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Abstract In this research work, we present a mathematical analysis of a fractional sixth-order laser

model of a resonant which is homogeneously extended three-level optically pumped. We use Caputo

fractional order derivative in the proposed model. Our analysis includes an investigation of various

chaotic behaviors under fractional order derivative and qualitative theory of the existence of the

solution to the proposed model. For our required analysis of qualitative type, we use formal anal-

ysis tools. Further, numerical simulations are performed with a clustering method based on the K–

Means algorithm and Adams Bashforth scheme. With the help of the aforesaid scheme, we present

different chaotic behavior corresponding to various values of fractional order. Finally, we give a

comparison of the CPU time of the proposed method with that of the RK4 method.
� 2023 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

In the previous few years, the area devoted to investigating

various non-linear dynamic behaviors of optically pumped,
far infrared laser models has been given much attention. For
a deep understanding of the homoclinic theory of bifurcation

with the help of some specific applications of nonlinear optics
to demonstrate the universality of the causes and the rules sub-
ject to deterministic chaotic dynamics has been presented. For
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instance, authors, [1] have studied regular and chaotic dynam-
ics of optically pumped molecular lasers. In the same line, a
detailed bifurcations analysis for an optically pumped three-

level laser model has been given in [2]. Also, homoclinic puz-
zles and chaos in a nonlinear laser model have been investi-
gated in [4]. Further, some specific observations and many

experiments performed in past have been compared with the
two-level Hakcn-Lorenz laser mode in [5]. The OPL model
under classical differential equations have been discussed in

[1–3]. The concerned model is given by

df1
dt

¼ �a1f1 þ a2f3;
df2
dt

¼ �f2 � f1f4 þ a3g1;
df3
dt

¼ �f3 þ f1g2 � a3f4;
df4
dt

¼ �f4 þ f1f2 þ a3f3;
dg1
dt

¼ �a4 g1 � g01
� �� 4a3f2 � 2f1f3;

dg2
dt

¼ �a4 g2 � g02
� �� 2a3f2 � 4f1f3:

ð1Þ

Where, classes are defined as: f1 Rabi flopping quantity repre-
senting the electric field amplitude at emission frequency, f2; f3,
and f4 are the normalized density matrix elements, g1 and g2
are the population differences. a1 represents the cavity loss
parameter, a2 is the unsaturated gain, a3 Rabi flopping quan-

tity represents the electric field amplitudes at pump frequency,
and a4 is the ratio between population and polarization. So far,
we know the ordinary derivative has been exercised very well

for the aforementioned area.
Here we remark that fractional calculus is a powerful tool

to investigate various dynamical problems for detailed analysis

and information. Because fractional order derivative of a func-
tion gives the accumulation results which include the integer
order counterpart as a special case. Further, with the help of
fractional order derivatives, we can understand the complex

geometry of various phenomena and processes of the real-
world more properly. The mentioned area has been used very
well in applied problems. For instance authors, [6] have stud-

ied the dynamics of the fractal-fractional model of a new chao-
tic system of an integrated circuit with a Mittag–Leffler kernel.
In the same way, author [7] has given a detailed analysis of

fractional order derivatives and integrals. Author [8] has estab-
lished various results for fractional order derivatives and inte-
grals. Authors [9] have established numerical methods for

fractional differentiation. The concepts of fractional calculus
have been very used in mathematical modeling of biology
and other fields of sciences in [10,25–27].

Keeping in mind the importance of fractional calculus, in

this paper, we extend the laser model (1) to fractional order
under the Caputo derivative as:

c
0D

j
t f1 tð Þ ¼ �a1f1 þ a2f3;

c
0D

j
t f2 tð Þ ¼ �f2 � f1f4 þ a3g1;

c
0D

j
t f3 tð Þ ¼ �f3 þ f1g2 � a3f4;

c
0D

j
t f4 tð Þ ¼ �f4 þ f1f2 þ a3f3;

c
0D

j
t g1 tð Þ ¼ �a4 g1 � g01

� �� 4a3f2 � 2f1f3;
c
0D

j
t g2 tð Þ ¼ �a4 g2 � g02

� �� 2a3f2 � 4f1f3:

ð2Þ

We develop a Cluster-based method as already has been used

for reduced-order modeling of a mixing layer in [12] to treat
the considered model. Our proposed scheme is based on the
K-Mean type algorithm [13] and Adam-Bashforth numerical
scheme. We construct the numerical algorithm by using the
aforesaid methods for our proposed model under the frac-

tional order derivative. We simulate the results under various
values of parameters and fractional order to detect different
chaotic dynamical behaviors of different compartments of

the model.
Here we remark that Cluster analysis itself is not one expli-

cit procedure, but it is used to solve many general tasks. For
the mentioned purposes, various algorithms have been used.

The further cluster has no unique definition. Therefore, numer-
ous algorithms have been designed for it. Hence clustering
algorithms can be categorized based on their cluster model.

Here some famous various types of clustering algorithms that
have been increasingly used to handle all kinds of unique data
are Density-based, Centroid-based, Hierarchical-based, K-

means clustering algorithm, etc. Among the said cluster algo-
rithms, K-Mean is a powerful method. In the mentioned
method, each cluster is described by a central vector, which
is not necessarily a member of the data set. The K-Means clus-

tering algorithm has some advantages like being simple to
implement, guaranteeing convergence, scaling to large data
sets, easy for selecting new examples, etc. However, there are

some disadvantages also exist, for instance, depending on ini-
tial data. Further on increasing the number of dimensions, the
convergence of the method suffered. For the detailed merits

and de-merits see [14].
Also, we established some qualitative results for the exis-

tence and uniqueness of the solution to the model under con-

sideration. For this purpose, we apply the Banach theorem and
some tools of nonlinear analysis. Here it should be kept in
mind that chaos is a periodic long-term behavior in a deter-
ministic system that exhibits sensitive dependence on initial

conditions. We will investigate the said behavior under the
fractional order derivative for our model. Here we inform
the readers that chaotic behaviors of various dynamical sys-

tems for fractional order derivatives have been studied in the
last few years very well. For instance authors, [15] have
described modeling attractors of chaotic dynamical systems

with fractal-fractional operators. In the same way, the chaotic
behavior of the Bloch model with a delay has been studied in
[16]. Also, chaos synchronization of fractional chaotic maps
based on the stability condition has been investigated in

[17,18]. Further authors [19] have studied a generating chaotic
system with one stable equilibrium.

The structure of the manuscript is arranged in the following

form: in first Section 1 we introduce the goal of the manuscript
and the applications of the proposed algorithm Subsection 1.1
along with some preliminary results Subsection 1.2. In Sec-

tion 3, the existence and uniqueness of solution the model
(2) is presented. In Section 4, for the solution of the model
(2) the numerical scheme is presented. In Section 5, the K-

Means Clustering Algorithm is presented. In Section 6, the
graphical results of the manuscript are discussed. While the
whole manuscript is concluded in Section 7.
1.1. Applications of K–means Algorithm

In real life, K-Means clustering is employed in a range of sit-
uations, including diagnostic systems where the medical indus-

try employs it to develop smarter medical decision support
systems, particularly in the treatment of liver disorders. Clus-
tering is a fundamental component of search engines. The
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search engines frequently utilize clustering to organdie the
search results once a search has been conducted. In contrast,
the clustering algorithm in wireless sensor networks is respon-

sible for identifying the cluster heads that gather all the data
for each cluster. To read about other applications, one can
read [20–24,28,29].

1.2. Preliminaries

Here, we describe some fundamental results which are using

onward in further analysis.

Definition 1.1. Suppose, we consider the generic piecewise
fractional order differential equation with fractional order j,
such that

c
0D

j
t u tð Þ ¼ q t; u tð Þð Þ;withu 0ð Þ ¼ u0: ð3Þ

For the differential Eq. (3) we define Fractional Adams–Bash-
forth Scheme [10] with Caputo Derivative that is:

I tqþ1

� � ¼ I tq
� �þ } tq ;Iqð Þ

�hC jð Þ
2�h
j t

j
qþ1 �

tjþ1
qþ1

jþ1
þ �h

j t
j
q � tjþ1

q

j

� �

þ } tq�1 ;Iq�1ð Þ
�hC jð Þ

�h
j t

j
qþ1 �

tjþ1
qþ1

jþ1
þ tjq

jþ1

� �
:

ð4Þ

Definition 1.2. Suppose that, X and Z are two samples of pat-

tern vectors,

V ¼ v1; v2; v3; � � � ; vnð ÞTU ¼ u1; u2; u3; � � � ; unð ÞT and we
define the distance between V and U as:

D ¼ kV�Uk ¼
Xn

j¼1

vj � uj
� �2" #1

2

:

Easy to know that the smaller D is, the more similar are V and

U (D is the Norm [10] of V and U in n dimensional space)

Definition 1.3.

With a cone, suppose we have a real Banach Space B and in
restricted order namely u in Banach Space in supersede
approach such that v 6 u. That implies that u� v 2 u, while
v 6 w such that w� v 2 u; 8v; u;w 2 B. Furthermore, we have

a; b
� � ¼ f 2 B : a 6 f 6 b

� 	
is the order of interval. If there is

a feasibility of obtaining a constant a1 > 0, then cone u is
denoted as normal that is a2; a3 2 u;/ < a2 < a3 )
ka2k 6 ka3k, where the zeros of u is /.
2. Dissipation of the proposed model

The considered model given in system (1) is dissipative as ear-
lier been discussed in [6] as

rV ¼ @
@f1

df1
dt

� �þ @
@f2

df2
dt

� �þ @
@f3

df3
dt

� �þ @
@f4

df4
dt

� �
þ @

@g1

dg1
dt

� �þ @
@g2

dg2
dt

� �
;

ð5Þ

such that for positive values of parameters, we have

� 3þ 2a4 þ 2a3 þ a1ð Þ < 0: ð6Þ
3. Existence and uniqueness

Suppose, in all smooth real function bounded in a closed set

a; b

 �

we define the Banach space B such that B ¼ Ca;b contain-

ing a sub-norm. While, the given shaft such as S ¼ v1; v2;f
v3 2 S; v1 y; tð Þ P 0; v2 y; tð Þ P 0: and v3 y; tð Þ P 0; a 6 t 6 b

	
.

We study the following fractional system (2) with Caputo
operator and apply the fundamental theorem of calculus to

check the existence of solution.

f1 tð Þ � f1 0ð Þ ¼ 1
C jð Þ

R t

0
�a1f1 þ a2f3ð Þ t� sð Þj�1

ds;

f2 tð Þ � f2 0ð Þ ¼ 1
C jð Þ

R t

0
�f2 � f1f4 þ a3g1ð Þ t� sð Þj�1

ds;

f3 tð Þ � f3 0ð Þ ¼ 1
C jð Þ

R t

0
�f3 þ f1g2 � a3f4ð Þ t� sð Þj�1

ds;

f4 tð Þ � f4 0ð Þ ¼ 1
C jð Þ

R t

0
�f4 þ f1f2 þ a3f3ð Þ t� sð Þj�1

ds;

g1 tð Þ � g1 0ð Þ ¼ 1
C jð Þ

R t

0
�a4 g1 � g01

� �� 4a3f2 � 2f1f3
� �

t� sð Þj�1
ds;

g2 tð Þ � g2 0ð Þ ¼ 1
C jð Þ

R t

0
�a4 g2 � g02

� �� 2a3f2 � 4f1f3
� �

t� sð Þj�1
ds:

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;
ð7Þ

Next, we have a compact Ca;b given below, that is

Ca;b ¼ Ia t0ð Þ � Bb nð Þ; ð8Þ
where

n ¼ min f10; f20; f30; f40; g10; g20f g; ð9Þ
also

Ia t0ð Þ ¼ t0 � a; t0 þ a½ �; B0 nð Þ ¼ n� b; nþ b

 �

: ð10Þ
Suppose

z1 f1; f2; f3; f4; g1; g2; tð Þ ¼ �a1f1 þ a2f3;

z2 f1; f2; f3; f4; g1; g2; tð Þ ¼ �f2 � f1f4 þ a3g1;

z3 f1; f2; f3; f4; g1; g2; tð Þ ¼ �f3 þ f1g2 � a3f4;

z4 f1; f2; f3; f4; g1; g2; tð Þ ¼ �f4 þ f1f2 þ a3f3;

z5 f1; f2; f3; f4; g1; g2; tð Þ ¼ �a4 g1 � g01
� �� 4a3f2 � 2f1f3;

z6 f1; f2; f3; f4; g1; g2; tð Þ ¼ �a4 g2 � g02
� �� 2a3f2 � 4f1f3:

9>>>>>>>>=
>>>>>>>>;
ð11Þ

Also, we assume

Q ¼ max
Ca;b

sup
Ca;b

z1k k; sup
Ca;b

z2k k; sup
C
a;b

z3k k; sup
C
a;b

z4k k; sup
C
a;b

z5k k; sup
C
a;b

z6k k
( )

:

ð12Þ
We have adopted the infinite norm by doing so,

kuk1 ¼ sup
t2Ia

ku tð Þj: ð13Þ

Furthermore, we build a mapping, namely

K : Ca;b ! Ca;b; ð14Þ
so that

KF tð Þ ¼ F0 þ 1

C jð Þ
Z t

0

G f1; f2; f3; f4; g1; g2; tð Þ t� sð Þj�1
ds;

ð15Þ
with
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F tð Þ ¼

f1 tð Þ
f2 tð Þ
f3 tð Þ
f4 tð Þ
g1 tð Þ
g2 tð Þ

0
BBBBBBBB@

1
CCCCCCCCA
;

G f1; f2; f3; f4; g1; g2; tð Þ ¼

z1 f1; f2; f3; f4; g1; g2; tð Þ
z2 f1; f2; f3; f4; g1; g2; tð Þ
z3 f1; f2; f3; f4; g1; g2; tð Þ
z4 f1; f2; f3; f4; g1; g2; tð Þ
z5 f1; f2; f3; f4; g1; g2; tð Þ
z6 f1; f2; f3; f4; g1; g2; tð Þ

0
BBBBBBBB@

1
CCCCCCCCA
:

ð16Þ

We must show that the new fractional operator is well defined,
that is, we evaluate the condition for which

KF tð Þ � F0k k1 <

b

b

b

b

b

b

0
BBBBBBBB@

1
CCCCCCCCA
; where

K1f1 tð Þ � f10k k1 < b;

K2f2 tð Þ � f20k k1 < b;

K3f3 tð Þ � f30k k1 < b;

K1f4 tð Þ � f40k k1 < b;

K2f5 tð Þ � f50k k1 < b;

K3f6 tð Þ � f60k k1 < b:

9>>>>>>>>>=
>>>>>>>>>;

ð17Þ
We’ll begin with the z1 component, that is:

K1f1 tð Þ � f10k k1 ¼ 1
C jð Þ

R t

0
z1 f1; f2; f3; f4; g1; g2; sð Þ t� sð Þj�1

ds
��� ���

1
;

6 1
C jð Þ

R t

0
z1 f1; f2; f3; f4; g1; g2; sð Þk k1 t� sð Þj�1

ds;

6 Q
C jð Þ

R t

0
t� sð Þj�1

ds;

6 Qaj

C jþ1ð Þ < b;

ð18Þ
where

a <
bC jþ 1ð Þ

Q


 �1=j

: ð19Þ

Similarly, for the remaining components, we have

K2f2 tð Þ � f20k k1 < Qaj

C jþ1ð Þ ;

K2f3 tð Þ � f30k k1 < Qaj

C jþ1ð Þ ;

K2f4 tð Þ � f40k k1 < Qaj

C jþ1ð Þ ;

K2g1 tð Þ � g10k k1 < Qaj

C jþ1ð Þ ;

ð20Þ

and

K2g2 tð Þ � g20k k1 <
Qaj

C jþ 1ð Þ : ð21Þ

Thus

CF tð Þ � F0k k1 6 Qaj

C jþ 1ð Þ : ð22Þ

C is well defined if a < bC jþ1ð Þ
Q

� �1=j
. Second, we require to show

that our function has a Lipshitz condition. That is

CF1 � CF2k k1 < K F1 � F2k k: ð23Þ
Implies that:
K1f11 � K1f12k k1 ¼ 1
C jð Þ

R t

0
z1 f11; f2; f3; f4; g1; g2; sð Þ t� sð Þj�1

ds
���

� 1
C jð Þ

R t

0
z1 f12; f2; f3; f4; g1; g2; sð Þ t� sð Þj�1

ds
���
1
;

6 1
C jð Þ

R t

0
z1 f11; f2; f3; f4; g1; g2; sð Þ � z1 f12; f2; f3; f4; g1;ððk

g2sÞÞk1 t� sð Þj�1
ds;

6 1
C jð Þ

R t

0
�a1f11 þ a2f3 þ a1f12 � a2f3k k1 t� sð Þj�1

ds;

6 ja1 j
C jð Þ

R t

0
f12 � f11k k1 t� sð Þj�1

ds < ja1 j
C jð Þ f12 � f11k k1 � ajj ;

6 ja1 j f12�f11k k1�aj
C jþ1ð Þ 6 f12 � f11k k1K1;

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;
ð24Þ

where

c1 ¼
ja1jqj

C jþ 1ð Þ : ð25Þ

For the second component:

K2f21 � K2f22k k1 ¼ 1
C jð Þ

R t

0
z2 f1; f21; f3; f4; g1; g2; sð Þ t� sð Þj�1

ds;
���

� 1
C jð Þ

R t

0
z2 f1; f22; f3; f4; g1; g2; sð Þ t� sð Þj�1

ds
���
1
;

6 1
C jð Þ

R t

0
z2 f11; f2; f3; f4; g1; g2; sð Þ � z1 f12; f2; f3; f4; g1;ððk

g2; sÞÞk1 t� sð Þj�1
ds;

6 1
C jð Þ

R t

0
�f21 � f1f4 þ a3g1 þ f22 þ f1f4 � a3g1k k1 t� sð Þj�1

ds;

6 1
C jð Þ

R t

0
f22 � f21k k1 t� sð Þj�1

ds < 1
C jð Þ f22 � f21k k1 � ajj ;

6 f22�f21k k1�aj
C jþ1ð Þ 6 f22 � f21k k1c2;

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;
ð26Þ

where

c2 ¼
aj

C jþ 1ð Þ : ð27Þ

For the third component:

K3f31 � K3f32k k1 ¼ 1
C jð Þ

R t

0
z3 f1 ; f2 ; f31 ; f4 ; g1 ; g2 ; sð Þ t� sð Þj�1

ds;
���

� 1
C jð Þ

R t

0
z3 f1 ; f2 ; f32 ; f4 ; g1 ; g2; sð Þ t� sð Þj�1

ds
���
1
;

6 1
C jð Þ

R t

0
z3 f1 ; f2 ; f31 ; f4 ; g1 ; g2 ; sð Þ � z3 f1 ; f2 ; f32 ; f4 ; g1 ; g2 ; sð Þk k1 t� sð Þj�1

ds;

6 1
C jð Þ

R t

0
�f31 þ f1g2 � a3f4 þ f32 � f1g2 þ a3f4k k1 t� sð Þj�1

ds;

6 1
C jð Þ

R t

0
f32 � f31k k1 t� sð Þj�1

ds < 1
C jð Þ f32 � f31k k1 � ajj ;

6 f32�f31k k1 �aj
C jþ1ð Þ 6 f32 � f31k k1c3 ;

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

ð28Þ

where

c3 ¼
aj

C jþ 1ð Þ : ð29Þ

For fourth component:

K4f41 � K4f42k k1 ¼ 1
C jð Þ

R t

0
z4 f1 ; f2 ; f3 ; f41 ; g1 ; g2 ; sð Þ t� sð Þj�1

ds;
���

� 1
C jð Þ

R t

0
z4 f1 ; f2 ; f3 ; f42 ; g1 ; g2 ; sð Þ t� sð Þj�1

ds
���
1
;

6 1
C jð Þ

R t

0
z4 f1 ; f2 ; f3 ; f41 ; g1 ; g2 ; sð Þ � z4 f1 ; f2 ; f3 ; f42 ; g1 ; g2 ; sð Þk k1 t� sð Þj�1

ds;

6 1
C jð Þ

R t

0
�f41 þ f1f2 þ a3f4 þ f42 � f1f2 þ a3f3k k1 t� sð Þj�1

ds;

6 1
C jð Þ

R t

0
f42 � f41k k1 t� sð Þj�1

ds < 1
C jð Þ f42 � f41k k1 � ajj ;

6 f42�f41k k1 �aj
C jþ1ð Þ 6 f42 � f41k k1c4 ;

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;
ð30Þ

where

c4 ¼
aj

C jþ 1ð Þ : ð31Þ
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For fifth component:

K5g11 � K5g12k k1 ¼ 1
C jð Þ

R t

0
z5 f1; f2; f3; f4; g11; g2; sð Þ t� sð Þj�1

ds;
���

� 1
C jð Þ

R t

0
z5 f1; f2; f3; f4; g12; g2; sð Þ t� sð Þj�1

ds
���
1
;

6 1
C jð Þ

R t

0
z5 f1; f2; f3; f4; g11; g2; sð Þ � z5 f1; f2; f3; f4; g11ðk ;

g2; sÞk1 t� sð Þj�1
ds;

6 1
C jð Þ

R t

0
�f41 þ f1f2 þ a3f4 þ f42 � f1f2 þ a3f3k k1 t� sð Þj�1

ds;

6 ja4 j
C jð Þ

R t

0
f42 � f41k k1 t� sð Þj�1

ds < ja4 j
C jð Þ f42 � f41k k1 � ajj ;

6 ja4 j f42�f41k k1�aj
C jþ1ð Þ 6 ja4j f42 � f41k k1c5;

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;
ð32Þ

where

c5 ¼
ja4jaj

C jþ 1ð Þ : ð33Þ

While for the sixth component:

K6g21 � K6g22k k1 ¼ 1
C jð Þ

R t

0
z6 f1; f2; f3; f4; g1; g21; sð Þ t� sð Þj�1

ds;
���

� 1
C jð Þ

R t

0
z6 f1; f2; f3; f4; g1; g22; sð Þ t� sð Þj�1

ds
���
1
;

6 1
C jð Þ

R t

0
z6 f1; f2; f3; f4; g1; g21; sð Þ � z6 f1; f2; f3; f4; g1;ðk

g22; sÞk1 t� sð Þj�1
ds;

6 1
C jð Þ

R t

0
�a4g21 þ a4g02 � 2a3f3 � 4f1f3 þ a4g22 � a4g02 þ 2a3f3

��
þ4f1f3k1 t� sð Þj�1

ds;

6 ja4 j
C jð Þ

R t

0
g22 � g21k k1 t� sð Þj�1

ds < ja4 j
C jð Þ g22 � g21k k1 � ajj ;

6 ja4 j f42�f41k k1�aj
C jþ1ð Þ 6 ja4j g22 � g21k k1c6;

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;
ð34Þ

where

c6 ¼
ja4jaj

C jþ 1ð Þ : ð35Þ

So, K is a contraction if

c1
c2
c3
c4
c5
c6

0
BBBBBBBB@

1
CCCCCCCCA

<

1

1

1

1

1

1

0
BBBBBBBB@

1
CCCCCCCCA

¼ 0; ð36Þ

for

a < C jþ1ð Þ
ja1 j

� �1
j
; a < C jþ 1ð Þ1j; a < C jþ 1ð Þ1j;

a < C jþ 1ð Þ1j; a < C jþ1ð Þ
ja4 j

� �1
j
; and a < C jþ1ð Þ

ja4 j

� �1
j
:

So to obtain a contraction

a ¼ min

C jþ1ð Þ
ja1 j

� �1
j
; C jþ 1ð Þ1j; C jþ 1ð Þ1j;

C jþ 1ð Þ1j; C jþ1ð Þ
ja4 j

� �1
j
; C jþ1ð Þ

ja4 j

� �1
j
;

8>><
>>:

9>>=
>>;: ð37Þ

C is a contraction in a Banach space under this condition,
which implies that C has a unique solution. Readers are direc-

ted to some famous publications for the broad existence and
uniqueness theorem in [7,8,13].

4. Numerical Scheme

Here, to avoid confusion we address the symbols

f1; f2; f3; f4; g1; g2, as f 1ð Þ; f 2ð Þ; f 3ð Þ; f 4ð Þ; g 1ð Þ; g 2ð Þ, such that the
resultant Adams Bashforth Scheme becomes:
f 1ð Þ tqþ1

� � ¼ f 1ð Þ tq
� �þ } tq ;f

1ð Þ
qð Þ

�hC jð Þ
2�h
j t

j
qþ1 �

tjþ1
qþ1

jþ1
þ �h

j t
j
q � tjþ1

q

j

� �

þ
} tq�1 ;f

1ð Þ
q�1

� �
�hC jð Þ

�h
j t

j
qþ1 �

tjþ1
qþ1

jþ1
þ tjq

jþ1

� �
:

ð38Þ

f 2ð Þ tqþ1

� � ¼ f 2ð Þ tq
� �þ } tq ;fqð Þ

�hC jð Þ
2�h
j t

j
qþ1 �

tjþ1
qþ1

jþ1
þ �h

j t
j
q � tjþ1

q

j

� �

þ } tq�1 ;Iq�1ð Þ
�hC jð Þ

�h
j t

j
qþ1 �

tjþ1
qþ1

jþ1
þ tjq

jþ1

� �
:

ð39Þ

f 3ð Þ tqþ1

� � ¼ f 3ð Þ tq
� �þ } tq ;f

3ð Þ
qð Þ

�hC jð Þ
2�h
j t

j
qþ1 �

tjþ1
qþ1

jþ1
þ �h

j t
j
q � tjþ1

q

j

� �

þ
} tq�1 ;f

3ð Þ
q�1

� �
�hC jð Þ

�h
j t

j
qþ1 �

tjþ1
qþ1

jþ1
þ tjq

jþ1

� �
:

ð40Þ

f 4ð Þ tqþ1

� � ¼ f 4ð Þ tq
� �þ } tq ;f

4ð Þ
qð Þ

�hC jð Þ
2�h
j t

j
qþ1 �

tjþ1
qþ1

jþ1
þ �h

j t
j
q � tjþ1

q

j

� �

þ
} tq�1 ;

4ð Þ
q�1

� �
�hC jð Þ

�h
j t

j
qþ1 �

tjþ1
qþ1

jþ1
þ tjq

jþ1

� �
:

ð41Þ

g 1ð Þ tqþ1

� � ¼ g1 tq
� �þ } tq ;g

1ð Þ
qð Þ

�hC jð Þ
2�h
j t

j
qþ1 �

tjþ1
qþ1

jþ1
þ �h

j t
j
q � tjþ1

q

j

� �

þ
} tq�1 ;g

1ð Þ
q�1

� �
�hC jð Þ

�h
j t

j
qþ1 �

tjþ1
qþ1

jþ1
þ tjq

jþ1

� �
:

ð42Þ

g 2ð Þ tqþ1

� � ¼ g 2ð Þ tq
� �þ } tq ;g

2ð Þ
qð Þ

�hC jð Þ
2�h
j t

j
qþ1 �

tjþ1
qþ1

jþ1
þ �h

j t
j
q � tjþ1

q

j

� �

þ
} tq�1 ;g

2ð Þ
q�1

� �
�hC jð Þ

�h
j t

j
qþ1 �

tjþ1
qþ1

jþ1
þ tjq

jþ1

� �
:

ð43Þ
5. Clustering by K–Means Algorithm

We categorize the sample pattern congregation

Vf g ¼ V1;V2;V3; � � � ;VNf g into C classes, which are
P1;P2;P3; � � � ;Pc:Mk and Pk mean vectors. So:

Mk ¼ 1

Nk

X
V2Pk

V; Nk ¼ Pkj j: ð44Þ

By definition of cluster criterion function as bellow:

G ¼
Xc

k¼1

X
V2Pk

V�Mkk k2; ð45Þ

where, Nk and Pk are the number of samples and G is the quad-
ratic sum of all types of sample classes’ inaccuracy and their

mean value. It’s also known as the sum of sample distances
and their mean value. As a result, we should make every effort
to obtain the lowest possible value discussed in [13].



Table 2 Table of description and values of parameters.

Parameter Value Parameter Value Parameter Value

a1 1.5 a2 50 a3 3.8

a4 0.43858 N0
1

1 N0
2

1.8

Table 1 Table of description compartments of variables with

initial conditions.

Class Initial

Condition

Class Initial

Conditions

Class Initial

Condition

f1 tð Þ 1 f2 tð Þ 1 f3 tð Þ 1

f4 tð Þ 1 g1 tð Þ 1 g2 tð Þ 1
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5.1. Clustering algorithm

To classify the patterns of N quantity of samples which are
v1; v2; v3; � � � ; vNf g, into J clusters: we follow the steps given
bellow.

Step. 1 To choose the first cluster focal point. For instance,
we choose u1 ¼ v1 among v1; v2; v3; � � � ; vNf g.

Step. 2 Choose a new focus point for the second cluster that

is as far away from u1 as feasible, and measure the
distance between each sample and u1 : vk�k
u1k; k ¼ 1; 2; � � � ;N . If: vh � u1k k ¼ max vk�kf
u1k; k ¼ 1; 2; � � �Ng; h ¼ 1; 2; � � �N . Thus, the
second cluster we choose vh to be the focal point,
and u2 ¼ vh.

Step. 3 Measuring the norm between samples
v1; v2; v3; � � � ; vNf g and focal points u1; u2f g, respec-
tively, such that dk1 ¼ vk � u1k k; k ¼ 1; 2; � � �N ;
dk2 ¼ vk � n2k k; k ¼ 1; 2; � � �N . Take a minimum
of the outcomes is given by:
min dk1; dk2ð Þ; k ¼ 1; 2; � � �Nand combine all the
focal points y1; u2f g and the minimums of all sam-

ples of pattern. For the third focal point u3, take
the maximum from minimum of the outcomes. If:
min dh1; dh2ð Þ ¼ max min dk1; dk2ð Þ; k ¼f 1; 2; 3; � � �
Ng; h ¼ 1; 2; 3; � � �N .

Step. 4 Let, we obtained uk ; k ¼ 1; 2; 3; � � � sf g cluster focal
points of s s < jð Þ, further we need to determine

the r þ 1ð Þth cluster focal point, namely if:
min dh1; dh2; � � � ; dhsð Þ ¼ max min dh1; dh2; � � � ;ðf dhsÞ;
k ¼ 1; 2; 3; � � � Ng h ¼ 1; 2; � � �N , then: usþ1 ¼ vh.

Step.5 Repeat the process till sþ 1 ¼ j.
Step. 6 Now we have chosen J initial cluster focal point

u1 1ð Þ; u2 1ð Þ; u3 1ð Þ; � � � ; uj 1ð Þ. Where, the numbers in

parenthesis are indices of iterations.
Step. 7 Allocate v1; v2; v3; � � � ; vNf g to one of the J clusters,

and minimize the distance we have
v� uh tð Þk k ¼ min v� uk tð Þk k; k ¼f 1; 2; 3; � � � ; Jg;
h ¼ 1; 2; 3; � � � ; J Then: v 2 sj tð Þ. The symbol t in

the formula is the serial number of iterative opera-
tions, sj stands for the j th cluster, and the cluster

focal point is uj.
Step. 8 Measure the values of new vector to all cluster focal

point such that uh t þ 1ð Þ; h ¼ 1; 2; 3; � � � ; J , the

means vectors of all clusters samples that is

uh t þ 1ð Þ ¼ 1
Nh

P
v2sj tð Þv; h ¼ 1; 2; � � � ; J , where Nh

is the number of samples of the hth cluster sh and
next measuring the J samples of clusters. Making
mean vectors be new clusters can minimize cluster

criterion function Jj such that: Jh ¼
P

v2sh tð Þ v�k
uh t þ 1ð Þk2; h ¼ 1; 2; � � � ; J .

Step. 9 Eventually, if uh t þ 1ð Þ ¼ uh tð Þ; h ¼ 1; 2; � � � ; J , then
the convergence of the algorithm is finished while
repeat the process from Step:7 if

uh t þ 1ð Þ– uh tð Þ; h ¼ 1; 2; 3; � � � ; J .
6. Results and Discussion

Combining the numerical scheme and the clustering algorithm,
the results are obtained by using the values given in the follow-

ing Table 1 and Table 2:
The entire experiment clustered the data in 0.259274 s for

each figure with a difference h ¼ 0:001. Applied the K–mean

algorithm to the data of solution of the model after obtaining
the results from the numerical scheme for each class to orga-
nize the data into ten clusters. Then, by the programming
manipulation, the solutions have been colored and associated

with each cluster. To show possible dynamics and trajectory
of solutions of the model (2) we present the results in 2D
and 3D. The Figs. 1–6 shows the trajectory of f1 the Rabi flop-

ping quantity representing the electric field amplitude at emis-
sion frequency, f2 the normalized density matrix element, f3 the
normalized density matrix element, f4 the normalized density

matrix element, g1 the population difference, and g2 the popu-
lation difference with a classical order j ¼ 1, respectively. The
Figs. 7–12 show the trajectories with a fractional order

j ¼ 0:88 of solutions f1 the Rabi flopping quantity represent-
ing the electric field amplitude at emission frequency, f2 the
normalized density matrix element, f3 the normalized density
matrix element, f4 the normalized density matrix element, g1
the population difference, and g2 the population difference.
In Figs. 13–22 the 2D plot show the trajectories of two class
vs. class while in Figs. 23–28 the 3D trajectories have been

showed. The programming has been done throughout the
MATLAB environment and used the numerical data of the
solution to the model (2) and the MATLAB code for clustering

and the numerical scheme has been combined. Here we com-
pare the CPU time for the proposed method with that of the
RK4 method in Table 3 by using MATLAB 13 and Machine

Cori-7 of HP with 8th generation. Here we see as the order is

enlarging the CPU time is reducing and also as compared to
RK4 the proposed method is less expensive in time. For small



Fig. 1 The dynamics of strange attractor, f1 the Rabi flopping quantity representing the electric field amplitude at emission frequency for

the classical case with order j ¼ 1. While it shows the comparison of RK4 and proposed scheme..

Fig. 2 The dynamics of strange attractor, f2 is the normalized density matrix element for the classical case with order j ¼ 1. While it

shows the comparison of RK4 and proposed scheme..

Fig. 3 The dynamics of strange attractor, f3 is the normalized density matrix element for the classical case with order j ¼ 1. While it

shows the comparison of RK4 and proposed scheme..
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fractional order larger time indicates the complexity in frac-
tional order. This will take more time to resolve as compared

to integer order.
From Table 4, we conclude that cluster plays important

role in reducing CPU time. Further, K-means clustering algo-
rithm is one of the most commonly used procedure which has
diverse scope for implementation. The mentioned algorithm

has important applications in the signal and image processing,
artificial intelligence and many other fields. Further, we
remark that clustering is one of the most significant applica-



Fig. 4 The dynamics of strange attractor, f4 is the normalized density matrix element for the classical case with order j ¼ 1. While it

shows the comparison of RK4 and proposed scheme..

Fig. 5 The dynamics of strange attractor, g1 the population difference for the classical case with order j ¼ 1. While it shows the

comparison of RK4 and proposed scheme..

Fig. 6 The dynamics of strange attractor, g2 the population difference for the classical case with order j ¼ 1. While it shows the

comparison of RK4 and proposed scheme..
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Fig. 7 The dynamics of strange attractor, f1 the Rabi flopping quantity representing the electric field amplitude at emission frequency for

the Fractional case with order j ¼ 0:88.

Fig. 8 The dynamics of strange attractor, f2 is the normalized density matrix element for the Fractional case with order j ¼ 0:88.

Fig. 9 The dynamics of strange attractor, f3 is the normalized density matrix element for the Fractional case with order j ¼ 0:88.
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Fig. 10 The dynamics of strange attractor, f4 is the normalized density matrix element for the Fractional case with order j ¼ 0:88.

Fig. 11 The dynamics of strange attractor, g1 the population difference for the Fractional case with order j ¼ 0:88.

Fig. 12 The dynamics of strange attractor, g2 the population difference for the Fractional case with order j ¼ 0:88.
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Fig. 13 The dynamics of strange attractors, f1 the Rabi flopping

quantity representing the electric field amplitude at emission

frequency vs. f2 is the normalized density matrix element for the

Fractional case with order j ¼ 0:88.

Fig. 14 The dynamics of strange attractors, f1 the Rabi flopping

quantity representing the electric field amplitude at emission

frequency vs. f3 is the normalized density matrix element for the

Fractional case with order j ¼ 0:88.

Fig. 15 The dynamics of strange attractors, f1 the Rabi flopping

quantity representing the electric field amplitude at emission

frequency vs. f4 is the normalized density matrix element for the

Fractional case with order j ¼ 0:88.

Fig. 16 The dynamics of strange attractors, f1 the Rabi flopping

quantity representing the electric field amplitude at emission

frequency vs. g1 the population difference for the Fractional case

with order j ¼ 0:88.

Fig. 17 The dynamics of strange attractors, f1 the Rabi flopping

quantity representing the electric field amplitude at emission

frequency vs. g2 the population difference for the Fractional case

with order j ¼ 0:88.

Fig. 18 The dynamics of strange attractor, f2 is the normalized

density matrix element vs. f4 is the normalized density matrix

element for the Fractional case with order j ¼ 0:88.
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Fig. 19 The dynamics of strange attractor, f2 is the normalized

density matrix element vs. g1 the population difference for the

Fractional case with order j ¼ 0:88.

Fig. 20 The dynamics of strange attractor, f2 is the normalized

density matrix element vs. g2 the population difference for the

Fractional case with order j ¼ 0:88.

Fig. 21 The dynamics of strange attractor, f3 is the normalized

density matrix element vs. f4 is the normalized density matrix

element for the Fractional case with order j ¼ 0:88.

Fig. 22 The dynamics of strange attractor, f3 is the normalized

density matrix element vs. g2 the population difference for the

Fractional case with order j ¼ 0:88.

Fig. 23 The dynamics of strange attractors, f1 the Rabi flopping

quantity representing the electric field amplitude at emission

frequency vs. f2 is the normalized density matrix element vs. g2 the

population difference for the Fractional case with order j ¼ 0:88.

Fig. 24 The dynamics of strange attractors, f1 the Rabi flopping

quantity representing the electric field amplitude at emission

frequency vs. f3 is the normalized density matrix element vs. f4 is

the normalized density matrix element for the Fractional case with

order j ¼ 0:88.

176 M. Sinan et al.



Fig. 25 The dynamics of strange attractors, f1 the Rabi flopping

quantity representing the electric field amplitude at emission

frequency vs. f3 is the normalized density matrix element vs. g1 the

population difference for the Fractional case with order j ¼ 0:88.

Fig. 26 The dynamics of strange attractors, f1 the Rabi flopping

quantity representing the electric field amplitude at emission

frequency vs. f4 is the normalized density matrix element vs. g2 the

population difference for the Fractional case with order j ¼ 0:88.

Fig. 27 The dynamics of strange attractors, f2 is the normalized

density matrix element vs. f3 is the normalized density matrix

element vs. f4 is the normalized density matrix element for the

Fractional case with order j ¼ 0:88.

Fig. 28 The dynamics of strange attractors, f3 is the normalized

density matrix element vs. f4 is the normalized density matrix

element vs. g1 the population difference for the Fractional case

with order j ¼ 0:88.

Table 3 Comparison of CPU time of the proposed and RK4

method for the considered model.

Fractional

order j
CPU time of the Proposed

method in seconds

CPU time of RK4

method in seconds

0.50 55 57

0.60 53 56

0.70 49 51

0.80 45 47

0.90 44 45

1.00 30 33

Table 4 Comparison of CPU time of the proposed method

for the considered model with and without clustering at the

order j ¼ 1.

Clusters CPU time with cluster in

seconds

CPU time without cluster in

seconds

10 0.0010 0.0090

20 0.0050 0.0180

30 0.0070 0.0340

45 0.0180 0.0380

60 0.0200 0.0510

75 0.0390 0.0540
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tions in the big data field. The CPU time performance of the
aforesaid technique is much better with clustering for numeri-

cal data as compared to categorical data.

7. Conclusion

In this work, a fractional sixth order laser model of a resonant
which has been homogeneously extended three levels optically
pumped has been investigated. The concerned investigation

has been based on the detection of different chaotic behaviors
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of the proposed model and its existence theory. For the statis-
tical analysis, we have used an advanced clustering method
based on the K-Means algorithm and the Adam Bashforth

scheme. We have presented different chaotic behaviors of the
dynamics of various compartments corresponding to various
fractional orders. In addition, before the numerical investiga-

tion, we presented a massive existence analysis and uniqueness
of solutions to the proposed problems by using the Banach
contraction theorem and other tools of nonlinear analysis.

The goal of the ‘‘k-means clustering” is to divide a set of n
observations into k groups, with each observation belonging
to the cluster represented by its nearest mean. The data space
is then divided into Thiessen polygons as a result of this.

Therefore, each color belongs to a different cluster in all fig-
ures. The proposed algorithm has many applications in real
life, such as medical imaging segmentation, search engines,

and wireless sensor networks. For identifying the cluster heads
that gather all the data for each cluster and many more. A
comparison of the proposed scheme and the Runge–Kutta

scheme is also presented. Finally, a comparison with the
RK4 method in CPU time has been given. We see that the pro-
posed method is less expensive in time as compared to the tra-

ditional RK4 method. In the future, the aforementioned
consideration model can be studied under non-singular and
fractal-fractional type derivatives for more results.
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