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Abstract: In this work, we modified a dynamical system that addresses COVID-19 infection under a
fractal-fractional-order derivative. The model investigates the psychological effects of the disease
on humans. We establish global and local stability results for the model under the aforementioned
derivative. Additionally, we compute the fundamental reproduction number, which helps predict the
transmission of the disease in the community. Using the Carlos Castillo-Chavez method, we derive
some adequate results about the bifurcation analysis of the proposed model. We also investigate
sensitivity analysis to the given model using the criteria of Chitnis and his co-authors. Furthermore,
we formulate the characterization of optimal control strategies by utilizing Pontryagin’s maximum
principle. We simulate the model for different fractal-fractional orders subject to various parameter
values using Adam Bashforth’s numerical method. All numerical findings are presented graphically.

Keywords: dynamical system; fractal-fractional-order derivative; Pontryagin’s maximum principle;
bifurcation analysis; sensitivity analysis; control strategies

1. Introduction

Recently, the new coronavirus has become a severe global issue that is wreaking havoc
on the global economy and the health of people. Human society, endowed with modern
technology, has been currently infected with the COVID-19 disease, which is a dreadful
infection that has mostly harmed underdeveloped countries more than developed countries.
According to reports, the world’s first case of the new coronavirus was reported at the end of
2019. The study of infectious diseases is crucial to investigate the spread of various diseases
in communities, and researchers have investigated the effect of these infectious diseases on
the behavior of living organisms. It is worth noting that infectious diseases have affected
humans, as well as other animals and plants, very badly for many centuries. For instance,
see [1]. The pandemic has not only affected the world’s economy but also caused the loss of
human lives. The main source of COVID-19 infection is droplets from the afflicted person’s
mouth or nose when speaking or sneezing, and people who are in close proximity to the
afflicted person are at risk of contracting the sickness. Almost every government in the
world has embraced the lockdown policy as a preventive measure to safeguard the safety
of its population, and in such cases, doctors and paramedics have pledged to provide
health services to those who have been affected. Since the beginning of the COVID-19
pandemic, many researchers in their respective fields have studied coronavirus infection
and attempted to identify possible ways to immunize humans against this virus in order
to follow the World Health Organization’s (WHO) rules and regulations and immunize
people to the maximum extent.

Since the onset of the COVID-19 pandemic, numerous scholars across various disci-
plines have conducted research on coronavirus infection. Determining the apex of infection
within a particular country can inform decisions on how to mitigate these occurrences and

Fractal Fract. 2023, 7, 358. https://doi.org/10.3390/fractalfract7050358 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract7050358
https://doi.org/10.3390/fractalfract7050358
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0003-2177-3806
https://orcid.org/0000-0003-0342-491X
https://doi.org/10.3390/fractalfract7050358
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract7050358?type=check_update&version=1


Fractal Fract. 2023, 7, 358 2 of 27

the probability of future outbreaks with fewer infected individuals. The World Health Orga-
nization (WHO) has established guidelines and protocols to optimize the immunization of
individuals. This investigation endeavors to identify individual perspectives on adhering
to stay-at-home orders during the COVID-19 pandemic through the use of metaphors, and
explores the correlation between these perspectives, stress, depression, and anxiety. It is
important to acknowledge that measures taken to contain the spread of the pandemic may
also result in diverse psychological complications.

A novel mathematical model has been created and analyzed to evaluate the interplay
between COVID-19, Zika, chikungunya, and dengue co-dynamics. The aim is to determine
the influence of COVID-19 on the dynamics of Zika, dengue, and chikungunya, as well as
the reverse effect [2]. A proposed SEQAIHR model with saturated treatment is presented,
and the biological feasibility of the model solutions is assessed, along with the calculation of
the basic reproduction number (R0). The model displays transcritical, backward bifurcation,
and forward bifurcation with hysteresis under certain restrictions with respect to different
parameters. To validate the model, it is fitted with actual COVID-19 infection data from
Hong Kong between December 19th, 2021 and April 3rd, 2022, and the model parameters
are estimated. Sensitivity analysis is conducted to identify the most sensitive parameters
that affect R0. R0 is estimated using actual initial growth data of COVID-19, and the
effective reproduction number is calculated for the same period. Finally, an optimal control
problem is proposed, taking into account effective vaccination and saturated treatment
for the hospitalized class, to reduce the density of the infected class and minimize the
implemented cost [3].

Quantitative data were analyzed using the Kruskal–Wallis test, while qualitative data
was subjected to content analysis. The findings indicated that a significant proportion of
the participants perceived staying at home as a state of confinement, ennui/dejection, and
powerlessness. Conversely, some participants regarded staying at home as a conscientious
act, a chance, and a prerequisite for ensuring safety. Participants who viewed staying
at home as a form of confinement or a cause of ennui/dejection exhibited more psycho-
logical challenges, whereas those who perceived it as a responsibility or an opportunity
experienced fewer difficulties.

Since its inception as a subject over a century ago, mathematical modeling and in-
vestigation of infectious diseases have been central to the study of infectious disease
transmission. With the advancement of better processing, data software, and the availabil-
ity of potential for transmitting and preserving information over the internet, electronic
surveillance of infectious diseases has become common. Anderson et al. [4] found that
mathematical models have been used as powerful tools for investigating epidemiological
features of various diseases. Researchers have subsequently proposed appropriate control
and preventative techniques to better understand infectious illnesses. Infectious illnesses
and their transmission have been heavily influenced by human behavior and societal re-
sponses. Control efforts have been implemented to better understand the effects of human
behavior and societal responses on the spread of infectious illnesses. The general popula-
tion reacted to avian influenza in behavioral, psychological, and societal ways. Individuals’
psychological reactions throughout the epidemic affected the pace with which it spread, as
well as the potential for emotional and societal difficulties.

In this paper, we develop a COVID-19 epidemic model that includes a nonlinear
incidence rate for the spread of the COVID-19 virus from infective humans to susceptible
humans, which accounts for the population saturation effect. Additionally, we consider a
non-monotone incidence rate for the spread of the COVID-19 virus from infective humans
to susceptible humans, which captures the psychological effect within humans.

Fractal-fractional calculus has gained much popularity in recent times. In this branch,
the word ’fractal derivative,’ also called the Hausdorff derivative, is a non-Newtonian gen-
eralization of the traditional order derivative. This derivative deals with the measurement
of fractals, which are concepts defined in fractal geometry. The concept was introduced
when the classical derivative failed to explain the anomalous behavior of the diffusion
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process in the fractal nature of the media. This derivative is local in nature compared to
the ordinary fractional order derivative, which is non-local. It is worth noting that certain
phenomena related to porous media, turbulence, aquifers, and other media usually display
fractal properties. The use of the fractal-fractional derivative has become increasingly
popular in recent years due to its ability to model complex systems with high accuracy. This
type of derivative takes into account the fractal nature of many natural phenomena, such
as the branching patterns of trees or the irregular shapes of coastlines. By incorporating
fractal geometry into the traditional calculus framework, the fractal-fractional derivative
provides a more comprehensive understanding of the behavior of complex systems. This
has important applications in fields such as physics, engineering, and finance, where accu-
rate modeling of complex systems is crucial. Additionally, the use of the fractal-fractional
derivative has the potential to lead to new insights and discoveries in these fields, making
it an exciting area of research.

The mentioned form of the derivative has been used effectively in recent years to
investigate various real-world problems. For some recent work, we refer to [5–11]. There-
fore, keeping this in mind, we also investigate our proposed model in terms of the Caputo
fractal-fractional order derivative. We establish a detailed analysis, including the con-
struction of basic reproductive numbers, and global and local stability analysis using
various approaches. We also use mathematical arguments to develop sufficient condi-
tions for bifurcation and sensitivity analysis for the proposed model. Finally, we present
various numerical simulations using the Adam Bashforth method, and all the results are
displayed graphically.

The manuscript is structured as follows: In Section 2, we present fundamental defini-
tions and theorems that underpin this study. In Section 3, we determine the disease-free and
endemic equilibrium points and calculate the basic reproduction number at the disease-free
equilibrium point. Additionally, we conduct a stability analysis based on the equilibrium
point. In Section 4, we compute the saddle node resulting from the zero eigenvalue and de-
rive several outcomes concerning bifurcation analysis. In Section 5, we perform sensitivity
analysis based on the basic reproduction numberR0. In Section 6, we apply vaccination and
treatment control variables to prevent the population from contracting the COVID-19 virus
again. In Section 7, we establish the numerical scheme for the fractal-fractional problem
from [12] for the numerical simulation of the COVID-19 model. The numerical values and
initial conditions to the compartments/classes with descriptions are given in Tables 1 and 2.
Finally, we present the outcomes and discussion and summarize the numerical simulations
and the paper in Sections 8 and 9, respectively.

Table 1. A tabular representation of the demographic subgroups with their respective Initial coditions.

Symbol Description of Compartment/ Class Initial Conditions
S(t) Susceptible Human Population 0.85
I(t) Exposed Human Population 3
Q(t) Infected Human Population 1.9
P(t) Recovered Human Population 300
DIQ(t) Susceptible Vector Population 100

Table 2. A tabular representation of the value of Parameters and description.

Symbol Description of Parameter Value

υ Recruitment Rate [13]. τ × N(0)
τ Natural Death Rate [13]. 1

67.7×365
ϑ Transmission rate. 0.2784
ω Psychological Effect on Humans [14]. [0,1]
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Table 2. Cont.

Symbol Description of Parameter Value

χ Recovery Rate of Infected Population [15]. 0.1
v Recovery Rate of Quarantine Population. 0.020
ν Incubation Period. 0.010
$1 The mortality rate of the afflicted populace as a result of a pathological condition. 0.015
$2 Mortality rate among individuals subjected to quarantine as a result of disease. 0.015

2. Preliminaries

In this section, we recall fractional-fractional operators such that:

Theorem 1 ([9]). Assume that the function s(t) is differentiable in the open interval (a, b). Then,
the fractal-fractional derivative of s of order λ in the Caputo sense with power law is given as:

FFP
a Dκ,λ

t s(t) =
1

Γ[m− λ]

∫ t

a

ds(ξ)
dξκ

(t− ξ)m−λ−1dξ, m− 1 < λ ≤ m, 0 < m− 1 < κ ≤ m

ds(ξ)
dξκ

= lim
t−ξ

s(t)− s(ξ)
tκ − ξκ

.
(1)

if s is fractal differentiable on (a, b) with order κ.

Theorem 2 ([9]). The fractal-fractional integral of function s with fractal order κ > 0 and fractional
order α > 0 is defined as:

FFP
0 Iκ,λ

t s(t) =
κ

Γ(λ)

∫ t

0
ξλ−1s(ξ)(t− ξ)λ−1dξ. (2)

if s(t) is continuous in an opened interval [a, b].

Definition 1. Suppose we consider the fractal-fractional non-linear ODE such that

FFP
0 Dκ,λu(t) = v(t, u(t)), with u(0) = u0. (3)

From Zhang et al. [12] the resultant numerical scheme for the Equation (3) can be written as:

u(k + 1) =u(0) +
κh̄λ

Γ(λ + 2)

m

∑
p=0

[
tκ−1
(p) v

(
u(p), tp

)
× ((m + 1− p)κ(m− p + 2 + κ)− (m− p)κ(m− p + 2 + 2κ))

−tκ−1
(p−1)v

(
u(p−1), t(p−1)

)
((m + 1− p)κ + 1− (m− p)κ(m− p + 1 + κ))

]
.

(4)

Formulation of the Proposed Model of COVID-19

The model is modified from the existence SIQR model of [16]:

dS
dt

= Λ− µS− βSI
N

,

dI
dt

=
βSI
N
− (µ + γ + δ + α)I,

dQ
dt

= δI − (µ + ε + α)Q,

dR
dt

= γI + εQ− µR.


(5)
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The modified version of the model (5) is as follows in the fractal-fractional Caputo
sense with power law kernel:

FFP
0 Dκ,λS(t) = υ− τS(t)− ϑS(t)I(t)

1 + ωI(t)
,

FFP
0 Dκ,λ I(t) =

ϑS(t)I(t)
1 + ωI(t)

− (τ + χ + ν + $1)I(t),

FFP
0 Dκ,λQ(t) = νI(t)− (τ + v + $2)Q(t),
FFP
0 Dκ,λP(t) = χI(t) + vQ(t)− τP(t),
FFP
0 Dκ,λDIQ = $1 I(t) + $2Q(t).


(6)

where the parameters are defined as: υ = recruitment rate, τ natural death rate, ϑ trans-
mission rate, ω psychological effect on humans [14,17], $1, $2 death rates of infected and
quarantine population due to disease, respectively, χ, v are recovery rates of infected
and quarantine population, respectively, and ν is the rate of infection. The functions or
classes are defined as: S(t) is the susceptible human population, I(t) is the infected human
population, Q(t) is the quarantine population, P(t) is the protected population, and DIQ
represents deaths in infected and quarantine populations.

3. Equilibrium Points and Stability

Here we derive our main results in the following sub-sections.

3.1. Equilibrium Points

We have two types of equilibrium points such as disease-free and endemic equilibrium
points. In the disease-free equilibrium point, we have no infection in the population. Thus
in the mathematical model the infected compartments become zero while in endemic
equilibrium the model counts as a whole. We denote the disease-free equilibrium point by
E0 while the disease-endemic equilibrium point is denoted by E∗. The equilibrium points
are as follows:

E0 =
( ν

τ
, 0, 0, 0, 0

)
. (7)

while the disease-endemic equilibrium is computed in terms of one class, such that

E∗ = (S∗, I∗,Q∗,P∗,D∗), (8)

where

S∗ = ν(1 + ωI∗)
(1 + ωI∗) + ϑI∗ ,

Q∗ = −$1

$2
I∗,

P∗ = 1
τ

(
χτ − v

$2
$1I∗

)
.


(9)

3.2. Basic Reproduction Number

Here we are going to compute the fundamental reproduction number as

dZ
dt

∣∣∣∣
E0

= f− v. (10)
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where the non-linear and linear terms from the infected classes in matrix f and v, respec-
tively are given as

f =

(
ϑS(t)I(t)
1+ωI(t)

0

)
, v =

(
−(τ + χ + ν + $1)I(t)

(τ + v + $2)Q(t)− νI(t)

)
. (11)

Now, the Jacobian matrix of f and v is given by

F =

(
ϑS0(t)I0(t)
1+ωI0(t) −

ϑS0(t)I0(t)ωϑ
(1+ωI0(t))2 0

0 0

)
, and V =

(
τ + χ + ν + $1 0

−ν τ + v + $2

)
. (12)

We now calculate the inverse of matrix V and the next generation matrix G(E0), such that

V−1 =

(
1

τ+χ+ν+$1
0

ν
($1+τ+v)(τ+χ+ν+$1)

1
$2+τ+v

)
, and G(E0) =

(
ϑS0

(τ+χ+ν+$1)
0

0 0

)
. (13)

Thus, the non-zero and largest eigenvalue is the basic reproduction numberR0 is

R0 =
ϑS0

(τ + χ + ν + $1)
, (14)

where S0 = υ
τ .

3.3. Stability Analysis

Let a fractal-fractional order linear homogenous system of the following form be given:

FFP
0 Dκ,λ

t s(t) = As(t),

s(0) = s0.
(15)

where A ∈ Nn×n(R) & 0 < κ, λ ≤ 1. The following theorems are on the stability of a linear
homogenous system (15).

Theorem 3. The COVID-19 model at the disease-free equilibrium point E0 is locally asymptotically
stable ifR0 < 1, otherwise unstable.

Proof. The Jacobian matrix of the system (6) at disease-free equilibrium point E0 is given by

J
(
E0
)
=


−τ −ϑS0 0 0 0
0 ϑS0 − ($1 + ν + τ + χ) 0 0 0
0 υ −($2 + τ + v) 0 0
0 χ v −τ 0
0 $1 $2 0 0

. (16)

The two eigenvalues are ζ1 = ζ2 = −τ. The reduced matrix becomes

J
(
E0
)
=

ϑS0 − ($1 + ν + τ + χ) 0 0
υ −($2 + τ + v) 0
$1 $2 0

. (17)

The characteristic equation becomes

ζ(ζ2 + α1ζ + α2) = 0. (18)
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Thus, the roots of the characteristic Equation (18) are given by

ζ1 = −($1 + ν + τ + χ)(1−R0),

ζ2 = −($2 + τ + v),

ζ3 = 0.

(19)

We have a single zero eigenvalue while according to the eigenvalues the system is locally
asymptotically stable. For the zero eigenvalue, we proceed with the saddle-node bifurcation
in the next section. For this, we take basic reproduction numberR0 equal to 1 such that

R0 =
ϑS0

(τ + χ + ν + $1)
= 1. (20)

From Equation (20), we have the parameter ϑ0 = ϑ, that is

ϑ0 =
τ(τ + χ + ν + $1)

ν
. (21)

Thus, Equation (21) is the bifurcation parameter.

4. Bifurcation Analysis

In this section, we demonstrate bifurcation analysis of the system (6). We follow
theorem A of Carlos Castillo-Chavez and Song [18] and Buonomo and Lacitignola [19],
which is discussed above to obtain the required result. Recall the system (6):

FFP
0 Dκ,λS(t) = υ− τS(t)− ϑS(t)I(t)

1 + ωI(t)
,

FFP
0 Dκ,λI(t) = ϑS(t)I(t)

1 + ωI(t)
− (τ + χ + ν + $1)I(t),

FFP
0 Dκ,λQ(t) = νI(t)− (τ + v + $2)Q(t),
FFP
0 Dκ,λP(t) = χI(t) + vQ(t)− τP(t),
FFP
0 Dκ,λDIQ = $1 I(t) + $2Q(t).


(22)

Now, put S(t) = u1, I(t) = u2, Q(t) = u3, P(t) = u4, & DIQ(t) = u5, while the right
hand side equals gk for k = 1, 2, 3, 4, 5. Thus the system (22) becomes

g1 = υ− τu1 −
ϑu1u2

1 + ωu2
,

g2 =
ϑu1u2

1 + ωu2
− (τ + χ + ν + $1)u2,

g3 = νu2 − (τ + v + $2)u3,

g4 = χu2 + vu3 − τu4,

g5 = $1u2 + $2u3.


(23)

Theorem 4. By applying Theorem A we show that system (6) can exhibit a forward bifurcation,
when ϑ = ϑ0.

Proof. According to Equation (20), the disease-free equilibrium E0 exhibits a single zero
eigenvalue, while the remaining eigenvalues are either real or possess negative real compo-
nents. Consequently, when ϑ = ϑ0 (or R0 = 1), E0 represents a non-hyperbolic equilibrium,
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thereby satisfying assumption (A1) of Theorem A. Let w = (w1, w2, w3, w4, w5)
T denote a

right eigenvector linked to the zero eigenvalue ζ3 = 0. It follows that
−τw1 − ϑw2ν

τ
[ϑ ν

τ − ($1 + ν + τ + χ)]w2
νw2 − ($2 + τ + v)w2

χw2 + vw3 − τw4
$1w2 + $2w3

 =


0
0
0
0
0

. (24)

Thus, the non-zero ws are given as

w1 =
ϑw3S0

τ$1
, w2 = −$2w3

$1
, and w4 =

(
v− χ$2

τ

)
w3. (25)

Furthermore, the left eigenvector v = (v1, v2, v3, v4, v5) satisfying v · w = 1 is given by:
−τv1

[ϑS0 − ($1 + ν + τ + χ)]v2 − ϑS0v1 + νv3 + χv4 + $1v5
vv4 − ($2 + τ + v)v3 + $2v5

−τv4
0

 =


0
0
0
0
0

. (26)

Thus, the non-zero vs are given as

v2 =
v3[ν + $2

$1
($2 + τ + v)]

($1 + ν + τ + χ)− ϑS0 , v5 = v3

[
$2 + τ + v

$2

]
. (27)

The coefficients a and b defined in Theorem A are given by

a =
5

∑
k,i,j=1

vkwiwj
∂2gk

∂ui∂uj

(
E0, ϑ0

)
,

b =
5

∑
k,i=1

vkwi
∂2gk

∂ui∂ϑ

(
E0, ϑ0

)
.


(28)

Now, from Equations (23), (25), (27) and (28) we have

a = v2w2
1

∂2g2

∂u2
1

(
E0, ϑ0

)
+ v2w1w2

∂2g2

∂u1∂u2

(
E0, ϑ0

)
+ v2w1w3

∂2g2

∂u1∂u3

(
E0, ϑ0

)
+ v2w1w4

∂2g2

∂u1∂u4

(
E0, ϑ0

)
+ v3w2w1

∂2g3

∂u2∂u1

(
E0, ϑ0

)
+ v3w2

2
∂2g3

∂u2
2

(
E0, ϑ0

)
+ v3w2w3

∂2g3

∂u2∂u3

(
E0, ϑ0

)
+ v3w2w4

∂2g3

∂u2∂u4

(
E0, ϑ0

)
+ v5w3w1

∂2g5

∂u5∂u1

(
E0, ϑ0

)
+ v5w3w2

∂2g5

∂u5∂u2

(
E0, ϑ0

)
+ v5w3w3

∂2g5

∂u5∂u3

(
E0, ϑ0

)
+ v5w3w4

∂2g5

∂u5∂u4

(
E0, ϑ0

)
,

(29)

which yields that

a = v3τ

[
$2w3(τ + χ + ν + $1)

$1

]2
[

ν + $2
$1
($2 + τ + v)

($1 + ν + τ + χ)− ϑν
τ

]
, (30)
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and b is given as

b = v2w1
∂2g2

∂u1∂ϑ

(
E0, ϑ0

)
+ v2w2

∂2g2

∂u2∂ϑ

(
E0, ϑ0

)
+ v2w3

∂2g2

∂u3∂ϑ

(
E0, ϑ0

)
+ v2w4

∂2g2

∂u4∂ϑ

(
E0, ϑ0

)
+ v3w1

∂2g3

∂u1∂ϑ

(
E0, ϑ0

)
+ v3w2

∂2g3

∂u2∂ϑ

(
E0, ϑ0

)
+ v3w3

∂2g3

∂u3∂ϑ

(
E0, ϑ0

)
+ v3w4

∂2g3

∂u4∂ϑ

(
E0, ϑ0

)
+ v5w1

∂2g5

∂u1∂ϑ

(
E0, ϑ0

)
+ v5w2

∂2g5

∂u2∂ϑ

(
E0, ϑ0

)
+ v5w2

∂2g5

∂u2∂ϑ

(
E0, ϑ0

)
+ v5w3

∂2g5

∂u3∂ϑ

(
E0, ϑ0

)
+ v5w4

∂2g5

∂u4∂ϑ

(
E0, ϑ0

)
.

(31)

After evaluation of b, such that

b =
$2v3w3

[
ν + $2

$1
($2 + τ + v)

]
$1

[
($1 + ν + τ + χ)− ϑν

τ

] [ω− ν

τ

]
, (32)

eventually, a and b are both positive. Hence, it is backward bifurcation.

5. Sensitivity Analysis

Here, we use the criterion proposed by Chitnis et al. [20] to determine how sensitive
the parameters in the proposed model are, in order to investigate the transmission of
infections or disorders. We compute the partial derivative with regard to each component
in the reproduction number in order to ascertain the sensitivity ofR0 in terms of each of
its parameters. In other words, if p is an arbitrary parameter, then R0 versus p sensitivity
index is determined as follows

SR0
p =

p
R0

[
∂R0

∂p

]
.

Now, according to the above relation, we have

SR0
ν = − ν

R0

[
ϑ

τ(χ + $1 + ν + τ)2

]
< 0,

SR0
τ = − τ

R0

[
υϑ

τ(χ + $1 + ν + τ)2 +
υϑ

τ2(χ + $1 + ν + τ)

]
< 0,

SR0
ϑ =

ϑ

R0

[
υ

τ (χ + $1 + ν + τ)

]
> 0,

SR0
χ = − χ

R0

[
υϑ

τ(χ + $1 + ν + τ)2

]
< 0,

SR0
$1 = − $1

R0

[
υϑ

τ(χ + $1 + ν + τ)2

]
< 0,

SR0
υ =

υ

R0

[
ϑ

τ(χ + $1 + ν + τ)2

]
> 0.



(33)

Now, we present a Table 3 for the numerical values of the sensitivity analysis such that
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Table 3. Sensitivity of the R0 versus proposed parameters.

Parameter Sensitivity Index Value Parameter Sensitivity Index Value

ν sR0
ν −0.0799 τ sR0

τ −1.0003

ϑ sR0
ϑ 1 χ sR0

χ −0.7997

$1 sR0
$1 −0.1199 υ sR0

υ 1

The graphical representation is the following:
In Figure 1, the sensitivity indices are graphically presented as a bar chart for the

recognition of dominant parameters in which, by increase or decrease, there is a large effect
in the model (6) associated to those parameters. In the presented bar chart (Figure 1), the
most sensitive parameters are ϑ and υ. Therefore, by increasing the values of these sensitive
parameters, the basic reproduction number also increases.
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Figure 1. Plot of Sensitivity Analysis based onR0 with each parameter associated withR0.

6. Optimal Control Strategies

The COVID-19 model, as presented in Equation (6), is subjected to the optimal control
strategy. To reduce coronavirus infection and further propagation in the population, we
explore four potential controls. These controls can be categorized as follows: the vaccine is
specified as the control variable u1, and the treatment of the infected human population is
defined as the control variable u2.

Consider the model (6) with optimal control variables u1 and u2.

FFP
0 Dκ,λS(t) = υ− (u1 + τ)S(t)− ϑS(t)I(t)

1 + ωI(t)
− θP(t),

FFP
0 Dκ,λ I(t) =

ϑS(t)I(t)
1 + ωI(t)

− (τ + u2 + ν + $1)I(t),

FFP
0 Dκ,λQ(t) = νI(t)− (τ + v + $2)Q(t),
FFP
0 Dκ,λP(t) = u1S(t) + u2 I(t) + vQ(t)− τP(t)− θP(t),
FFP
0 Dκ,λDIQ = $1 I(t) + $2Q(t).


(34)

The primary aim is to reduce the objective function, which is defined as a function of the
state variables subject to non-negativity constraints and non-negative initial conditions.

J(u1, u2) =
∫ Tf

0

(
z1 I + z2Q +

1
2

[
B4u2

1 + B5u2
2

])
dt, (35)
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subject to the control system (34). The parameters governing weight and balance are
denoted by the constants Bj, where j ranges from 1 to 5, and the terminal time is denoted by
Tf . Due to the nonlinearity of the control cost associated with intervention, quadratic control
functions are employed, indicating that the relationship between the cost of intervention
for infected individuals and the impact of intervention is not linear. The aforementioned
controls are Lebesgue-integrable functions that are bounded. Our objective is to obtain
optimal controls u∗i for i equal to 1 or 2.

J(u∗i ) = min
U

(J(ui)), (36)

where U is denoted to be the control set given by

U =
{
(ui) :

[
0, Tf

]
→ [0, 1], (ui), is Lebesgue measurable

}
. (37)

Characterization of an Optimal Control

The theory of Pontryagin’s maximum principle [21] provides the necessary require-
ments that an optimal control must meet. The systems (34) and (35) are transformed into a
problem of minimizing a Hamiltonian H pointwise with regard to the controls ui, i = 1, 2
using this principle. To begin, we must write the Hamiltonian H, which is given by

H =z1 I + z2Q
1
2
+
[
ρ1u2

1 + ρ2u2
2

]
+ Φ1

[
υ− (u1 + τ)S(t)− ϑS(t)I(t)

1 + ωI(t)
− θP(t)

]
+ Φ2

[
ϑS(t)I(t)
1 + ωI(t)

− (τ + u2 + ν + $1)I(t)
]

+ Φ3[νI(t)− (τ + v + $2)Q(t)]
+ Φ4[u1S(t) + u2 I(t) + vQ(t)− τP(t)− θP(t)]
+ Φ5[$1 I(t) + $2Q(t)],

(38)

where Φi for i = 1, . . . , 5 denote the adjoint variables associated to the state variables
S, I, Q, P, and R. For each state variable, the adjoint system can be obtained by taking
partial derivatives of the Hamiltonian (38) with respect to the state variables.

Theorem 5. If the control system (38) is minimized over U by the given optimal controls ui and
solutions S, I , Q, P, D, then there exist adjoint variables λi that satisfy the equation ∂Φi

dt = − ∂H
∂i ,

with the transversal conditions given by

Φi

(
Tf

)
= 0, i = S, I, Q, P, D. (39)

Now, consider the characteristic equations of the control variables, such that

u1 := ρ1u1 + Φ4S∗ −Φ1S∗ = 0,

u2 := ρ2u2 − I∗Φ2 + I∗Φ4 = 0.

}
(40)

and the optimality condition is given by ∂H
∂ui

= 0, i = 1, . . . , 4. Furthermore, we have the controls u∗i

u∗1 = min
{

1, max
[

0,
S∗(Φ1 −Φ4)

ρ1

]}
,

u∗2 = min
{

1, max
[

0,
I∗(Φ2 −Φ4)

ρ2

]}
.

 (41)

Proof. The findings of Fleming and Rishel [22] and Sinan et al. [23] provide assurance
regarding the presence of an optimal control problem and the corresponding adjoint system,
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which are derived through the partial derivatives of the Hamiltonian H in Equation (35)
and the assessment of the optimal control variables u1 and u2, respectively.

FFP
0 Dκ,λΦ1(t) = Φ4u1 −Φ1

(
τ + u1 +

I∗ϑ
I∗ω + 1

)
+

I∗Φ2ϑ

I∗ω + 1
,

FFP
0 Dκ,λΦ2(t) = z1 + Φ5$1 + Φ3ν + Φ4u2 −Φ2

(
$1 + ν + τ + u2 −

S∗ϑ
I∗ω + 1

+
I∗S∗ωϑ

(I∗ω + 1)2

)

− Φ1S∗ϑ

(I∗ω + 1)2 ,

FFP
0 Dκ,λΦ3(t) = z2 + Φ5$2 + Φ4v−Φ3($2 + τ + v),
FFP
0 Dκ,λΦ4(t) = Φ1θ −Φ4(τ + θ),
FFP
0 Dκ,λΦ5(t) = 0.



(42)

This completes the proof. For the graphical representation of the optimal control we provide
Figures 2 and 3 in which the vaccination and treatment rate show best results in protected
population P(t).
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Figure 2. The implementation of fractal-fractional orders with κ = 0.5 and λ = 0.5 can lead to optimal
control of COVID-19. This is due to the influence of vaccination and treatment factors, represented by
u1 and u2, respectively.

Figure 3. The dynamics of vaccine control variable u1 for κ = 1 and λ = 1.
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7. Numerical Scheme for the Fractal-Fractional Model

Consider the fractal-fractional model (6) and apply the scheme such that

FFP
0 Dκ,λS(t) = υ− τS(t)− ϑS(t)I(t)

1 + ωI(t)
,

FFP
0 Dκ,λ I(t) =

ϑS(t)I(t)
1 + ωI(t)

− (τ + χ + ν + $1)I(t),

FFP
0 Dκ,λQ(t) = νI(t)− (τ + v + $2)Q(t),
FFP
0 Dκ,λP(t) = χI(t) + vQ(t)− τP(t),
FFP
0 Dκ,λDIQ = $1 I(t) + $2Q(t).


(43)

Now, the system of Equation (43) implies that

S(t) = S(0) +
κ

Γ(λ)

∫ t

0
rκ−1(t− x)λ−1v1(S, x)dx,

I(t) = I(0) +
κ

Γ(λ)

∫ t

0
rκ−1(t− x)λ−1v2(I, x)dx,

Q(t) = Q(0) +
κ

Γ(λ)

∫ t

0
rκ−1(t− x)λ−1v3(Q, x)dx,

P(t) = P(0) +
κ

Γ(λ)

∫ t

0
rκ−1(t− x)λ−1v4(P, x)dx,

DIQ(t) = DIQ(0) +
κ

Γ(λ)

∫ t

0
rκ−1(t− x)λ−1v5

(
DIQ, x

)
dx.



(44)

The resultant scheme for the system (44) is given as

S(m + 1) =S(0) +
κh̄λ

Γ(λ + 2)

m

∑
p=0

[
tκ−1
(p) v

(
S(p), tp

)
× ((m + 1− p)κ(m− p + 2 + κ)− (m− p)κ(m− p + 2 + 2κ))

tκ−1
(p−1)v

(
S(p−1), t(p−1)

)
((m + 1− p)κ + 1− (m− p)κ(m− p + 1 + κ))

]
,

(45)

I(m + 1) =I(0) +
κh̄λ

Γ(λ + 2)

m

∑
p=0

[
tκ−1
(p) v

(
I(p), tp

)
× ((m + 1− p)κ(m− p + 2 + κ)− (m− p)κ(m− p + 2 + 2κ))

−tκ−1
(p−1)v

(
I(p−1), t(p−1)

)
((m + 1− p)κ + 1− (m− p)κ(m− p + 1 + κ))

]
,

(46)

Q(m + 1) =Q(0) +
κh̄λ

Γ(λ + 2)

m

∑
p=0

[
tκ−1
(p) v

(
Q(p), tp

)
× ((m + 1− p)κ(m− p + 2 + κ)− (m− p)κ(m− p + 2 + 2κ))

−tκ−1
(p−1)v

(
Q(p−1), t(p−1)

)
((m + 1− p)κ + 1− (m− p)κ(m− p + 1 + κ))

]
,

(47)

P(m + 1) =P(0) +
κh̄λ

Γ(λ + 2)

m

∑
p=0

[
tκ−1
(p) v

(
P(p), tp

)
× ((m + 1− p)κ(m− p + 2 + κ)− (m− p)κ(m− p + 2 + 2κ))

−tκ−1
(p−1)v

(
P(p−1), t(p−1)

)
((m + 1− p)κ + 1− (m− p)κ(m− p + 1 + κ))

]
,

(48)
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DIQ(m + 1) =DIQ(0) +
κh̄λ

Γ(λ + 2)

m

∑
p=0

[
tκ−1
(p) v

(
DIQ(p), tp

)
× ((m + 1− p)κ(m− p + 2 + κ)− (m− p)κ(m− p + 2 + 2κ))

−tκ−1
(p−1)v

(
DIQ(p−1), t(p−1)

)
((m + 1− p)κ + 1− (m− p)κ(m− p + 1 + κ))

]
.

(49)

8. Results and Discussion

We have simulated our model for various values of fractal dimensions and different
fractional orders, and the results are presented in Figures 4–31. To protect the human
population from reinfection and treat infected humans in hospitals, we implemented an
optimal control strategy using Pontryagin’s maximum principle, as used by [24–26]. Two
optimal control variables, u1 and u2, were employed to represent vaccination of the suscep-
tible class and treatment of the infected class, respectively. The resulting figure, shown in
Figure 2, demonstrates an increase in the protected human population for fractal-fractional
orders with κ = 0.5 and λ = 0.5. The control variables are presented in Figures 3 and 32. A
sensitivity analysis was conducted on each parameter’s basic reproduction number, and the
findings were displayed in a bar chart in Figure 1. Additionally, Figures 4–8 present three-
dimensional plots of each parameter. The results of the sensitivity analysis indicate that the
parameters τ, ϑ, χ, and υ are more sensitive than the other parameters. The behaviour of
surfaces in Figures 33–37 show the effect in R0 due to the variation in parameters υ and ϑ, τ
and ϑ, χ and ϑ, ν and ϑ while $1 and ϑ. By examining the sensitivity of certain parameters,
a meaningful connection can be established among the uncertain parameters in the model.
From Figures 19–22, it reflects that the COVID-19 pandemic has had a significant impact on
the mental health and well-being of people worldwide. The uncertainty, fear, and stress
caused by the pandemic have led to a range of psychological effects, including: Anxiety and
Depression: The pandemic has caused a lot of anxiety and depression among people due
to the fear of getting infected, losing loved ones, and the uncertainty of the future. Social
Isolation: The pandemic has led to social distancing measures, which have resulted in social
isolation and loneliness, leading to depression and anxiety. Post-Traumatic Stress Disorder
(PTSD): People who have been infected with COVID-19 or have lost loved ones to the
virus may develop PTSD, which can cause flashbacks, nightmares, and anxiety. Substance
Abuse: The pandemic has led to an increase in substance abuse, including alcohol and
drug abuse, as people try to cope with the stress and anxiety caused by the pandemic.
Burnout: Healthcare workers and essential workers have been working tirelessly during
the pandemic, leading to burnout and exhaustion. Overall, the COVID-19 pandemic has
had a significant impact on the mental health and well-being of people worldwide. So, the
factors described above can cause deaths.
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Figure 4. The kinetics of the human population that is susceptible to a given condition is being
studied for a fractal order of κ = 0.5 and different fractional orders denoted by λ.
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Figure 5. Dynamics of Infected Human Population for Fractal Order κ = 0.5 and various Fractional
Orders, λ.
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Figure 6. Dynamics of Quarantine Human Population for Fractal Order κ = 0.5 and various Fractional
Orders, λ.
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Figure 7. Dynamics of Protected Human Population for Fractal Order κ = 0.5 and various Fractional
Orders, λ.
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Figure 8. Dynamics of Deaths in Quarantine and Infected Human Populations for Fractal Order
κ = 0.5 and various Fractional Orders, λ.
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Figure 9. Dynamics of Susceptible Human Populations for Fractional Order λ = 0.5 and various
Fractal Orders, κ.
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Figure 10. Dynamics of Infected Human Populations for Fractional Order λ = 0.5 and various Fractal
Orders, κ.
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Figure 11. Dynamics of Quarantine Human Populations for Fractional Order λ = 0.5 and various
Fractal Orders, κ.
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Figure 12. Dynamics of Protected Human Populations for Fractional Order λ = 0.5 and various
Fractal Orders, κ.

0 10 20 30 40 50 60

t

100

100.5

101

101.5

102

102.5

103

103.5

104

D
e
a
th

s
 i
n
 I
n
fe

c
te

d
 &

 Q
u
a
ra

n
ti
n
e
 H

u
m

a
n
 P

o
p
u
la

ti
o
n  = 0.38

 = 0.59

 = 0.81

 = 1.0

Figure 13. Dynamics of Deaths in Quarantine and Infected Human Populations for Fractional Order
λ = 0.5 and various Fractal Orders, κ.
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Figure 14. Dynamics of Susceptible Human Population for various Fractal-Fractional Orders.
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Figure 15. Dynamics of Infected Human Population for various Fractal-Fractional Orders.
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Figure 16. Dynamics of Quarantine Human Population for various Fractal-Fractional Orders.
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Figure 17. The study investigates the behavior of safeguarded human communities under different
fractal-fractional orders.
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Figure 18. Dynamics of Deaths in Quarantine and Infected Human Populations for various Fractal-
Fractional Orders.
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Figure 19. The study investigates the impact of the psychological effect parameter, ω, on the dynamics
of the susceptible human population.
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Figure 20. This research examines the influence of the psychological factor parameter, ω, on the
kinetics of the infected human population.
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Figure 21. The study investigates the behavior of protected population under different values of the
psychological impact parameter, denoted as ω.
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Figure 22. Dynamics of Deaths in Quarantine and Infected Human Populations for various values of
Parameter of Psychological Effect, ω.
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Figure 23. Phase Portraits of Susceptible Human vs. Infected Human Populations with Fractal–
Fractional orders κ = 0.5, and λ = 0.5 and with Initial condition larger than S(0) = 55.
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Figure 24. Phase Portraits of Susceptible Human vs. Quarantine Human Populations with Fractal-
Fractional orders κ = 0.5, and λ = 0.5 and with Initial condition larger than S(0) = 55.
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Figure 25. Phase Portraits of Susceptible Human vs. Protected Human Populations with Fractal-
Fractional orders κ = 0.5, and λ = 0.5 and with Initial condition larger than S(0) = 55.
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Figure 26. Phase Portraits of Susceptible Human vs. DQI Human Populations with Fractal-Fractional
orders κ = 0.5, and λ = 0.5 and with Initial condition larger than S(0) = 55.
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Figure 27. In this figure, we check for the stability of the solution of Susceptible Human Populations
with Fractal-Fractional orders κ = 0.5, and λ = 0.5 in which we experience the fluctuation with
different initial conditions starting from S(t = 0) = 30 and above. Light blue color nearly, green at
S(t = 0) = 10, indigo color at S(t = 0) = 20, yellow at S(t = 0) = 30, red at S(t = 0) = 40, and dark
blue at S(t = 0) = 55.
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Figure 28. Stability Curves of Infected Human Populations with Fractal-Fractional orders κ = 0.5,
and λ = 0.5 and with with various Initial conditions in which the Initial conditions larger than
I(0) = 50 starts fluctuation.
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Figure 29. Stability Curves of Quarantine Human Populations with Fractal-Fractional orders κ = 0.5,
and λ = 0.5 and with with various Initial conditions.
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Figure 30. Stability Curves of Protected Human Populations with Fractal-Fractional orders κ = 0.5,
and λ = 0.5 and with with various Initial conditions.
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Figure 31. Stability Curves of DQI Human Populations with Fractal-Fractional orders κ = 0.5, and
λ = 0.5 and with with various Initial conditions.
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Figure 32. The dynamics of treatment control variable u2 for κ = 1 and λ = 1.

Figure 33. The 3D dynamics of R0 with parameters ϑ and υ associated with its contour plot.

Figure 34. The 3D dynamics of R0 with parameters ϑ and τ associated with its contour plot.
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Figure 35. The 3D dynamics of R0 with parameters ϑ and χ associated with its contour plot.

Figure 36. The 3D dynamics of R0 with parameters ϑ and ν associated with its contour plot.

Figure 37. The 3D dynamics of R0 with parameters ϑ and $1 associated with its contour plot.

9. Conclusions

In this manuscript, we have established a comprehensive analysis for a fractal-fractional-
type model addressing the COVID-19 disease. We have computed the fundamental thresh-
old number, which allows us to predict the transmission of the disease in the community.
Additionally, we have carried out a sensitivity analysis of some parameters in the con-
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sidered model and developed a bifurcation analysis for the proposed model. Bifurcation
analysis is a powerful procedure to investigate the steady-state nonlinear dynamics of sys-
tems, and we have used the methodology adopted by Castillo-Chavez and Song. We have
also established an optimal control strategy using Pontryagin’s maximum principle in the
proposed model. Finally, we have simulated the proposed model by considering various
values of fractal and fractional order corresponding to some real values. The sensitivity and
bifurcation analysis of the dynamical system enables us to investigate the abrupt qualitative
changes in the considered system, and the fractal-fractional order derivative allows for a
more precise explanation of the dynamics. In the future, the analysis established in this
paper can be extended to a more complex biological model. The coronavirus pandemic has
had a significant impact on the mental health and well-being of people worldwide. The
fear and uncertainty surrounding the virus, coupled with the social isolation and economic
stress caused by lockdowns and restrictions, have led to increased levels of anxiety, depres-
sion, and other mental health issues. People have also experienced grief and loss due to
the death of loved ones, as well as the loss of jobs, businesses, and social connections. The
pandemic has also highlighted existing inequalities and disparities in access to healthcare
and resources, which can further exacerbate mental health issues. However, it is important
to note that people have also shown resilience and adaptability in the face of the pandemic.
Many have found ways to cope with the challenges and have even experienced personal
growth and positive changes in their lives. Seeking support from mental health profession-
als, staying connected with loved ones, and practicing self-care can all help mitigate the
psychological effects of the pandemic.
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