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In this paper, we consider a mathematical model of Rabies disease which is an infectious disease. The model

we are considering is a system of nonlinear ordinary differential equations and it is difficult to find an exact
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solution. He’s Homotopy perturbation method is employed to compute an approximation to the solution of
the system of nonlinear ordinary differential equations. The findings obtained by HPM are compared with a

nonstandard finite difference (NSFD) and Runge-Kutta fourth order (RK4) methods. Some plots are
presented to show the reliability and simplicity of the method.
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1. INTRODUCTION

Rabies is an infection that mostly affects the brain of an Infected animal or
individual, caused by viruses belonging to The genus Lyssavirus of the
family Rhabdoviridae and order Mononegavirales (Hayman et al,, 2011).
This disease has become a global threat and it is also estimated that rabies
occurs in more than 150 countries and territories (Rabies fact sheet,
2016). Raccoons, skunks, bats, and foxes are the main animals that
transmit the virus in the United States. In Asia, Africa, and Latin America,
it is known that dogs are the main source of transmission of the rabies
virus into the human population (Zhang et al, 2011; Grace, 2014;
Wiraninggih et al,, 2015; Global Alliance for rabies control, 2016). When
the rabies virus enters the human body or that of an animal, the infection
(virus) moves rapidly along the neural pathways to the central nervous
system; from there the virus continues to spread to other organs and
causes injury by interrupting various nerves (Rabies fact sheet, 2016; CIA,
2016; Birkho and Rota, 1962). The symptoms of rabies are quite similar to
those of encephalitis (Rupprecht et al,, 2010). Due to the movement of
dogs in homes or the surroundings, the risk of being infected by a rabid
dog can never be guaranteed. Rabies is a major health problem in many
populations dense with dogs, especially in areas where there are less or no
preventive measures (vaccination and treatment) for dogs and humans
(Lakshmikantham et al.,, 1994; Diekmann et al,, 1990; Pielou, 1969; May,
1973; Martcheva, 2015). Treatment after exposure to the rabies virus is
known as post-exposure Prophylaxis (PEP) and vaccination before
exposure to the infection is known as pre-exposure prophylaxis.

Since most of the mathematical models raised from biological problems
are nonlinear by nature and it is difficult to find the analytical solution of
such problems (Yusuf and Benyah, 2012; Hove-Musekwa et al, 2011;
Deleon, 2009; Lasalle, 1976). Therefore, it is a great challenge for
mathematicians and researchers to find such numerical and perturbation

methods which give the best approximation to the solution of such
nonlinear problems. Convergence and accuracy are the key concepts while
developing and implementing a numerical scheme otherwise results will
be inappropriate. As far as the analytical perturbation methods are
concerned, a parameter (negligibly small) needs to be exerted in the
equation. Exertion and production of such parameter is a difficult task in
these methods.

Recent research provided powerful methods like artificial parameter
method in which this small parameter is absent. An approximate solution
of nonlinear differential equations can be effectively obtained using the
well-known Homotopy Analysis Method (HAM) (Zhang et al, 2015;
Sharomi and Malik, 2017; Ali et al., 2018; Bushnagq et al., 2018a; Bushnaq
etal, 2017; Bushnagq et al,, 2018b). The method is used with perturbation
methods in recent decades. The basic and fundamental scheme of the
method was first introduced by Liao and He. The method uses a free
parameter whose appropriate selection yields fast convergence of the
algorithm. At the initial stage, He in introduced HPM and applies the
procedure to some interesting problems (Rupprecht et al., 2010; Aubert,
1999; Shah et al., 2018; Asamoah et al, 2017; Samia et al., 2018). Another
group researchers used optimal Homotopy Analysis Method (OHAM) in
order to obtain the solution of multi-point boundary value problem (Ali et
al, 2017).

The methods mentioned above are free from the choice of small parameter
and have all the advantages of perturbation methods. This work is an
extension by considering HPM applied to leptospirosis epidemic model
(Aubert, 1999; Anderson and May, 1982; Bohrer et al,, 2002; Levin et al,,
2012; Coyne et al.,, 1989; Childs et al., 2000; Hampson et al., 2007; Carroll
et al, 2010). We will compare the results obtained by HPM with Runge-
Kutta fourth order (RK4) method. Numerous problems of nonlinear
nature can be solved accurately and effectively using HPM because of its
rapid convergence (Wang and Lou, 2008; Yang and Lou, 2009; Zinsstag et
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al,, 2009; Ding et al., 2007; Smith and Cheeseman, 2002; Tchaenche and
Bauch, 2012). The rest of the manuscript is as follow. In Section 2, we
included the basic concept of HPM. In Section 3, the model is formulated
and solved by HPM. In section 4, some numerical result and discussion is
given, and the conclusion is presented at the end of the paper.

2. ANALYSIS OF HOMOTOPY PERTURBATION METHOD (HPM)

To illustrate the basic idea of HPM, consider the general nonlinear
differential equation

AW -f)=0,req, 6))

with the boundary condition,

B(ns)=0rer, @

where A is a general differential operator, § is a boundary operator, f (1)
a known analytic function, I' is the boundary of the domain Q. The
operator A is divided into linear part L and nonlinear part N. Therefore,
equation (1) can be written as,

L) + Nw) — f() = 0 (3)
By using the Homotopy technique, one can construct a Homotopy

v(r,p):Qx[01] >R 4)
which satisfies

H(v,p) = (1 - p)[L(v) — L(u,)]

+p[A(v - f(] =0 (5)
or

H(v,p) = L(v) — L(ko)

+pL(v) + pIN@) — f(1)] =0 (6)

Where, p € [0; 1] is an embedding parameter and p, is the initial
approximation of the given equation that satisfies the boundary
conditions. Clearly, we have

H(v,0) = L(v) — L(up) =0 N
Hv,1) =AWw) —f(@) =0 (8)
The changing process of p from zero to one is just that of v(r, p) changing
from py(r) to w(r). This is called deformation, and L(v) — L(y,) and
A(v) — f(r) are called homotopic in topology. If the embedding parameter
p(0 < p < 1) is considered as a small parameter, applying the classical

perturbation technique, we can naturally assume that the solution of the
equation can be given as a power series in p,

V=vy+pv + 02, s+ 9
Setting p = 1 results in the approximate solution as

lim (10)

vy L1 R 7 N R VA

3. THE MODEL OF ORDINARY DIFFERENTIAL EQUATIONS

22 = Ap = (1= vp)BopSplp = (mp +vp)Sp + SepEp + apRy,

dstD =1 -vp)BppSplp — ((1 = pp)Syp +mp + pp + 8ep + CD)ED'
11

22 = (1= pp)dypEp = (mp + up)l,

dstD =vpSp + ppEp — (Mp + ap)Ry,

S8 = By — (1= vi)BouSulp — (Myy +Vi)Sy + Sy By + @y Ry,

ddif = (1 —vy)BpuSulp — ((1 —Py)Oyyu + my +py + 6H£H)EH'

dly

ax (1 = p)dyyuEy — (my + pp)ly,

d
% =vySy + puEy — (my + ay)Ry.
With
5p(0) > 0,E5(0) = 0,1,(0) = 0,Rp(0) = 0, (12)

54(0) > 0, E;(0) = 0,1,(0) > 0,R,(0) > 0.

To find out the solution of the given model by Homotopy Perturbation
Method (HPM). Let us consider the Homotopy which becomes for the
system (1), such that,

LSp(t) — LSpo(t) = p[Ap — (1 — vp)BopSplp — (mp + vp)Sp + SepEp +
apRp — LSpo(t)]

LEp(t) — LEpo(t) = p[(1 — vp)BppSplp — (1 — pp)dyp + mp + pp +
8ep + Cp)Ep — LEpo(t)]

LIp(t) = Lipo(t) = p[(1 — pp)8ypEp — (mp + up)lp — Lipe (2)]

LRp(t) — LRpo(6) = p[vpSp + ppEp — (mp + ap)Rp — LRpo(1)]

LSy (t) — LSyo(t) = p[By — (1 —vy)BpuSulp — (my +vy)Sy + SyeyEy +
ayRy — LSyo(8)]

LEy(t) — LEyo(t) = p[(1 — vi) BpuSulp — ((1 = Pu)8pyy + My + py +
5H£H)EH — LEyo(D)]

LIy (t) — Llyo(t) = p[8uyuEy — (my + up)ly — Iyo(8)]

LRy (t) — LRyo(t) = plvySy + puEy — (my + ay)Ry — LRy ()]

Assume that the solution of model (1) is in the form,

Sp(t) = Spo + PSp1 + P*Spz + ..

Ep(t) = Epo + pEpy + p*Ep, + ..

Ip(t) = Ipg + plpy + P2Ipy + ...

Rp(t) = Rpg + pRpy + P?Rpy + ...

Su() = Suo + PSy1 + Pp2Spz + (13)
Ey(t) = Eyo + pEyy + p*Epp + -+

Iy(®) = Iyo + plyy + Pl + ...

Ry(t) = Ryo + PRyy + DRy + ...

Now using S, (t), Ep(t), Ip(t), Rp(t), Sy(t), E4(t), Iy(t), and Ry(t) in
equation (3) and compare the coefficients of zeroth order p°, first order
pland second order p? perturbation and so on respectively in each
equation of system (13), Comparing the coefficient of p°, p*,p?,...... , such
that,

p:LSpy = Ap — (1 = vp)BpoSpolpo (Mp — Vp)Spo + 8epRpo + apRpo,

Pli LEp; = (1= vp)BppSpo — ((1 = pp)8yp +mp + pp + 8ep + CD)EDO'
piLlpy = (1= pp)8ypEpe — (mp + pip)ip,, (14)
P LRp; = VpSpo — (Mp + 1p)Ipo,

P LSy1 = By — (1 = ¥i)BouSulpo — (My + ¥u)Suo + By + enEpo +
ayRyo,

pli LEy; = (1 = pu)BouSwolpo — ((1 = pu)(Ouyy + my +py +
6H€D))EH0'

P LIy = (1= py)8u¥uEno — (my + )y,

P LRy = puSuo + PuEro — (My + ay) Ry,

and
p*:LSp, = —=(1 = up)BppSpilps — (mp +vp)Spy + SRy,

p%:LEp; = (1= vp)BopSpilps — ((1 —pp)Syp + mp + pp + 8ep + CD)!
p*: L, = (1 = pp)8ypEps — (mp + pp)ipy,

p*: LRp; = vpSpy — Eps — (mp + ap)Rpy, (15)
P*: LSy, = —(1 = ¥)BouSu1lpr — (my +vi)Sys + €4 Eyy + ayRys,
p*:LEy; = (1 = pu)BouSuilpr — (1 = pu) Buvu + my + py +
6H‘€H)EH1)J

p*: Ly = (1= py)SyyuEyy — My + ) Iy,

p*: LRy, = vySy1 + puEyr — (My + ay)Ryyy

In order to obtain the solution of the problem, we consider the following
cases,

3.1 Zeroth Order Problem or P°

Spo(t) = 44,Epo(t) = 88,
Ipo(t) = 100, Rpo(t) = 110 (16)
Syo(t) = 105, Eyo(t) = 103,
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Iyo(t) =90, Ry (t) = 95
3.2 First Order Problem or P!

Sp1(6) = (Ap = (1 = vp)PpoSpolpo — (Mp — vp)Spo + SepRpo + apRpodt,
Ep () = ((1 = vp)BopSpo — ((1 —pp)8yp +tmp +pp+3ep + CD)EDO) t,
() = ((1 = pp)SyYpEpy — (mp + MD)IDo)t'

Rp1 () = (vpSpo — (mp + pip)Ipo)t, (17)
Su1 () = By — (1 = vy )Bpn O Ipo — (My + Vi ISwo + P + €nEro +
ayRyo)t,

Ey1(®) = (1 = p)BouSrolpo — ((1 — o) (Oyyy + my + py +
6HSD))EH0)tv

Iy (8) = ((1 = Pu)SyYuEpo — (my + MH)IHO)tr

Ry1(8) = (puSho + PrEro — (my + ay)Ryodt,

3.3 Second Order Problem or P?

Sp2(t) = —(1 —up)Bpp((Ap — (1 = vp)BpoSpolpo — (Mp — Vp)Spe +
2
SepRpo + apRpo) t;) (18)
Epy(t) = (1 = vp)Bpp((Ap — (1 = vp)BnoSpolpo — (Mp — vp)Spo
£2
+ 8epRpo + apRpo) 7)

t2

((1 = pp)8YpEpy — (mp + #D)IDD)7 - ((1 —pp)Syp +mp + pp + 8ep +
Cp) (19)
I (t) = (1= pp)dyp ((1 —Vp)BopSpo — ((1 —pp)8yp +mp +pp +
2 2
Sep + CD)EDO)% = (mp + #D)((l = pp)8YpEpy — (mp + .u'D)IDo)%
(20)
Rp,(t) = vp(Ap — (1 = vp)BpoSpolpo — (Mp — Vp)Spo + 8epRpe +
2
aDRDO)%_ ((1 —Vp)BppSpo — ((1 = pp)8yp +mp + pp + Sep +
2 2
CD)EDO)% = (mp + ap)(VpSpo — (Mp + .u'D)IDO)% (21)

Su2(8) = =(1 = ¥ Bou((Bu — (1 = ¥u)BouBulpo — My + Yu)Suo + Bu +
enEyo + ayRyo) %)(((1 = pp)8YpEpy — (mp + MD)IDo) ;_2) -
(my +vy) (A = pr) BouSuolpo — ((1 = py)(Ouyy + my + py +
SHSD))EHO) ;) + SH(((l = Pu)BouSuolpo — ((1 —pu)(uyy + my + py +
5HSD))EH0)§) + ay (PySuo + PuEno — (my + aH)RHO)é (22)
Eyp(0) = (1 = pp)Bou ((By — (1 = vu) BouSulpo — (My + ¥u)So + Bu +
enEpo + aHRHO)g)(((l = Pp)8VpEpe — (mp + #D)IDo)g) -
(1 = pp) Sy +my + py + 8e) (1 = py)BonSwolpo — ((1 =
P) B + s + py + 84€0) ) Eo) ) 23)
Iy, (8) = (1 = py)Suvy ((1 = Pu)BouSuolpo — ((1 = py)(Syyy + my +
put SH“—'D))EHO)%_ (my + HH)((l = Py)OuYuEyo — (my + I‘lH)IHO);
(24)
Ruz(0) = vy(By — (1 — yu)BouSulpo — (Mu + Yu)Sho + Bu + €uEno +
aHRHO)g + pu ((1 — Pu)BouSuolpo — ((1 = p)Buyu +my + py +
6H£D))EH0)§ = (my + ay)(pySuo + PuEno — (my + aH)RHO)g

(25)

To find the solution we consider p = 1 in the system (14), we get

Sp(t) = Spg + Sp1 + Sp + ...

Ep(t) = Epg + Epy + Epy + ...

In() =Ipo + Ipy +Ipp + ...

Rp(t) = Rpo + Rpy + Rpp + ...

Su(t) = Syo +Sy1 + Sz + - (26)
Ey(t) = Eyo + Eyy + Epp + ...

Ly(t) = Iyo + Iyy + Iy + ..

Ry(t) = Ryo + Ry + Rz + ...

Thus, we have a solution to the model below, i.e

Sp(t) =44 + (Ap — (1 = vp)BpoSpolpo — (Mp — vp)Spo + SepRpg +
apRpo)t + (—(1 —up)Bpp((Ap — (1 —vp)BpoeSpolpo — (Mp — Vp)Spo +

2 2
8epRpo + apRpo) t7)(((1 = Pp)8YpEpy — (mp + #D)IDD) %) -
(mp +vp)(Ap — (1 = vp)BpoSpolpo — (Mp — Vp)Spo + SepRpo +
2 2
aDRDO)% + 8(WpSpo — (Mp + up)ipo) %) + o (27)

Ep(t) =88 + ((1 —vp)BppSpo — ((1 = pp)8yp +mp + pp + Sep +
CD)EDO)t + ((1 = vp)Bop((Ap — (1 = vp)BooSpolpo — (Mp — Vp)Spo +
SepRpo + apRpo) ;)((1 = pp)8YpEpy — (mp + #D)IDo)g -(@a-
pp)8Yp +mp + pp + 6ep + Cp)) + - (28)

Ip(®) = 100 + ((1 = pp)8YpEpo — (Mp + tp)Ipe )t + (1 = pp)6Y ((1 -

t2

Vp)BppSpo — ((1 = pp)8yp +mp + pp + Sep + CD)EDO)7 -

(mp + 1) (1 = pp)8YpEno = (Mp + tip)lpg) 5) + -+ 29)
Rp(6) = 110 + (vpSpo — (mp + 1p)Ipo)t + (vp (Ap — (1 =
v5)BooSpoloo = (Mo = Vp)Spo + 8€pRoo + & Rpo) = = (1 = V5)BopSpo —
(1= pp)BYp +mp + pp + 8ep + Cp)Epo) = = (mp + @) (VpSpo
(M + 1p)po) 5) + -+ (30)
Sy (t) = 105 + By — (1 = ¥i)BonBulno — (My + Y)Suo + B + €uEno +
ayRyodt + (=1 = vu)Bou((Br — (1 = ¥u) Boubulpo — (My + vu)Suo +
B+ eFno + @uRuo) D (1 = po)8¥oEpg = (i + 14p)15) ) =
(my +vi) (L = p)BouSuolpo = (1 = p) (Buyy + my + py +
810))Eno) ) + en (1 = pi)BorSnolbo = (1 = pi) By +my + py +
84E0))Ei0) ) + @y (PuSio + o — (my + ) Ry) ) + -

(31)
E(£) = 103+ (1 = pi)PBonSioloo = (1 = pu) Guvn +mys + py +
8480))Eno ) t + (1 = pi)Bon (B = (1 = ¥i)BorSiulpo — (myy +
YindSio + Bi + o + @uRio) = )((L = pp)BYpEpo — (mp +
10)Ip0) ) = (L = i) B¥i + My + pig + Syye) (L = py)BoisSnoloo =
(1= p) Buvia +mug + py + 84 Ere) ) + -+ (32)
Iy () = 90 + ((1 = pp)8yVuEro — (my + )l )t + (1 —
)8 (= pu)BouSuolpo = (1 = P Bu¥is +my + p +
8110))Eno ) & — (myy + i) (L = pi)ByiaErno — (myg + ti)lo) ) + -+
(33)
Ry () =95+ (pySuo + puEno — (my + ay)Rylt + (vy(By —
(1= ¥)Bouuloo = (s + Vi) Suo + B + enBno + auRype) &+
Pu((L = pu)BouSuoloo = (L= pi) By + My + Py + 84Ep))Eno) S
(i + @) (PuSuo + PuEno = (Myy + )Ryo) ) + -+ (34)

4. NUMERICAL RESULTS AND DISCUSSION

Table 1: Description of Parameter and its Value.
Notation Description of Parameters Values

Ap Rate at which Sy, (¢t) is increased by 1.35
recruitment

vp The control strategy due to public 2.50
education and vaccination in the dogs

Bop Contact rate of the rabid dog into the 3.000
dog

vy The preexposure 4.008
prophylaxis(vaccination)

Pp The rate at which exposed dogs are 9.020
treated by their owners

Cp The rate at which exposed dogs die 12.223
due to culling

Up The death rate associated with rabies 13.322
infection in dogs

By Birth or immigration rate into the 14.444
susceptible human population
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Bou Contact rate of infectious dogs to the 16.666
human population

ay The rate of losing immunity in the 18.888
human population

ap The rate of losing immunity in dogs’ 17.777
population

my The natural death rate of dogs 19.999

my The mortality rate of humans 20.222

Pu The rate at which administrating 15.555
treatment to affected humans

KUy The disease induces death in humans 23.333

- Infected Dogs

LR L.

15x107 |

1x107

5x107

2107 T T

- HPM

1sx107°F

1210~

Infected Human

5x107F

5. CONCLUSION

In this article, we used a semi-analytical approach that is Homotopy
Perturbation Method (HPM), compared with other kind of methods like
Runge-Kutta fourth order (RK4) and NSFD methods for the solution of
optimal control model of rabies transmission dynamics in dogs and the
best way of reducing death rate of rabies in humans. We concluded that
the Homotopy perturbation method is a powerful technique to solve non-
linear differential equations.
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