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Abstract
The article highlights the importance of correct treatment of indenter tip when
modelling Berkovich nanoindentation. In order to account for tip imperfec-
tion, a novel analytical function describing the shape of Berkovich tip has
been proposed. The parameters of the constitutive model were calibrated using
experimental stress–strain curves. Simulations of Berkovich indentation with
the same set of constitutive model parameters have been then conducted. An
agreement between simulated and experimental stress–strain curves as well as
load-displacement curves with a single set of constitutive model parameters has
been demonstrated. Finally, the role of imperfection size and crystallographic
orientation have been discussed.

Keywords: Berkovich indentation, crystal plasticity, finite element method,
modelling nanoindentation, tip imperfection

1. Introduction

The tip invented by Berkovich [1] is now widely used in experimental indentation tests [2, 3].
However, from the point of view of finite element method (FEM) simulations of the instru-
mented indentation test, it is far easier to consider contact with a rigid spherical indenter as it
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can be simply modelled analytically as a rigid body, see [4–6]. While the perfect Berkovich
tip can be also easily treated analytically [7, 8] or by meshing the perfect pyramid [9, 10], it
was already shown in multiple papers that the tip bluntness can change the measured response
considerably.

Even for the conical indenter, it was shown in [11] that in the case of the isotropic elastic
perfectly plastic material, the hardness varies appreciably in the depth range comparable to the
indenter tip. Sakharova et al performed simulations of indentation with Berkovich, Vickers
and conical tips [12]. Parametric Bézier curves were applied to account for tip imperfection,
however, the effect of the imperfection size was not studied.

The influence of the Berkovich tip defect radius on the load-displacement (LD) curves was
analysed already in [13]. For the analysed case of elasto-plastic material with power law strain
hardening (with rather low work hardening), the analysis showed only small though noticeable
variations in load level at a given displacement. Kovar et al [14] performed simulations of the
bilinear material (fused silica) subjected to indentation with Berkovich indenter. The authors
considered not only roundness of the tip but also of the indenter edges. They demonstrated
that increasing roundness from 0 (perfectly sharp indenter) through 100, 200 and 400 up to
800 nm leads to increased steepness of the force-displacement curves (maximal force was
attained with 800 nm roundness). The effect of tip roundness was also examined in [15]. The
radius of tip curvature was measured using atomic force microscopy (AFM) to be 933 nm
and this value was used in simulations. The investigated material was again fused silica, this
time with isotropic elasto-plastic behaviour. Taking the roundness into account resulted in a
huge increase of the load at given depth. The residual imprint obtained in FEM simulation was
consistent with the one observed using AFM.

Krier et al [16] attempted to reproduce the real geometry of the Berkovich indenter in an
evenmore detailed fashion. They have considered twoBerkovich indenters with small and high
tip defects, whose surfaces were imaged usingAFM. Then both indenter scans were turned into
a volume and meshed. The authors reported significant changes in LD curves when comparing
simulations with AFM-measured tips and the perfectly sharp tips. AFM-measured Berkovich
tip surface was also directly used to perform FEM simulations in [17]. The authors showed
that worn Berkovich indenter is rounded not only in the tip region, but also on the edges. For
the case of the linear isotropic elastic material and very low penetration depth (about 20 nm)
they considered, the material’s response obtained with AFM-based shape was only slightly
harder than the one obtained with the axisymmetric sphero-conical indenter.

Sanchez-Camargo et al [18] performed simulations with the Berkovich indenter construc-
ted based on the area function obtained using the Oliver-Pharr method. The authors reported
significant differences in LD curves obtained using the tip as modelled in their paper and the
sharp tip used for comparison.

However, there is yet no systematic study of the effect of Berkovich tip roundness in the
case of crystal plasticity. The aim of the present paper is to partially fill this gap. The art-
icle is structured as follows. After this introductory section, the next section 2 describes the
aspects of the crystal plasticity framework, idealization of Berkovich indenter tip surface and
the procedure to calibrate the constitutive model parameters. Then, the next section 3 presents
the results of the Berkovich nanoindentation simulations compared against experimental data.
Discussion (section 4) touches upon the effects related to size of the imperfection radius and
crystal orientation. The paper ends with conclusions.
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2. Modelling and simulations

2.1. Crystal plasticity finite element method

The model is defined in the finite strain, total Lagrangian framework. The kinematics was
implemented in the same way as in [4, 19, 20] and is here only briefly described for the sake
of completeness. Deformation gradient F is decomposed into elastic and plastic parts:

F= FeFp, (1)

and the plastic part of the velocity gradient L̂p defines the evolution of the plastic part of
deformation gradient:

Ḟp = L̂pFp. (2)

L̂p is itself defined as a sum of shears on slip systems:

L̂p =
M∑
r=1

γ̇rmr
0 ⊗nr0. (3)

The classical power law [21] is used to obtain shear rate on each slip system r:

γ̇r = v0sign(τ
r)

∣∣∣∣τ rτ rc
∣∣∣∣n . (4)

The resolved shear stress (RSS) is obtained as a projection of the Mandel stress tensor:

τ r =mr
0 ·Me ·nr0, (5)

which itself is obtained using the hyper-elastic law:

Me = 2Ce
∂Ψ

∂Ce
. (6)

The free energy density of the form:

Ψ =
1
2
Ee ·Ce ·Ee (7)

is used. In (7), Ee is the elastic Lagrangian strain tensor:

Ee =
1
2
(Ce− 1) (8)

and Ce is the stiffness tensor. On the other hand, Ce present in equation (8) is the right elastic
Cauchy-Green tensor:

Ce = FTeFe. (9)

The rest of the formulation is clearly different from the formulations we previously used
e.g. in [19, 20, 22, 23]. Namely, here we apply a dislocation density based crystal plasticity
(DDCP)model building upon the formulation developed for austenitic stainless steels [24–26].
Note that the original model accounted also for irradiation defects, but in this paper, we omit
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Table 1. The components of the matrix hτ as specified in equation (18) [24, 25].

a1 a2 a3 a4 a5 a6

0.124 0.124 0.07 0.625 0.137 0.122

the irradiation hardening terms as we use the model for material in the virgin state. Concerning
the critical resolved shear stress (CRSS) τ sc on a given slip system s, it consists of two terms, a
friction stress τ 0 (constant w.r.t. the deformation) and a term directly depending on the density
of dislocations:

τ sc = τ0 +µbD

√√√√ 12∑
u

hsuτ ρ
u
D. (10)

The form of the matrix hsuτ is specified in the appendix, while the components of the matrix
hsuτ are defined in table 1.

The evolution of dislocation densities is governed by the multiplication-annihilation law as
follows:

ρ̇sD =
1
bD


√∑12

u h
su
ρ ρ

u
D

κ
− ycbDρ

s
D

 |γ̇| (11)

where the matrix hsuρ is defined as:

hsuρ = 1− δsu, (12)

where δsu is the Kronecker delta. Note that contrary to [25] we did not use normalization of
the dislocation density as we checked that in our case this does not lead to any improvement in
model accuracy nor efficiency. Therefore, normalization was omitted for the sake of simplicity.
The models were implemented using the AceGen code generator and the FEM simulations
were performed using the AceFEM system [27, 28].

2.2. Berkovich indenter—contact formulation

The contact element has been implemented following the approach described in [22, 29]. The
augmented Lagrangian method was applied to enforce frictionless contact constraints. The
element was implemented using the aforementioned AceGen software. The essence of the
implementation reported here (used already in [30] without explaining the details) is that the
Berkovich shape and bluntness of the tip were both explicitly taken into account. The bluntness
was achieved by using three parabolic cylinders and the rest of the indenter is assumed to
consist of three planes. The function defining the shape z= f(x,y) takes the following values:

Cy2, if y⩾
√
3
3 x and y⩾−

√
3
3 x and y⩽ x0

C
4

(
−
√
3x+ y

)2
, if y<

√
3
3 x and x⩾ 0 and x⩾

√
3x− 2x0

C
4

(√
3x+ y

)2
, if y<−

√
3
3 x and x< 0 and y⩾−

√
3x− 2x0

−
√
3
(
−
√
3ahx+ hy

a

)
− h, if x⩾ 0 and y⩽

√
3
3 x√

3(−
√
3hx−hy)
a − h, if x< 0 and y⩽−

√
3
3 x

2
√
3hy
a − h otherwise

(13)
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Figure 1. Visualization of the function defining the shape of the blunted Berkovich
indenter together with the perfect Berkovich indenter.

and is visualized in figure 1. Note that the function z= f(x,y) provides the z coordinate for
every values of x and y coordinates, thus defining a 3D shape of the Berkovich indenter. The
parameters a and h describe the perfect Berkovich indenter and are equal to 1486 nm and
200 nm, respectively. The parameters h, C and x0 describe the tip bluntness and are calculated
from the specified tip radius R:

h= R

(
1

sinα
− 1

)
, (14)

C=
tan2 90o−α

4h
, (15)

x0 =
tan90o−α

2C
, (16)

where α is the angle between the vertical axis and the axis of the side equal to:

α= ArcTan

(
a
√
3

6h

)
. (17)

The FEM mesh used in indentation simulations is shown in figure 2. The mesh was gener-
ated using the ABAQUS software and consists of 8-noded hexahedral elements. The contact
elements were generated by choosing the 4-noded quadrilateral elements on the upper surface
that were inside a circle of radius 1200 nm. The simulations of indentation were conducted by
prescribing the upward displacement of the lower surface of the mesh while the position of the
indenter was kept fixed. This is equivalent to moving the indenter downward with fixed lower
surface of the body.

2.3. Parameter calibration

The starting set of parameters was taken from [24, 25]. In order to obtain the correct parameters
of the investigated material in the virgin state, we performed simulations of uniaxial tension
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Figure 2. Finite element meshes of the whole domain and the contact elements (upper
surface 4-noded quadrilateral elements inside a circle or radius 1200 nm): (a) coarse
mesh and (b) fine mesh.

Table 2. The parameters used in the developed crystal plasticity formulation (the para-
meters established through calibration are shown in red, the other parameters were taken
from [24, 25]).

C11 C12 C44 µ τ 0 n bD ρD,0 κ yc v0

GPa GPa GPa GPa GPa — m m/m3 — — 1/s
199.0 136.0 105.0 66.0 0.22 15 2.54 · 10−10 1.6 · 1012 15 24 0.001

and compared them against the experimental results. The simulations were conducted using
the polycrystal consisting of 1000 grains subjected to periodic boundary conditions. Since
the problem of matching only one simulated stress–strain curve with the experimental one is
relatively simple, the fitting procedure was performed using a trial-and-error approach. The
parameters changed in the calibration procedure are presented in table 2 in red. The stress–
strain curves obtained in experiment and simulation are presented in figure 3.
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Figure 3. The stress–strain curves obtained in the simulations of the polycrystal com-
pared against experimental data from [31].

3. Results

In simulations of indentation, we have used the parameters calibrated by fitting the stress–
strain curves. Both FEM meshes show similar LD response, except that finer mesh provides
smoother LD curve. Since the exact value of the tip radius was not measured, we started from
the estimated value of R equal to 100 nm. It then appeared that the best agreement is obtained
when using R equal to 150 nm. The results of the indentation simulations compared against the
experimental data at various grains [32] are shown in figure 4. We again stress that the mater-
ial parameters are exactly the same as in the simulation of tension. Therefore, the observed
remarkable agreement is obtained only by fitting the radius of the Berkovich tip.

4. Discussion

4.1. The effect of the tip radius

In order to study the influence of the tip imperfection, we conducted simulations with different
radii. Figure 5 presents the LD curves for radii equal to 50, 100, 150, 200, 250 and 300 nm.
One can see that the higher value of the radius (the bigger the imperfection), the higher the
load necessary to deform a material to a given penetration. This is consistent with the intuitive
mechanistic understanding of the problem: infinitely sharp indenter penetrates the material
easily since it only has to overcome the material resistance locally, while less and less sharp
indenter compresses larger and larger material surface at the same time. Figure 6 presents
the influence of tip radius on surface topography. As could be expected, the only noticeable
difference between the imprints is the larger imprint area for the same depth in the case of
bigger radius.

7



Modelling Simul. Mater. Sci. Eng. 33 (2025) 045016 K Frydrych

Figure 4. Load-displacement curves obtained in experiments [32] and simulations with
the coarse mesh. The experiments and simulations have been performed for grains
with orientation defined by Euler angles: (a) (353◦,119◦,3◦), (b) (355◦,122◦,2◦),
(c) (355◦,122◦,2◦), (d) (289◦,93◦,138◦), (e) (359◦,88◦,139◦), (f) (42◦,27◦,221◦),
(g) (184◦,89◦,61◦), (h) (336◦,122◦,354◦), (i) (336◦,123◦,355◦).

Figure 5. The influence of tip radius on the load-displacement curves.

4.2. The effect of crystal orientation

We have also checked what is the effect of crystallographic orientation on the resulting LD
curves and surface topographies. Figure 7 presents the influence of tip radius on LD curves.
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Figure 6. The influence of tip radius on surface topography. Note that all the surface
plots were done at the same indentation depth.

Figure 7. The influence of crystallographic orientation on load-displacement curves for
Berkovich indentation (R= 150 nm) and crystal orientation: (a) 100, (b) 110 and (c)
111.

One can see that there is almost no difference for different crystallographic orientations.
Similar conclusion was reported for axisymmetric conical indenter with imperfection in [22]
(see figure 6). This can be explained by noting that these results concern austenitic stainless
steel. This material has face centered cubic structure and deforms only by crystallographic slip.
We expect that a different situation can occur in more plastically anisotropic material such as
Ti, Mg, Zn or Zr alloys with hexagonal close packed crystallographic structure, see e.g. [33].

Even though, there is almost no influence of the crystallographic orientation on the load-
penetration curve, it has a clear effect on the surface topography, cf figure 8. When indented
with an axially symmetrical tip, the selected crystallographic orientations are characterized by
four fold (cf figure 8(d)), two fold (cf figure 8(e)) and three fold (cf figure 8(f)) symmetry.
These patterns cannot be fully revealed with Berkovich indentation (cf figures 8(a)–(c)), see
also [34]). Nevertheless, one can still see considerable differences stemming from different
crystallographic orientations.

4.3. The effect of friction

The dislocation density-based model applied in the current paper leads to rather computa-
tionally intensive simulations. Accounting for friction leads to further increase of computing
time. Moreover, the specific value of the friction coefficient that should be used is unknown.
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Figure 8. The influence of crystallographic orientation on surface topography for
Berkovich indentation and crystal orientation: (a) 100, (b) 110 and (c) 111. For com-
parison, the results of spherical indentation for the same orientation are provided in
(d)–(f) (d) 100, (e) 110 and (f) 111). To better visualise the surface patterns, the part of
the surface inside the indent is hidden.

Therefore, frictionless contact was used in all simulations reported thus far. In the past, we
have demonstrated that in the case of a standard crystal plasticity model and spherical indenter,
friction affects the simulated LD curves only at depths that are unattainable at spherical indent-
ation experiments, cf figure 12 in [23]. Namely, in the figure present in op. cit., for a spher-
ical indenter with radius = 200 microns, the effect of friction starts to be seen at around 100
microns. In the current paper, the maximum depth is much lower (100 nm), nevertheless, the
question of validity of the applied frictionless approach was investigated, because both the
shape of indenter and the crystal plasticity formulation were different than in [23].

Figure 9 presents the comparison of LD curves obtained in frictionless and Coulomb fric-
tion indentation simulations obtained using the coarser mesh (presented in figure 2(a)) and
tip imperfection radius 50 nm. The comparisons have been done for both the simple crys-
tal plasticity model reported in [23] (figure 9(a)) and for the dislocation-density based model
reported here (figure 9(b)). The results for the simple crystal plasticity (figure 9(a)) show that
there is very little impact of including friction on the LD curves. The results for the dislocation
density based model (figure 9(b)) show that a little bit higher force level is attained at depth
higher than 20 nm. However, even at the highest depth used in this paper (100 nm), the dif-
ference is still small (relative maximum error being equal to 5%). The error is comparable to
the experimental scatter (cf figure 4). Therefore, using the frictionless approximation seems
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Figure 9. The influence of friction on load-displacement curves for: (a) simple crys-
tal plasticity model as in [23] and (b) dislocation-density based model as described in
the present paper. Simulations have been conducted for 100 orientation, coarser mesh
(figure 2(a)) and tip imperfection radius equal to 50 nm.

to be a valid approach for the extremely small penetration depth (100 nm) considered in the
submitted paper. Nevertheless, the approach should be reconsidered when simulating larger
penetration depths or introducing other changes.

4.4. Geometrically necessary dislocations

Let us reiterate that the agreement between LD curves observed in figure 4 was possible using:
(1) material parameters established by fitting tensile stress–strain curves, (2) accounting for tip
imperfection. In other words, using parameters established in tension without accounting for
tip imperfection would result in too low stress levels. This fact could be also possibly explained
using the theory originally proposed by Nix and Gao [35]. According to this approach, the
strain gradients occurring due to indentation are accommodated by so called geometrically
necessary dislocations (GNDs). The presence of these dislocations is responsible for a part of
an increase in strength of material. The density of GNDs is equal to the length of the circular
GND loops divided by the volume containing them. Thus, as the length is proportional to
the square of the depth and volume is proportional to its cube, the GND density is inversely
proportional to depth which results in the observed size effect. The strain gradient theory was
successfully applied to account for size effect in the case of spherical [36] and pyramidal [37]
indentation. Note however, that the very small depth regime studied here (up to 100 nm) is
essentially not covered by the classical Nix-Gao theory, see [38].

On the other hand, as noted in the Introduction (section 1), in many papers it was demon-
strated that the increase of hardness with decreasing depth can partially result from the imper-
fect tip. This is also shown in figure 5, where the load (and thus also hardness) increases
with increasing radius of tip imperfection. Neglecting the tip imperfection and accounting
for the indentation size effect (ISE) while using perfectly sharp tip does not seem to be a valid
approach, especially in the ultra-low indentation depth regime studied here. On the other hand,
using the Nix-Gao based theory (ideally in the version tailored for extremely low depths, cf
e.g. [39, 40]) together with proper treatment of the tip imperfection seems to be a reasonable
path. This way of approaching the problem was already presented in some papers, see [41].

It seems that in order to rigorously solve the issues related to a competition between ISE
resulting from GNDs and tip imperfection effects, one has to perform a joint experimental and
modelling campaign as follows. First, one should consider a material whose properties are
well known. Ideally this should be a big single crystal in order to get rid of any grain boundary
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effects. Then, independent experiments to find the mechanical properties (e.g. compression)
should be carried out. Next, indentation experiments with pyramidal indenters with various
tip imperfections should be performed. For each indenter, the exact tip geometry should be
known beforehand, e.g. by AFMmeasurements. The material parameters should be calibrated
based on experiments independent from nanoindentation. Then, simulations of nanoindenta-
tion should be performed. For those simulations, exact tip imperfection should be used. This
is different from the approach presented here since in the current paper exact tip imperfection
information was not provided and thus tip imperfection was assessed based on LD curves. In
the proposed approach, using exact tip imperfection will enable verification whether the sim-
ulated LD curves agree with experimental data. If the LD curves do not agree, the validity of
GND-based models accounting for ISE can be studied. However, such a rigorous study would
require a consistent effort from both experimental and modelling groups and is clearly outside
the scope of the current paper.

5. Conclusions

In this paper, the importance of accounting for tip imperfection when modelling Berkovich
nanoindentation was higlighted. Therefore, the analytical function describing the shape of
imperfect Berkovich indenter tip was proposed for the first time. The contact element using
this function as well as dislocation density based model were both implemented using the
AceGen software. Using the developed approach it was possible to perform simulations of
Berkovich indentation and a perfect agreement with experimental data was obtained. It should
be stressed that the parameters of the constitutive model were calibrated using the tensile
experiment information only and no modification of these parameters was introduced when
performing the simulations of Berkovich nanoindentation. Finally, the role of tip imperfection
and crystallographic orientation were investigated.
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Appendix

The form of the matrix hsuτ is the following:

hτ =



a1 a2 a2 a4 a5 a5 a3 a5 a6 a3 a6 a5
a2 a1 a2 a5 a3 a6 a5 a4 a5 a6 a3 a5
a2 a2 a1 a5 a6 a3 a6 a5 a3 a5 a5 a4
a4 a5 a5 a1 a2 a2 a3 a6 a5 a3 a5 a6
a5 a3 a6 a2 a1 a2 a6 a3 a5 a5 a4 a5
a5 a6 a3 a2 a2 a1 a5 a5 a4 a6 a5 a3
a3 a5 a6 a3 a6 a5 a1 a2 a2 a4 a5 a6
a5 a4 a5 a6 a3 a5 a2 a1 a2 a5 a3 a6
a6 a5 a3 a5 a5 a4 a2 a2 a1 a5 a6 a3
a3 a6 a5 a3 a5 a6 a4 a5 a5 a1 a2 a2
a6 a3 a5 a5 a4 a5 a5 a3 a6 a2 a1 a2
a5 a5 a4 a6 a5 a3 a6 a6 a3 a2 a2 a1



(18)

where the slip systems are defined as:

s1=
(
1̄11
)[
01̄1
]
, s2=

(
1̄11
)
[101] , s3=

(
1̄11
)
[110] , (19)

s4= (111)
[
01̄1
]
, s5= (111)

[
1̄01
]
, s6= (111)

[
1̄10
]
, (20)

s7=
(
1̄1̄1
)
[011] , s8=

(
1̄1̄1
)
[101] , s9=

(
1̄1̄1
)[
1̄10
]
, (21)

s10=
(
11̄1
)
[011] , s11=

(
11̄1
)[
1̄01
]
, s12=

(
11̄1
)
[110] (22)

and the components of the matrix hsuτ are defined in table 1.
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