 + 𝑝 𝜕𝛼

𝜕𝑡𝛼
𝛷0 + 𝑝

(

𝐴𝛷 𝜕𝛽

𝜕𝜉𝛽
𝛷 − 𝐶 𝜕2𝛽

𝜕𝜉2𝛽
𝛷
)

= 0, (19)

aking solution of the Eq. (18) in the form of a power series as,

(𝜉, 𝑡) =
∞
∑

𝑛=0
𝑝𝑛𝛷(𝑛), (20)

here 𝑝 is the small perturbation parameter, 𝛷𝑛 is the corresponding
otential associated due to the different perturbation and 𝑛 has an
nteger having values of {0, 1, 2, 3,…}. When put equation Eq. (20) in
19) and compare different power of 𝑝 to both hand sides of Eq. (19)

we can get as

𝑝0 ∶= 𝜕𝛼

𝜕𝑡𝛼
𝛷(0) = 𝜕𝛼

𝜕𝑡𝛼
𝛷(0),

𝑝1 ∶= 𝜕𝛼

𝜕𝑡𝛼
𝛷(1) + 𝐴𝛷(0) 𝜕𝛽

𝜕𝜉𝛽
𝛷(0) − 𝐶 𝜕2𝛽

𝜕𝜉2𝛽
𝛷(0) = 0,

𝑝2 ∶= 𝜕𝛼

𝜕𝑡𝛼
𝛷(2) + 𝐴𝛷(1) 𝜕𝛽

𝜕𝜉𝛽
𝛷(1) − 𝐶 𝜕2𝛽

𝜕𝜉2𝛽
𝛷(1) = 0,

𝑝3 ∶= 𝜕𝛼

𝜕𝑡𝛼
𝛷(3) + 𝐴𝛷(2) 𝜕𝛽

𝜕𝜉𝛽
𝛷(2) − 𝐶 𝜕2𝛽

𝜕𝜉2𝛽
𝛷(2) = 0,

𝑝4 ∶= 𝜕𝛼

𝜕𝑡𝛼
𝛷(4) + 𝐴𝛷(3) 𝜕𝛽

𝜕𝜉𝛽
𝛷(3) − 𝐶 𝜕2𝛽

𝜕𝜉2𝛽
𝛷(3) = 0,

⋮

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(21)

For complete solution of KDV burger equation (18), we obtain various
order of potential, then using Eq. (20) to get the desired result.
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3.1. Temporal solution of the KdV-Burger equation

Take the initial condition for the temporal solution as,

𝛷(0) = 𝛷(0). (22)

For the HPM method we have required some initial condition to get
the approximate solution of the given nonlinear PDE, so we assume
our initial condition of the form as

𝛷(0) = 𝛷𝑚

[

1 − tanh
(

𝜉
▵

)]

, (23)

Where ▵= 2𝑐
𝑈0

so unperturbed and the next (first, second and ... so on)
order perturbed potential for the shock wave will be obtained as

𝛷0 = 𝛷(0),

𝛷1 = −
(

𝐴𝛷(0) 𝜕𝛽

𝜕𝜉𝛽
𝛷(0) − 𝐶 𝜕2𝛽

𝜕𝜉2𝛽
𝛷(0)

)

𝑡𝛼

𝛤 (𝛼 + 1)
,

𝛷2 = −
(

𝐴𝛷(1) 𝜕𝛽

𝜕𝜉𝛽
𝛷(1) − 𝐶 𝜕2𝛽

𝜕𝜉2𝛽
𝛷(1)

)

𝑡𝛼

𝛤 (𝛼 + 1)
,

𝛷3 = −
(

𝐴𝛷(2) 𝜕𝛽

𝜕𝜉𝛽
𝛷(2) − 𝐶 𝜕2𝛽

𝜕𝜉2𝛽
𝛷(2)

)

𝑡𝛼

𝛤 (𝛼 + 1)
,

𝛷4 = −
(

𝐴𝛷(3) 𝜕𝛽

𝜕𝜉𝛽
𝛷(3) − 𝐶 𝜕2𝛽

𝜕𝜉2𝛽
𝛷(3)

)

𝑡𝛼

𝛤 (𝛼 + 1)
,

⋮

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(24)

irst order problem
By comparing the first order perturbed potential we have as,

1 = −
(

𝐴𝛷(0) 𝑑
𝑑𝜉

𝛷(0) − 𝐶 𝑑2

𝑑𝜉2
𝛷(0)

)

𝑡𝛼

𝛤 (𝛼 + 1)
. (25)

implies that

𝛷1 =
𝑡𝛼𝛷2

𝑚
▵ 𝛤 (𝛼 + 1)

(

1 − tanh
(

𝜉
▵

)2
)

×

{

𝐴
(

1 − tanh
(

𝜉
▵

))

+ 2𝐶
▵2

(

1 − 3 tanh
(

𝜉
▵

)2
)}

, (26)

the complete temporal solution for KdV-burger equation is,

𝛷 = 𝛷0 +𝛷1 +⋯

𝛷 = 𝛷𝑚

[

1 − 𝑡𝑎𝑛ℎ
(

𝜉
▵

)]

+
𝑡𝛼𝛷2

𝑚
▵ 𝛤 (𝛼 + 1)

(

1 − tanh
(

𝜉
▵

)2
)

×

{

𝐴
(

1 − tanh
(

𝜉
▵

))

+ 2𝐶
▵2

(

1 − 3 tanh
(

𝜉
▵

)2
)}

+⋯

(27)

.2. Spatial solution of the KdV-Burger equation

By comparing the first order perturbed potential we have as,

1 = −
(

𝐴𝛷(0) 𝜕𝛽

𝜕𝜉𝛽
𝛷(0) − 𝐶 𝑑3

𝑑𝜉3
𝛷(0)

)

𝑡𝛼

𝛤 (𝛼 + 1)
. (28)

The complete spatial solution for the shock wave is,

𝛷 = 𝛷𝑚

[

1 − 𝑡𝑎𝑛ℎ
(

𝜉
▵

)]

−
𝐴𝛷2

𝑚𝑡
𝛼

𝜉𝛽𝛤 (𝛼 + 1)

(

1 − tanh
(

𝜉
▵

))

×
{

1
𝛤 (1 − 𝛽)

−
𝜉

▵ 𝛤 (2 − 𝛽)
+

2𝜉3

▵3 𝛤 (4 − 𝛽)

}

+
2𝐶𝑡𝛼𝛷𝑚

▵3 cosh
(

𝜉
▵

)4
𝛤 (𝛼 + 1)

{

3 − 2 cosh
(

𝜉
▵

)2
}

.

(29)
The Eq. (29), is plotted in the next plots, that are given below.
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3.3. Electric field

By using 𝐸 = −∇𝛹 , we can fine the electric field corresponding to
each solution obtained for the shock as well as solitary waves. Electric
field for the solitary wave is,

𝐸 =
𝐴𝛷2

𝑚𝑡
𝛼

▵2 𝛤 (𝛼 + 1)

(

1 − tanh
(

𝜉
▵

)2
){

1 + 2 tanh
(

𝜉
▵

)

− 3 tanh
(

𝜉
▵

)2
}

+
8𝐵𝛷𝑚

▵4
tanh

(

𝜉
▵

)

(

1 − tanh
(

𝜉
▵

)2
)

×

{

tanh
(

𝜉
▵

)2
− 2

(

1 − tanh
(

𝜉
▵

))

}

−
𝛷𝑚
▵

(

1 − tanh
(

𝜉
▵

)2
)

.

(30)

The plot for Eq. (30) is given here as,

3.4. Solitary wave potential

This part is divided in to some sub portions.

3.4.1. Temporal soliton
Initial condition for the temporal solution is,

𝛹 (0) = 𝛹 (0). (31)

For the HPM method we have required some initial condition to get
the approximate solution of the given nonlinear PDE, so we assume
our initial condition of the form as

𝛹 (0) = 𝛹𝑚𝑠𝑒𝑐ℎ
(

𝜉
𝑊

)2
, (32)

where 𝑊 =
√

4𝐵∕𝑈 so unperturbed and the next (first, second and ...
o on) order perturbed potential for the shock wave will be obtained
s

𝛹 0 = 𝛹 (0),

𝛹 1 = −
(

𝐴𝛹 (0) 𝜕𝛽

𝜕𝜉𝛽
𝛹 (0) + 𝐵 𝜕3𝛽

𝜕𝜉3𝛽
𝛹 (0)

)

𝑡𝛼

𝛤 (𝛼 + 1)
,

𝛹 2 = −
(

𝐴𝛹 (1) 𝜕𝛽

𝜕𝜉𝛽
𝛹 (1) + 𝐵 𝜕3𝛽

𝜕𝜉3𝛽
𝛹 (1)

)

𝑡𝛼

𝛤 (𝛼 + 1)
,

𝛹 3 = −
(

𝐴𝛹 (2) 𝜕𝛽

𝜕𝜉𝛽
𝛹 (2) + 𝐵 𝜕3𝛽

𝜕𝜉3𝛽
𝛹 (2)

)

𝑡𝛼

𝛤 (𝛼 + 1)
,

𝛹 4 = −
(

𝐴𝛹 (3) 𝜕𝛽

𝜕𝜉𝛽
𝛹 (3) + 𝐵 𝜕3𝛽

𝜕𝜉3𝛽
𝛹 (3)

)

𝑡𝛼

𝛤 (𝛼 + 1)
,

⋮

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(33)

First order problem

𝛹 1 = −
(

𝐴𝛹 (0) 𝑑
𝑑𝜉

𝛹 (0) + 𝐵 𝑑3

𝑑𝜉3
𝛹 (0)

)

𝑡𝛼

𝛤 (𝛼 + 1)
, (34)

implies that

𝛹 1 =
2𝛹𝑚𝑡𝛼

𝑊𝛤 (𝛼 + 1)
𝑠𝑒𝑐ℎ

(

𝜉
𝑊

)2
tanh

(

𝜉
𝑊

)

×

[

𝐴𝛹𝑚𝑠𝑒𝑐ℎ
(

𝜉
𝑊

)2
− 4𝐵

𝑊 2

{

2 − 3 tanh
(

𝜉
𝑊

)2
}]

, (35)

which further gives the complete temporal solution for the solitary
wave is,

𝛹 = 𝛹 0 + 𝛹 1 +⋯

𝛹 = 𝛹𝑚𝑠𝑒𝑐ℎ
(

𝜉
)2

+
2𝛹𝑚𝑡𝛼 𝑠𝑒𝑐ℎ

(

𝜉
)2

tanh
(

𝜉
)

𝑊 𝑊𝛤 (𝛼 + 1) 𝑊 𝑊
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Fig. 1. Comparison of 2D fractional temporal numerical solution 𝛷(𝜉) by HPM with
RPM exact solution for order 𝛼 = 1.0 and 𝑡 = 40 s based on Eqs. (15) and (27).

×

[

𝐴𝛹𝑚𝑠𝑒𝑐ℎ
(

𝜉
𝑊

)2
− 4𝐵

𝑊 2

{

2 − 3 tanh
(

𝜉
𝑊

)2
}]

+⋯ (36)

his equation shows the solitary wave potential with some extra terms,
he superpose terms indicates the time factor with fractional order.
ere we can say that when we take the time limit larger the superpose

erms will produce dominant effect but for smaller time limit the shape
f the solitary waves is resemble to the analytical solution. The solution
or Eq. (36) is plotted from which we can get important compression
nd fractional solution for the same structure.

.4.2. Spatial solution of the KdV equation
Comparing the first order of the potential through spatial calcula-

ion, we have,

1 = −
(

𝐴𝛹 (0) 𝑑𝛽

𝑑𝜉𝛽
𝛹 (0) + 𝐵 𝑑3

𝑑𝜉3
𝛹 (0)

)

𝑡𝛼

𝛤 (𝛼 + 1)
, (37)

𝛹 1 =
8𝐵𝛹𝑚

𝑊 3
𝑠𝑒𝑐ℎ

(

𝜉
𝑊

)2
tanh

(

𝜉
𝑊

)

{

2 tanh
(

𝜉
𝑊

)2
− 2

}

−
2𝐴𝛹 2

𝑚

𝜉𝛽
𝑠𝑒𝑐ℎ

(

𝜉
𝑊

)2 { 1
𝛤 (1 − 𝛽)

−
2𝜉2

𝑊 2𝛤 (3 − 𝛽)
+

16𝜉4

𝑊 4𝛤 (5 − 𝛽)

}

.

(38)

In Eq. (38) beta is the spatial fractional factor by varying this factor
we can change the dynamics of the solitary wave. These variation are
given here,

3.4.3. Electric field
By using 𝐸 = −∇𝛹 , we can fine the electric field of the solitary wave

as,

𝐸 = −
2𝛹𝑚sech(

𝑥
𝑊 )2 tanh( 𝑥

𝑊 )

𝑊
+

8𝐴𝛹 2
𝑚

𝑊 2
𝑠𝑒𝑐ℎ

(

𝜉
𝑊

)4

×

{

5 tanh
(

𝜉
𝑊

)2
− 1

}

+
8𝐵𝛹𝑚

𝑊 4
𝑠𝑒𝑐ℎ

(

𝜉
𝑤

)2
{

2 − 15 tanh
(

𝜉
𝑊

)2
+ 15 tanh

(

𝜉
𝑊

)4
}

.

(39)

Different plots for the solitary wave electric field are shown graphically,
its discussion is given in the result and discussion section.
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Fig. 2. 2D fractional temporal numerical solution 𝛷(𝜉) for 𝑡 = 40 s.

Fig. 3. 3D fractional temporal numerical solution 𝛷(𝑡, 𝜉) for order 𝛼 ∈ (0, 1].

Fig. 4. 2D fractional temporal numerical solution 𝛷(𝜉) for order 𝛼 = 0.7.
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4. Results and discussion

Fig. 1 red solid plot shows the solution of dust acoustic wave by
reductive pertebative method while the blue dot dashed plot is the
solution of shock by homotopy perturbation method in the time limit
of 𝑡 = 40 s. When we increase the time limit the deviation b/w the
reductive pertebative method and homotopy perturbation method is
increases, reductive pertebative method gives its calculation simple and
closer to the exact value. Fig. 2 we have discuss the 2D shock wave
potential against 𝜉 for different value of 𝛼 (where 𝛼 is the order of
Caputo fractional order derivative (CFOD), the spectra different 𝛷(𝜉)
with respect to 𝛼 gives us that we can take any value of 𝛼 within
the range of (0, 1] for our solution. While our simulation goes to exact
solution when we take 𝛼 = 1. Fig. 3 shows us the simulation of shock
wave potential against 𝜉 and time 𝑡. Where we have plot all the solution
for 𝛼 = (0, 1] range and the time variation in the simulation shows
that the small value of time gives us the exact solution by homotopy
perturbation method while the solution is deviated when we goes to
higher value of time. Fig. 4 shows the 2D simulation for different value
of time that gives the same behavior which is discussed in the previous
Fig. 3. Fig. 5 is the contour plot of shock waves potential against time
𝑡 and 𝜉.

In Fig. 6 the red solid plot shows the shock wave potential by
reductive pertebative method, where the blue dot dashed plot shows
the shock wave potential spatial solution using homotopy perturbation
method for order 𝛼 = 1, 𝛽 = 1 and 𝑡 = 0.1 s. This comparison concludes
that within very small time limit the solution by homotopy perturbation
method converges to reductive pertebative method.

In Fig. 7 we have drawn the spatial potential of shock wave vs. 𝜉
and time 𝑡, for 𝛼 = 0.7 and 𝛽 (spatial fractional order) in range [0.1, 0.4]
based on Eq. (29). Simulation shows that the shock potential amplitude
enhances with the value of 𝛽. While in Fig. 8 the plot is electric field
vs. 𝜉 for time 𝑡 = 0.01 shows variations with order 𝛼. In Fig. 9 is the
comparison of temporal solution of solitary wave potential, the red
solid plot is by reductive pertebative method and the blue dot dashed
plot is by homotopy perturbation method, for 𝛼 = 1 and time 𝑡 = 1×103

while keeping all the parameter constant. These two approaches are
very close to each other as shown in the corresponding simulation. In
Fig. 10 is 2D plot among solitary wave potential vs. 𝜉 for time 𝑡 = 1×102.
Observations show that within 𝛼 ∈ (0.1, 1] the solution of solitary wave
potential are valid, the solution gives its exact simulation when we take
𝛼 = 1. While Fig. 11 is the 3D plot of solitary temporal solution vs.
time 𝑡 and 𝜉 and Fig. 12 is the soliton contour plot against time 𝑡 and
𝜉. Fig. 13 is the solitary wave potential (spatial), here the solid red
plot is for reductive pertebative method and blue dot dashed plot is for
HPM, for 𝛼 = 1, 𝛽 = 1 and time 𝑡 = 1 × 103 while keeping all the other
parameters constant. The two different approaches are closed to one
another when time is taken small. But we have also observed that for
time greater than 1 × 103 both approaches mismatched to one another.
Fig. 14 is the 2D plot of spatial solitary wave potential against 𝜉 for
order 𝛼 = 1 and 𝛽 ∈ [0.2, 1]. Observation shows that for 𝛽 = 1 the plot
gives the exact shape of solitary wave potential but for value less than
1 the plot shape distort at the peak value of the solitary wave potential
while its width remains unchanged. It means that the variation with 𝛽
changes the amplitude of the soliton wave potential but its disruption
property is not affected.

In Fig. 15 is the 3D simulation of spatial solitary wave potential
against time 𝑡 and 𝜉 for 𝛼 = 1. The variation which we have men-
tioned for figure Fig. 14 is clear from that plot. While Fig. 16 is
the contour plot of soliton potential against time 𝑡 and 𝜉. We have
used the following parameters which are mentioned in the previous
literature [15,21,22] such that 𝑛𝑒 = 1, 𝜎𝑖 = 0.1, 𝑛𝑖 = 0.1, 𝑢 = 0.001,
𝑍 = 0.8, 𝑛 = 0.01, 𝜎 = 0.001, 𝑟 = 1.2, 𝑝 = 1, and 𝑘 ∈ [1, 5].
𝑑 𝑑 𝑑 𝑑 𝑑



A. Khan et al. Alexandria Engineering Journal 104 (2024) 115–123 
Fig. 5. Contour plot of 𝛷(𝜉, 𝑡) vs 𝑡 and 𝜉.

Fig. 6. Comparison of 2D fractional spatial numerical solution 𝛷(𝜉) by HPM with RPM
exact solution for order 𝛼 = 1.0, 𝛽 = 1, and 𝑡 = 0.1 s based on Eqs.(15) and (29).

Fig. 7. 3D fractional spatial numerical solution 𝛷(𝑡, 𝜉) for order 𝛼 = 0.7.
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Fig. 8. 2D fractional temporal numerical solution 𝐸(𝑥, 𝑡) for order 𝑡 = 0.01.

Fig. 9. Comparison between RPM and HPM of temporal Solution for order 𝛼 = 1.0 and
𝑡 = 1 × 103, based on Eqs. (17) and (36).

Fig. 10. 2D fractional temporal numerical solution 𝛹 (𝜉) for time 𝑡 = 1 × 102.
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Fig. 11. 3D plot of fractional temporal numerical solution 𝛹 (𝜉, 𝑡) vs 𝑡 and 𝜉, based on
Eq. (36).

Fig. 12. Contour plot of fractional temporal numerical solution 𝛹 (𝜉, 𝑡) vs time 𝑡 and
𝜉, based on Eq. (36).

Fig. 13. Comparison between RPM and HPM of spatial Solution for order 𝛼 = 1.0,
𝛽 = 1.0 and 𝑡 = 1 × 103, based on Eqs. (17) and (38).
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Fig. 14. 2D fractional spatial numerical solution 𝛹 (𝜉) vs 𝜉 for order 𝛼 = 1.0.

Fig. 15. 3D fractional spatial numerical solution 𝛹 (𝜉, 𝑡) plot vs time 𝑡 and 𝜉 for 𝛼 = 1.0,
based on Eq. (38).

Fig. 16. Contour plot of fractional spatial numerical solution 𝛹 (𝜉, 𝑡) vs time 𝑡 and 𝜉
for 𝛼 = 1.0, based on Eq. (38).
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5. Conclusions

Our work concentrated on applying the reductive perturbation
method and the homotopy perturbation method, two analytical tech-
niques, to the study of electron-ion and dust plasma dynamics. In
addition to treating ions and electrons as dynamic species, we also
treated dust as one. A series of continuity, momentum, and Pois-
son equations for the dust species in the plasma were among the
magnetohydrodynamic equations to which the reductive perturbation
method was applied. KdV Burger and KdV equations were the two
kind of solutions that were computed as a result. Furthermore, we used
the Caputo fractional order derivatives in the homotopy perturbation
approach to get two distinct solutions for the KdV Burger equation
and the KdV equation. For the solitary wave potential, we were able
to get both temporal and spatial solutions. Reduction and homotopy
perturbation techniques, in particular, coincided within a shorter time
limit, and the temporal fractional order (𝛼) and spatial fractional order
(𝛽) had an impact on the solutions. We noticed that the solutions got
closer to classical order solutions as the value of 𝛼 grew toward 1. In a
similar vein, the solutions approximated classical order solutions when
the spatial fractional order (𝛽) approached 1. Moreover, we observed
that the amplitude of the structures did not change, but the width
was influenced by the temporal fractional order. Conversely, the forms’
amplitude was impacted by the spatial fractional order, but the width
remained constant. Our results showed that the homotopy perturbation
approach and the reductive perturbation method are useful tools for
studying dust and electron-ion plasma dynamics. The solutions were
shaped by the fractional orders (𝛼 and 𝛽), which had an impact on the
amplitude and width of the structures. These findings shed light on
the behavior of the system under study and advance our knowledge of
plasma dynamics.
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