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KEYWORDS Abstract Mathematical models are powerful tools to study various real-world problems from dif-
L D ferent perspectives. This branch has been given much more popularity over the last several decades.
model; Various mathematical models corresponding to different diseases have been studied so far. Keeping
Local and global stability; these details in mind, the present manuscript is devoted to present a detailed mathematical analysis
Sensitivity Analysis; of the Cutaneous Leishmaniasis disease model. Some basic properties of the model are studied
Numerical analysis; including positivity, the existence of equilibrium points, and reproductive number. The existence
Non standard finite differ- and uniqueness of the solution for the model under consideration are also investigated. Local

ence method and global stability analyses of equilibrium points are also studied. For the required results, we

use the Lyapunov function method and the third additive compound matrix technique based on
the Metzler procedure. Sensitivity analysis is also investigated by using some tools from the
numerical-functional analysis. A numerical analysis of the proposed model is performed by using
a nonstandard finite difference scheme. Moreover, for the justification of our results, we give some
graphical presentation of the model for each class in the model. Also, we present some graphical

presentations related to the sensitivity analysis along with the tables for its various indices.
© 2023 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria
University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
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Europe. There are three ways of the disease: cutaneous, muco-
cutaneous, and visceral. While some risk factors are connected
with a particular eco-epidemiological substance, others influ-
ence all types of leishmaniasis [1]. Cutaneous leishmaniasis
(CL) [2] is the most common form of leishmaniasis and causes
skin lesions, mainly ulcers, on exposed parts of the body, leav-
ing life-long scars and serious disability or stigma. About 95%
of CL cases occur in the Americas, the Mediterranean basin,
the Middle East, and Central Asia. In 2020, over 85% of
new CL cases occurred in 10 countries which included Afgha-
nistan, Algeria, Brazil, Colombia, Iraq, Libya, Pakistan, Peru,
the Syrian Arab Republic, and Tunisia. It is estimated that
between 600 000 to 1 million new cases occur worldwide annu-
ally. In Pakistan, Anthroponotic Cutaneous Leishmaniasis has
a vast distribution and commonly occurs in populated regions
of Punjab, Azad Kashmir, and Baluchistan. In 1997, some
cases of Anthroponotic Cutaneous Leishmaniasis were
reported in the northwestern province of Pakistan. More cases
were reported in refugee camp Timargara (Dir) [3]. The author
[4] noted the increase in leishmaniasis risk factors. According
to the report, there is a dearth of amenities including housing,
sanitation, and drinking water in populous areas, which cre-
ates a favorable environment for leishmaniosis to spread. Phle-
botomine sand flies, which feed on blood to create eggs, bites
of infected females carry the Leishmaniasis parasite. Leishma-
niasis epidemiology is influenced by the parasite and sandflies
species. The local ecological features of the transmission loca-
tions, the human population’s historical and present exposure
to the infection, and human behavior are common sources.
Leishmaniasis parasites have been identified to naturally inha-
bit about 70 animal species, including humans (see [5]).

With variations in transmission cycles, reservoir hosts, sand
fly vectors, clinical symptoms, therapeutic response, and sev-
eral circulating Leishmaniasis species in the same geographic
location, the epidemiology of cutaneous leishmaniasis in the
Americas is extremely complex. More than 97% of the VL
cases in the region in 2020 were reported in Brazil. In this area,
both visceral and cutaneous leishmaniasis are common (see
[6]). A total of 199 cases, mostly from Africa and the Americas,
were imported in 2020. Leishmaniasis outbreaks, both cuta-
neous and visceral, are frequently linked to migration and
the movement of non-immune people into regions where there
are already active transmission cycles. Both widespread defor-
estation and occupational exposure are still significant issues.
Early detection and timely, efficient treatment lower illness
prevalence and avoid disability and death. They are also
responsible. As well as monitoring the prevalence and burden
of disease, it aids in reducing transmission. Although they can
be challenging to use, there are currently extremely effective
and safe anti-leishmaniasis medications, especially for visceral
leishmaniasis. Thanks to a WHO-negotiated price plan and a
drug donation program, access to medications has consider-
ably improved. By reducing the number of sand flies, vector
management aids in slowing down or stopping the spread of
disease. Spraying insecticide, using nets treated with insecti-
cide, managing the environment, and using personal protec-
tion are all examples of control strategies. Effective disease
surveillance is essential to quickly monitor and act during epi-
demics and circumstances with high case fatality rates while
being treated. Animal reservoir hosts are difficult to control

and need to be handled locally. Social mobilization and part-
nership building: community education and mobilization with
successful behavioral change interventions must always be
locally tailored. Collaboration and partnership with other
vector-borne illness management programs and other stake-
holders are essential.

Human illnesses caused by parasites, viruses, and bacteria
that are spread by vectors are known as vector-borne diseases.
Diseases like malaria, dengue, schistosomiasis, human African
trypanosomiasis, leishmaniasis, Chagas disease, yellow fever,
Japanese encephalitis, and onchocerciasis cause more than
700,000 deaths annually. These diseases disproportionately
afflict the poorest populations and are more prevalent in trop-
ical and subtropical regions. Numerous nations have experi-
enced large epidemics of dengue, malaria, chikungunya,
yellow fever, and Zika since 2014, which have affected popula-
tions, claimed lives, and taxed health systems. Other illnesses,
including leishmaniasis, lymphatic filariasis, and chikungunya,
inflict lifelong morbidity, chronic misery, disabilities, and spo-
radic stigmatization, which are also counted. A complex com-
bination of demographic, environmental, and societal factors
affects the distribution of vector-borne diseases. Global travel
and trade, unplanned urbanization, and so on. For such dis-
cussion, we refer some work as [7-9].

There is a wealth of literature on modeling infectious dis-
eases. It has been stated in various research articles that tradi-
tional models have been established. As opposed to statistical
models, the main concept of transmission models is a mechan-
ical explanation of the transmission of infection between two
individuals. By connecting the individual mechanism of trans-
mission with a population description of the incidence and
prevalence of infectious diseases, this mechanistic explanation
enables one to mathematically characterize the time evolution
of an epidemic. For more details about the said disease see
[10-12]. The meticulous mathematical formulation of these
connections necessitates a thorough analysis of all the
dynamic mechanisms involved in disease transmission. As a
result, creating a mathematical model aids in concentrating
thought on the crucial processes that shape the epidemiology
of infectious diseases and identifies the parameters that have
the most influence and are most amenable to control. Thus,
mathematical modeling is integrative in that it brings together
knowledge from very disparate fields, such as microbiology,
the social sciences, and clinical sciences (see [13]). Here in
Fig. 1, we present a scenario of the basic reproduction
number.

According to the diagram 1, the first generation’s infection
rate rises by a factor equal to the reproduction rate Ry. During
the outbreak, the pool of susceptible people becomes increas-
ingly smaller. The epidemic ends, when the final diseased per-
son fails to spread the disease to any vulnerable individuals.

Here, we remark that recently researchers have worked very
well on the area of mathematical models using different con-
cepts. For instance, COVID-19 has been investigated very well
by using mathematical models concepts. In this regards large
numbers of articles have been published. Here we refer some
work like [14-20]. In the same way some researchers have also
developed frequently very useful work like [21-23]. In addi-
tions, for some more analysis on models and detail application
of Ry, we refer here [24,25].
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Fig. 1

Since the aforesaid disease is a common threat in numerous
societies. Its proper investigation and precautionary measures
will help the public and society to save their lives from the
mentioned infection. Further, with the help of mathematical
models and their analysis, we will be in position to know the
transmission mechanism of the diseases and their control pro-
cedure. This analysis will help health department in making
precautionary measures to save people from catching the infec-
tion. Inspired from this we will establish a detailed analysis for
the said disease through an updated mathematical model been
formulated in the next section.

2. Cutaneous Leishmaniasis disease mathematical model

The following model (1) is considered from [26] for the study in
this project by extending with a new class of hospitalization
denoted by H(z) as,

& = oy — V01 1,8y — 615,

dt

djh = VglIvSh - (V]] +p+ 51)Eh7

B — By — (3, + 01+ Q)

Lo =y I, — &1 Ry, (1)
B =0y — VOIS, — 5,8,

dEy = VGQI,;SV — (52 + ﬂz)E‘v,

dt

% = an\' - 521\’1

where, v is the sand fly biting rate, «; is the new recruitment
ratio of humans to the class at risk, o, is the new recruitment
ratio of vectors to the class at risk, y, denoted the rate of recov-
ery of the infected human population, ¢, stands for the natural
death rate in the human population. J, denoted the natural
death rate in the vector population, 0, represents the transfer
probability of ACL from sand fly to human, 0, represents
the CL probability of spread from human to sand fly. Q stands
for the death rate of infected humans due to disease. p presents
the death rate of exposed humans due to disease. 7, represents
the rate of infection of exposed humans, #, is used for the rate
of infection of the exposed vector. While the classes, Sj(¢)
stands for Susceptible human population, E;(r) Exposed
human population, I;(7) Infected human population, R;(¢)
Recovered human population, S,(¢) Susceptible vector popula-
tion, E,(r) Exposed vector population, and 7,(¢) Infected
human population. During the modification of the model
(1), the class H denoted the hospitalization density and the
parameters ), which is the rate of recovery of infected human
population in hospital, and 7% shows the transfer rate of
infected humans to hospital. Therefore, the modified model
from (1) is given as

Second Generation

3 Infected

Fourth Generation

Third Generation

2 Infected 0 Infected

Diagrammatical scenario of basic reproduction number R, in a population.

ds;
Tlﬁ = 0 _V0|IVS[1_5]S[17

L = y0,1,S; — (n, + p + &) Ey,
% :nlEﬁ_(yl+51+Q+h)Iﬁ7

M — [ — (81 4 7,)H,

dt
L =y Iy +9,H — 6 Ry, 2
B =0y —v0,I;S, — 6,8,
L =0, 1S, — (62 + ny) Es,
L = n,E, — 6,
Where the initial conditions are described as,
Si(2) > 0,Ep(¢) = 0,1;(r) = 0,H(t) = 0, Ry(¢)
> 0,5,(1)>0,E,(t) = 0,1,(t) = 0. (3)

Some basic properties of the model (2) are investigated includ-
ing positivity, the existence of equilibrium points, and repro-
duction number. The existence and uniqueness of the
solution of the model under consideration are also investi-
gated. Local stability and global stability analysis of equilib-
rium points are also studied. Here we will follow the
procedures given in [27-31]. For the required results, we use
the Lyapunov function the third additive compound matrix
technique. Researchers have used some analysis to deal various
real world problems of models on the same way like in [32-38].
Sensitivity Analysis is also investigated by using some tools
from the Numerical functional analysis. Numerical analysis
of the proposed model is performed nonstandard finite differ-
ence scheme. Moreover, for the justification of our results, we
give a graphical presentation of the model for each class in the
model. The mentioned tool has been used in [39-45]. Also, we
present some graphical presentations related to the sensitivity
analysis along with the tables for its sensitivity indices.

The paper is organized as: Section first is devoted to intro-
duction. Section 2 is related to formulation of the model. Sec-
tion 3 is connected with basic results. Section 4 is devoted to
the existence theory and stability analysis. Further, in Sec-
tion 5, we give global stability analysis. In addition, Section 6
is related to sensitivity analysis. Also, the numerical scheme
and its implementation is performed in Section 7. Further, last
section is devoted to conclusion.

3. Basic properties of Leishmaniasis model

The dynamics of total individuals and vector population is rep-
resented as:

dN;
dlr =0 — 51Nh

Q
——Iﬁ—ﬁEhgocl—élNh. (4)
01 01
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The above inequality lead to N — o/, as t — co. Next

dN,
" = oy — 5N, 5
a2 )
Biologically, feasible region A is given by
¥
o 0y
A= (Sﬁth7[Tl7H7RTHSWEWI\’)ER 7N71<5_7Nv<5_
1 2
From the model (2) and (4)—(5), we get
lim sup N; = il ,and limsup N, = % (6)
100 1 1—00 0,

When ¢ — oo, also depicts the wellposedness of the model (2)
with positively invariant domain A.

Lemma 3.1. The orthant Ri is invariant positively for model

Q).

Proof. Suppose, z = (Si, En, I, H, R;,,S“,E\,,I‘,)T, and assume
that

—6; — I'v0, 0 0 0
Ivo, 01— —p 0 0
0 M —Q—6,—y, —h 0
. 0 0 / =01 — 7,
o 0 0 "1 72
0 0 —S;v0, 0
0 0 S;v0, 0
0 0 0 0
and
v0,S; —v0,S;
0
0
0
b= 0 , (8)
0
0
v0,S; —v0,S;
satisfying the following equation,
% =/{lz+b. 9)

As we observed that the Metzler matrix (¢) has non—negative
entries on its off-diagonal and » > 0. Thus, this concludes
that the model (2) is positively invariant in RY.

Lemma 3.2. If solutions of the model (2) exist, then under the
conditions (3) they are positive for ¢ > 0.

Proof. Assume that, solutions to model (2) exist in
I1,V: € 1 C [0, 00). Furthermore, consider the second equa-
tion of the model (2) with solution in the following form:

Ei(t) = En(0)exp (—[(n, + p + 01)Est) +exp (=[(n, + p + 81) Ex]?)
X [y v01L,(x)S5(x) exp ((n, + p + 31)x)dx.

(10)
Similarly, the next equation of the model (2):

Ii(t) = 1i(0)exp (=[(y, + &1 + Q+ W) L]1) + exp (=[(2) + 61 + Q@+ R) L)1)
X Jo mEn(y)exp (7, + 01 + Q+ h)y)dy.

(11)
So, from Egs. (10) and (11) we observe strictly positive solu-

tion to model (2). In the same manner, we can obtain the
non—negative solutions to Sy, H, Ry, S, E,, I,.

3.1. Existence of Equilibrium Points and Calculation of Basic
Reproduction Number R,

Suppose, in the model (2) we set dS;/dt = dE;/dt = dI,,/dt =
dH/dt = dR;/dt = dS,/dt = dE,/dt = dI,/dt = 0. Then the
model becomes:

0 0 0 —S;v,

0 0 0 Sy v,

0 0 0 0

0 0 0 0
- 0 0 0 ’ )

0 —0,— Lo, 0 0

0 L0, —0y — 1, 0

0 0 1, -

o —vO 1Sy — 6,5, =0, (12)
v0 L,Sy — (n, + p+ 6)E;, =0, (13)
MEy — (1 +01 +Q+h) I =0, (14)
Iy — (3 +7,)H = 0, (15)
wwh +79,H—01R; =0, (16)
oy — v, IS, — 6,8, =0, (17)
v0 IS, — (0, + 11,)E, =0, (18)
mE, — 8,1, = 0. (19)

Furthermore, let there is no infection in the population, there-
fore we neglect the infected compartments in the model, thus
the system of equations (12)—(19) becomes:

2 — S, =0, (20)

Oy — 5252‘%{ =0. (21)

Next, from Eq. (20) implies that:

s =2 (22)
0y

While, from Eq. (21) we obtain
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[2%]

S ==, 23

f=5 23)

Hence, the positive disease—free equilibrium point is given by:
o [v%)

o0 = | — —=). 24

éO (5] 701 070’0’0’0752) ( )

Furthermore, let along with infection, consider the whole sys-
tem of Eqgs. (12)-(19) and calculating the endemic equilibrium
point " by adding Eqgs. 12,13, we obtain:

o — 618, — (ny +p+61)E; =0, (25)
which implies that
a — (n +p+61)E;

Sy = 26
h 51 ( )
From Eq. (14), we have
mE;, — (y + 01 + Q+ ), =0, (27)
which implies that
m
r=—————"F. 28
T +a QT %)
From the Eq. (15):
hl, — (61 +9,)H" =0 (29)
implies that
h
_ 30
01 + 72 (30)
Furthermore, from Eqgs. (28) and (30), one has
I,
H = E;. 31
(01 + 7)) + 01 +Q+ 1) ¢ (3D
From Eq. (16), we have
Nl +7H —6R, =0, (32)
which yields
m:§q+hm. (33)
1
Now, using Egs. (28), and (30) in Eq. (34), we get
« V1M
R = E;
P+ 6 +Q+h) "
720
+ E;. 34
IR R e 54
Next, we add Egs. (17) and (18) to get
a0 — 028, — (62 +mp)E; =0, (35)
which implies that
.o (624m)
S'=——--—-—"=F. 36
v 62 62 v ( )
Eventually, from Eq. (19), we have
r="g. (37)

v 52 v
Hence, the positive disease—endemic equilibrium point &* is
given by:

& = (S BT,

I a

JH' R, SIE.T), (38)

v

where

. 01)E"
e
L = Grs e Bn
H' = G, e B
R, = 5,(«/113749%) E; + ts](<s|+;v2;}(2;ﬁ;7+16,+n+h) E,
S, =E-RE,
I =2E.

To calculate the basic reproduction number Ry, we consider
the infected compartments in the model (2), such that

fi =v0iLSy— (n,+ p+81)Es,

o =mEy— (3 + 0 + Q+ W),

S =hl— (S +)H, (39)
fo =V0IS, — (05 + my)E,,

fs =mE, — &1,

Now, we take the non-linear terms from system (39) as f while
linear terms as v such that:

v, 1, S;, (n, 4+ p+01)E;s
0 (1 + 61+ Q+ M)l —m E;
f= 0 ,and v = (01 +7,)H
vO, I;;S, (02 +ny)E,
0 0ody —mE,
(40)
satisfying
dx
T =f—v (41)
Next, the Jacobian matrices of f'and v are given by:
0 0 0 0 S;vo,
0 0 00 0
F=10 0 0 0 0 ,and
0 S0, 0 0 0
0 0 00 0
S +n +p 0 0 0 0
- Q+6,+y,+nh 0 0 0
V= 0 —h S1 + 7, 0 0
0 0 0 6+1n, O
0 0 0 —-n 0
(42)
Also
Vil 0 0 0 0
Vai m 0 0 0
= va m ﬁ 0 0 [ ande
0 0 0 0274[4]2 0
0 0 0 52(5,211'72) %
0 0 0 0 0
mG=| 0 0 0 0 o | (43)
831 Q+erj: o 0 0 0
0 0 0 0 0
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where g (t,2) o — vO 1Sy — 6,S;

vi= 1@ +m+p) v =m/((8 +n +p)(Q+ 8+, +h), 8(1,2) V01 1Sy — (i + p + 01 Ej

vt A/ (81 +72) (81 4y + p)(Q+ 61+, + 1), 8(1,2) mEs = (0 + 01+ Q+ M),
= Sinv02/((6r +m + p)(Q+ 61+, + 7). s 24(t,2) _ Rl — (61 +v,)H (47)
The non—zero eigenvalues of G are given b &s(4,2) it H =0 Rs

—Z valu ¢ 1V y:
gé(l7 Z) O — V@z]ﬁSv — 525‘,

3 Oy 5?0211 Si _

A= v\/52(52+'72)(<5le'{1+u)2(£l+z51+"/1+h)7 ) &(1,2) V02 1S, — (02 + 1) E,

‘j' _ \/ OlmS,‘y‘“’(}znzSi” g8(lv Z) an\’ - 621v

2 T TV S ot p) @

So, the spectral radius of the next generation matrix is given by
Ry = p(G), that is

01’7152‘021173%
Ry=v e , 45
° %z(ézw)(é] rnrn@io i ®
where, Sy and S¥ are given as
% )
S =" and S¥=-_". 46
h 61 »an v 62 ( )

Thus, basic reproduction number R, is obtained in Eq. (45).
We conclude the above discussion for uniqueness of the
concerned equilibrium points by following [21,22] as.

Remark 3.3.

e The disease-free equilibrium &, will be a unique biological
feasible steady state if and only if Ry = 1 and Rc > 1;

e a co-existence between the disease-free equilibrium &, and
two endemic equilibrium points as the only possible three
steady states if Ry < 1, and Re < 1;

e a co-existence between the disease-free equilibrium &, and
an endemic equilibrium as the only two steady states if
Ry =1 and Rc > 1;

e a co-existence between the disease-free equilibrium &, and
an endemic equilibrium point as the two only possible
steady states if Ry > 1.

4. Existence, uniqueness of the model and local stability analysis

Using the Theorem (9) from [27], also one can read [28], we
prove the existence and uniqueness of the model (2), such that
we consider the model (2) and re—write in the form of z = g(z).

= 0 0 0
0 —0—n—p 0 0
0 n Q-6 —y, —h 0
JE) = 0 0 h —31 =7,
0 0 71 72
0 0 —S7v0, 0
0 0 S¥v0, 0
0 0 0 0

Taking the first partial derivatives w.r.t the state variables of z,
which is given by:

g, 0

i 48
o’ apg(Z), (48)
where p is used in general implies that
0
oSy g([7 Z) 7\)91[“ - 5|
P
o5 8(6:%) —(n +p+0)
- 8(t,2) —(9, 401 + Q+h)
P
o P 781, 2) (01 +7,)
58(2) =5,8(1,2) = =
ap ap 0(;)', g(Z,Z) —
5 8(t,2) —v0y1; — 0,
s 8(t,2) & : )
are(t,z) o
(49)

Clearly, we see that the partial derivatives are continues such
that

0 . .
8_g — continuousinR".

(50)

Thus, according to [[27]: Theorem 9], there exists a unique con-
tinuous solution to the model (2).

Theorem 4.1. The Leishmaniasis disease model (2) is locally
asymptotically stable at disease-free equilibrium E™, when
Ry < 1,A>0,A, >0 and A; > 0, otherwise unstable.

Proof. The Jacobian matrix J(ém) of the model (2) at disease—
free equilibrium point E* is given by

0 0 —va@l

0 0 Siv0,

0 0 0

0 0 0

0 0 0 (51
-9, 0 0

0 —d6—-n 0

0 UG —0,
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The characteristic equation of the Jacobian matrix (51) in Jis

given by:

(G400 480G+ 8+ 61 + 7)) (A + 60k + 6104
+ G134+ G14) = 0. (52)

where, the coefficients are given with some simplifications

0, = (62+m), 0, = (o1 + 1y +p), 03 = (Q+01 +7, +h),
and Qy = (Q+26, + 20 +n, +m,+ 7, +h+ p).

a1 = Oy, (53)
an = 0,0, + 6,0, + 0,05 + 0,05 + (0,05 + 6:0,, (54)
o135 = 0,0,0; + 5:0,05 + 60,0, + 5:0,05 — a0, Sy, (55)
G4 = —537711’129192"25? - a3171291Q3VS;? +0,0,0,0;. (56)

G = (010,03 + 50,0, + 0,0, + $:0,0:)(Q, 0 + 5.0, + 0, 0; + :0; + 0,03 + 5:0,)
+83Sumy 1312010204,
G, = *KSEQ1Q2Q1Q4-

(63)
This implies that
G=G -G, (64)
such that, 012013 — 014671 > 0, if Gu] > 62, while,
611615 — 013 > 0, if 010,05+ 020,05 + 620,0,+

0,0,04 < 0. Thus, the eigenvalues ;11 = 751,12 = 751,13 =
—0,, and 14 = —Q, are negative while according to Routh-
Hurwitz theorem the rest of the eigenvalues of the Jacobian
matrix (51) are negative and hence the model (2) is locally

According to Routh-Hurwitz criterion [29-31], asymptotically ~stable around disease—free equilibrium
5'11>0,5'12>0,5'13>021Hd a14 > 0, also pointﬁ.
A >0, A= (j“ >0,and A3; = |63 G G, |>0 Theorem 4.2. The Leishmaniasis disease model (2) is locally
o1 on Sis G 6 asymptotically stable at disease-endemic equilibrium E*, when
(57) Ry > 1,A; > 0,A; >0, and Ay > 0, otherwise unstable.
Furthermore Proof. The Jacobian matrix J(&*) of the model (2) at disease—
Ay =dnbn -, endemic equilibrium point E* is given by:
=04(0,0; +0:0, + 0,05 + 0205 + 0105 +0:0)) = 010,03 — 020,05 — 20,0, — $:0,0;.
(58) The characteristics equation of the matrix (65) is given by
751 — If,v@l 0 0 0 0 75;:\101
Iv0, 0 —n —p 0 0 0 0 0 S;v0,

0 m —Q—6,—y, —h 0 0 0 0 0

0 0 h -0 — 0 0 0 0
J(E) = I (65)

0 0 7 Vs -0 0 0 0

0 0 *Stvez 0 0 *52 - IZVHZ 0 0

0 0 Siv0, 0 0 ILvo, -0 — 1, 0

0 0 0 0 0 0 1, -0,
Let (;:L -+ 51)(22 + 51 + "/2)(}»6 -+ 51115 + 512;14 + 51313 -+ 514}:2
Fi = 040105 + 620, + 0,05 + 71 +1) + 6,05 + 0,05 + 6:0,), + bisi + big) = 0. (66)

ﬁz = —Q1Q2Q3 - 52Q2Q3 - 52Q1Q2 - 52Q1Q3-

(59)
This implies that
F=F —-F,. (60)

Here, we see that F >0, if F; > F,. Next, A; >0, then
G1(612813 — G14611) + (611615 — 633) > 0

012013 — 61301 = (010,05 + 020,05 + 20,0, +0:0,0:)(0,0; + 620,
+(0105 + 0205 + 0,03 + 0:0) — 04(6:0,0,05 — Sy 1,v70105),

(61)
and
Gnois — 61, = —(0,0,0; + 60,05 + 8:0,0, + 52Q1Q3)2-
(62)

Let

Where, the coefficients are given with some simplifications
0, = (02 +m),0, = (01 + 1, +p),

Q3 = (Q+51 +"/1 +h),0'1 = 51 +I:V91, and 0y = 52 —I;VGZ as
by =Q—0 =0 —n —ny+y +h—p—Lyoh — V0,
by =801 = 02024+ 0,0y — 3205+ 010, + 0, — 0,05 + 0205 — 6105
—6,0; — 0,02 + 0,01 — 0,0; + 6,0, — 0201
(67)
bis =0,0,0; + 00201 — 020,05 + 610,05 + 0,03 — 50,01 + 5,0,0;

+020201 + 01020, — 016105 — 620,05 + 62010, + 62020, — 62610,
—0,020;5 + 016103 + 020,05 — 020105 — 620205 + 620105
(68)
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by = 0,0:0105 +8,0,6:0; — $:0,610; + 6626105 + 0,0:0,0,

—01610,0; — 6:0,0,05 + 62610,0; — 6:0,06201 + 6:6:0,0; — 62610,0;

—0,02010; — 60,020, + 60,610, — 6,62610, — SZS:’?szzelez
(69)

bis =06:0102010; — 6:0,0201Q5 — 0,02610,05 — 0:0,020,0; + 6:0,010,0;3
—0202010,05 + PS,,S7'11’72\’30|U§ + I:S;,S:m’?z"wiﬂz - 5;5:771'72"2010252
+87.St,1m,v2 0,050

(70)
};15 = 0,0,020610,0; + S;S;1,1,v*01 60,0201 — l;,S;S:nanVW]H%UI (71)
1.8, S,V 010205 — LIS, Sy 1,9 0103
According to Routh-Hurwitz criterion [29,30],
[;11 > 0,[;12 > 0,];13,];14 > O7 [;15 > 0 and 516 >0 also,
y by 1 0
b]l 1 v o v
A, = 5. 2 >0, As=|by3 b by |>0,and
13 O - - -
bis by b
by 1 0 0
biy by b
A= |28 O b B
bis by bz b
0 b bis bi3
(72)
Furthermore
A = BIEE - ’;1‘

=010, + 010; — Q{6 — Qjo1 + Qjox — 0,05 +20,0,0; — 20,0,
—20,0,01 + 20,0502 — Q|Q§ +20,050, +20,0501 — 20,030, — Qléi =20,6,01
+20,6,0, — 0,01 +20,010; — 0,03 + 0305 — 036, — Qa1 + 030,

—0,0% + 20,036 +20,0;01 — 20,0505 — 015, — 20,6:01 + 20,6:0> — 0107
+20,010: — 0,03 — 036, — Q301 + Q302 + 0383 + 2050201 — 205020,

+0,07 — 2050105 + 0,63 — 3301 + 8302 — 0,07 + 20,010,

5. 62 2 2
—0,05 + 010, — 0103

(73)
Furthermore, assume that
ﬁl = QfQ} + Q%”Z +20,0,0: +20,0501 +20,056, +20,0,0, + Q%Q} +20,010,
+0305 + 20,040, + 20,0401 +20,8:62 + 20,0102 + Q302 + 0305 + 20360,
+20:0102 + 802 + 0301 + 0303 + 6102 +20,0,0;,
(74)

Hy =-010, - 016 — Qo1 — 0,03 — 20,0,0, — 20,0,01 — 0,03 — 20,0502 — 0,8
—20,6,01 — QIG% - Ql“’% - Q%f)z - ng - QzQ% —20,0502 — Qz(ig —20,6,0
—0,0% — 0,03 — 036, — Q301 — 20,0,0, — 205010 — d301 — B0

—6,03 — 0103.

(75)
This implies that
H=H, ~ H. (76)

Therefore, H >0, if H, > H,. Next, A;>0 such that
bi1(biabis — biabyy) — (b%3 —bisbyy) >0 if biobiz — bbby >0
and b}, — byshy; < 0, where:

bubis — bbby =—(Q) + 0y — 0y + 65 + 01 — 62)(SySuy 1,010 + 0,0,038: + 00,0501
=010,0502 — 00,601 + 00,6202 + 0036201 — Q056202 + 0,0;6204
—0,0;6:05 + 00,0162 — 0,050102 — 0,0;0162 + 0,6:0102 + 0,5,
%0162 = 03010102) = (©1Q5 — Q10> + 0,03 — 0162 = 0200 + Q30 — Q101 + Q02
=0,01 + 0,02 + 0301 — Q302 — 0201 + 6202 + 0162)(Q, 0,05 — Q10,02 + 0,050,
+0,0:02 = 010,01 + 010,02 + @001 — Q0302 + 0,0301 — 0,002 — Q6,01
+0,0202 — 0,0:01 + 0,620 + Q30201 — 036202 + Q0102 + Q10102
—030610, + 0,010,).

()

and
};%3 —bishii = (0,005 — 00,0 + 0,030 + 0,0:0: — 00201 + 0,002 + 0,030
—0,0;02 + 0,0501 — 90,0305 — 010,01 + 0,6,0: — 0,0:01 + 0,602 + 0306,
~030,02+ Q0102 + 0,0102 — 030102 + 5,0102) + (O, + @y — Qs + 02 + 01 — 02)
x(Q10,0350201 — 0,0,036201 = 0,0,050102 + 0,0,6,0102 — 0,05020102
—0,0:0:0102 + IS, Simm v 0,03 + I, Sy Sumy 1 00> + S Sy 17
xa10,0, — S;,S,m,1,?5,0,0,).

(78)

Furthermore, A; > 0, such that
Ay = 5%25%; — 5?21;15 — bibupbiabis + 5111;%2515 — bisbishs
+512513516 — I;?; - 5125%3515 + 511513515 - [;fs

(79)
Let
G = l;le;f; + /;11];%];15 + biabishig + bibyshys,
Gz = —5?2515 - 511512514513 - 512514515 - 5?3 - 5125%3515 - 5%57

(80)
which implies that
G=G -G, (81)

So, G >, if le > éz. Therefore, the model (2) is locally asymp-
totically stable around disease—free equilibrium point E*, that
is the eigenvalues J=—6,and iy = —(d1 + 7,) are both nega-
tive, while the rest of the eigenvalues are negative based on the
Routh—Hurwitz criterion.

5. Global stability analysis

Here we follow the same method as used in [32-36] to derive
stability results.

Theorem 5.1 (Lyaponov Function). If Ry > 1 , the endemic
equilibrium point &* of the model (2) is globally asymptoti-
cally stable, otherwise unstable.

Proof. For the global stability of the model (2), the Lyapunov
function can be written as,

(S;7E*51;: H*7R;7S:7ET7IT)
R ¥ E
= (Sﬁ -85, -5 log;—;> + (E;, - K - E}:logE—:>

(I = 1~ og) + (H— H — H'log"}) (2)
+<Rh R; — R: log %) + (Sv — 5 —S'log %)
+(E. - B - Eog#) + (1.~ I, = I 1og ).

Taking the first derivative of the Lyapunov function (82), such
that,

dL  _ (Shi=S3\ dSy En—E;\ dE; =5\ dly
d < Si ) dt + E; dt + 17, dt
H—H*\ dH Ri—R;\ dRy St \ ds,

+( H ) dr + ( Ry, ) dt + ( Sy ) dt (83)

E—E)\ dE, | (L=L)\ dI,
( E, dt + I, dr

+
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Eq. (83) implies that

di

L :(5" Sﬁ)(a,ﬂws,,fosﬁ ( ) (VOLS; — (0, + p + 61) Ep)

()00 = 00+ 00+ QW) + ()b = G+ o))
+ (M) Ol 9 H = 01 R + (355 (o2 = 018, — 3:5,) Y
+(552) 00:138, = (02 +m)E) + (“75) B, — 8:1,)
Loy — o = RS — ) = (S — ) -2 (S - 5
+\01m S \r)‘r[hrs,, _ ‘()]ff:,,l N mlfi,,m” B vtr.fl.z,hl‘s;,
4 \U‘E,,I’S;, I \0,1;'31 s v(),EE;hI‘)S;‘, -~ (,“ﬂ,ﬂ)l (Ey )
+;715,71,7 — B L, — B+ E*[* tha 8 (,
+LLH [T,H*+”I"H" "" 2 (H - H*) + LRy — - IR;
SRR R R~ U~ i [
tay — B3 MR (S, — §)) 2 (S, - ) — 2 (S, - S
+\-01£E\y1,,sv _ r“zEEvyl;S\ _ \-(JZLE‘I;,S + <zEE ‘FS _ \(JZEE ‘1,,5
n rung“lgs; I \~<)2EE:\(,,57 _ \rz)QEE;‘{;,sr . dz(h\ETE‘)Z — (E, ;fT)Z
1, E (1 P) rle,'(ﬁ:‘ ’?)2_52%‘
Now, let
L o= +on+ “”'E’f"‘s" + ‘M"I A ‘(’IEI' 5 + 3 Enly +L5,H
FILELS, El,,s +1 E + \(7,I'E‘l,5 + \()sz;yIrS', + \Osz‘I,ST (56)
+1 BT, +7,,1mh S = S L H R HR
+V2H*%7
and
L =-u 5,1 - ‘{th (Sh—S;)° = ‘0' = (Sh — S - (S - 5 - %
_ m,l;: Si v FE,,nl,s; _ \‘(!lf}:‘éﬁlfﬁ‘ _ ,“ﬂ,ﬂ),) (Ey — E*)z _ ”—‘Ef,[;,
7%3,& _ (~,w+ml+94,) I 71x>2 IH* o,+ (G1472) (H H*) )
— B LR, ~ B LR, — B HR; — 9y 1Ry — 6 BBl s
7\‘05%”(5“ _ S:)A _ ‘;%(S‘, _ S\*) _ ”2EE,FS _ (J:E*‘l,,s _ \-02121,,5;
- ““zEEr‘f;Sf — blEE, Py, Ef;)? — B L’ _s, w i
such that, dL/dt can be written as
dL
Eventually, if [/ </h, then 4 <0, while using
Sf,:Sh—S;7E7,:EE—E;,17,:1;',—1;,H: H—W,Rh:
R,—R;,S,=S,—-S,,E,=E,—E,, and I,=1,—1I,, then

0 =1, — [, implies that "L = 0. Also, for the suggested model
(2), we are looking the largest compact invariant set
{(S;,E. I, H" R}, S, E,, I.) € []: %< =0} is the endemic
equilibrium point &* = (S;,E’,;J’;,,H*, R;. S, Ef,l‘*) of the
considered model. Further, it is clearly holds that L(0) =0
and L > 0, at &*. Thus L satisfied all the properties of positive
definite operator.
Thus, the model (2) is stable in [, if Ry > 1, and /; < k.

Theorem  5.2. If [0, >$:S,0,, 1, > 3155, 0,510, > 1,0,
L > S, L0y > §8,0,, 1,0, > ¢ 1,0, and Ry > 1, then the
model (2) is globally asymptotically stable at endemic equilib-
rium E* and unstable otherwise.

Proof. For global stability analysis, we consider the non-lin-
ear equations from the proposed model (2), such that

s,
7,7 o — Vgll\rSh - 51S/17

d[% =v0 1Sy — (1, + p + 01)E, )
Lo =0y =0, IS, — 5,8,

B — 0, IS, — (62 + 1) E,.

dt
Now, for the generic matrix J, such that
apn  dip diz dig
a dy dy3 dxg
J=1" . (90)
asy  dszp dzz dy
g1 dgy Q43 dag
We consider the third additive compound matrix J® from
[37,38], that is

ay +axn +as dsg —ay ay
3= dg3 ayy + axn + as an —a3
—dg asn ay + a3 + dug a

223} —asz as Ay + a3z + Aag

on

The Jacobian of the non-linear sub-system (89) at disease
endemic equilibrium point (E*) is given by

—51 — 1?,\101 0 0 —S;:V()l
I'vo 0 0 S;v0
J= v : P (92)
0 —S‘,ng —52 — IZV@z 0
0 St,VOQ 1;\)02 0

Based on (92), the third additive compound matrix is obtained
as

—(81 + 82) — ([jv0; + [v0,) 0 —Sjv0, —S0,
i v, -, — v, 0 0
- —Sv0, =SS0y —(8) + 85) — (Lv0s + Iv0,) 0
0 0 o, —3y = Iv0,
(93)
Next, the function ¢(y) = diag{S;(), Ex(¢), S.(¢), E,(¢)}, while
the inverse of  function ¢(y) is given as

g '(v) = diag{1/S;(1), 1/Ex(1),1/S,(¢), 1/E,(t)}, the time

derivative is given by ¢/(y) = diag{Sy(7), Ex(1), Su(1), E,(1)},
while
q,q7" = diag{Sy(1)/Si(1), En(1)/ En(1), S,(1)/S.(1), Es(1) / Ev (1)}
and
by 0 — IS0, — LS50,
- S v0, by 0 0
Jolq™ = )
o —$BS0,  — 386, by 0
0 0 S0, by
4)
Where, b] = *(5| + 52) — (1}:\/02 + If,vG]),bz = 76] — 1’:_\’91,
b3 = *(5| + 52) — (12\’02 + I’:,Ve]), and b4 = 752 — I;VGz. Fur-

thermore, the matrix Q = q/q’l +¢JBlg 1 is obtained in the

following manner

232? + by 0 — S 55v0;  — 21 550,
Ej E,
o SALve, 24 by 0 0
S‘(t) S*V(')z S‘ [) S*V(')z ?Eg b3 0
E(1) \( )
(95)
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Now, consider the entries of the matrix (95) as D> then, we
have to calculate z;(7) for j = 1,2, 3,4 such that

4
o) =qn+ Z |91,

k#1 k=2

4
() =qn+ Z |92l

k#2N\k=1

4
() =gy + E |35
kE3nk=1
4

z4() =dqu+ Z |94
k#ank=1
Now, to evaluate zj(¢) for j=1,2,3,4 such that, if

I;0, > %S;Gl and I} > %S; then z;(¢) becomes

() =39-

= 30— @01+ 00 —v(B0 - 25,00) —vou (1 - 5;),
=50 _ (5, +6,).

(81 +2) = (02 + [30h) + | 205,00, + |~ 34 5704,

Sp(1)
97)
For z,(7), if 92%1’; > I0,, then
2(t) =205, — 1v0, + (2010,
:Q;—E;;—al—v(ef— 1*9) (98)
_ kW
—,;—(f)— 1.
For z3(1), if I, > $:S; and 1,6, > §: 5,05, then
() =350 (54 8,) — (v + 0, + |_—s*vez‘ i ‘— 1.5:v0,|,
*—ﬁ”—( +52)7»92(1* Fhs:) 7v(1:9| 7575‘,92),
=30 (5, +0).
(99)
Finally, for z(z), if 7;0, > %‘IT,OI, then
() =M= 6 — 5o, + (2010,
=180 = (5,0~ £101), (100)
== I‘—(Z) - 52.

Furthermore, let a vector x = (&, &, &, &), while the Lozinski
measure ¢(Q) is defined as ¢(Q) = z;,i = 1,2, 3,4. To integrate
the ¢(Q) with in limits # — oo lead to the following equations

11m supsup? f(,Zl tdt < [ff”éé) (61 + 62),

(101)
—(51 + 02).
Ilin; sup sup * f(; (ndt <4 5:(((1))) -6, (102)
< —=0.
zlg?c sup sup* £Z3(l)dl <4 ;((é)) — (81 + 62), (103)
7(51 + 52)’
and
s 0 < 4 s

< —0s.

Now, the combination of the last four inequalities give

t

(Q)dt < 0.

_ 1
X = lim-
t—oo t 0

(105)

The system containing only four non-linear equations of
model (2) is globally asymptotically stable around its interior
equilibrium (S;, I;, S, E;). Furthermore, calculating the rest
of the equations can lead to [I(t) — I;, H(t) — H",
Ry(t) — E;, I,(t) — I, as t — oo. Thus, E* is globally asymp-

totically stable.

6. Sensitivity analysis

Based on the procedure used in [39], we present sensitivity
analysis of the parameters in the considered model.

-%’n:i %
’ ot |’

Now, according to the above relation, we have

Ry _ v o001111201 0y
S =2 | /AFER > () 106
v Ry 0103010,0; ’ ( )
Ry _ o1, 1120105 0
s =2 >0, (107)
o Ry 26,620,050 gty 0y 0p
L 192515253 ‘H"%QIQZQJ_
R o o 11 v0, 60
so(U — R_2 1H1M2v01 U2 > 07 (108)
5) 0 2615 050,05 19911120109
= 4192010203 |
(zlmn y,zuloz L2101 0 | 215110010
0102010,02 1 6102010305 ' 920201003
Ry _ 4y 1% 5% 1% 109
S5, = Ry 5 [Hanimf <0, ( )
,>1,5§ngzg3
o[ 2z )]2(71()2+71 L7211 120, 0>
Ro 5s 014" Q 0,03 ()10 010,03 0 (110)
) == |- <
() Ry ) [amunin ’
0105010203
o[ om0ty mmnmoy0y
2 T3.520.02
SRn _n 9193010203 9195010303 > 0 (1 1 1)
mo Ry 5 [famnmi ’
.sldgglgzg3
[ 20m 010y myayn 010y
Y 5102010205 010202050
sh =1L St b/ N0 (112)
m Ry 5 [ammmnit
dI(i%QIQZQz
Ry o oo V0,
S(? — % mh > 0, (113)
1 Ry 25,520,050 oty 0105
| 10010203 7{),()5&92@_
R J oy a1y VO
S()U — 91 1%21112V01 > 07 (114)
2 Ry 261620,0,0 gty 01 00
L 19221225 ‘W%Ql(’zQs_
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Ry _—_ 0 |_ o 0017, 12 v01 0p
SP Ry 2<>']¢SZQ 020 uyoon 12010, < 0’ (115)
L 21T 5152010205 |
Ry _m | _ oy o 1 v01 0n
Tk 20,020,0,0% , [Azznniily <0, (116)
| 1R 552010205 |
Ry _—_m |_ oy o211 12 v01 05 <0 (117)
. ~ 7
B L Ny
L 2 2 d
Ry __ m o101 1 v01 02
S =% | = <0 118
h 0 261620,0,0° w1201 0 ’ ( )
TR 512010205
L 2 = .
where, 0, = (02 +1),0, = (61 + 1, + p), and

0;=(Q+6+7y, +h).
7. Numerical results and discussion

In this section, we investigate numerical solution of the model
(2) using Non standard finite difference scheme (NSFD)[40.41]
which can replicate the dynamics of the Leishmaniasis disease.
Assume, Y = (Sy, Ey, Iy, H, Ry, Sy, E,, 1,)", which approxi-
mates X(z;), where #; = iAt, with i € N,h = At >0 be a step
size then, consider the first equation of the model (2) such that

ds;

dl‘r =0 — V0|I\,Sﬁ — 61Sﬁ

and use dS;/dt=(S;"' —Si)/@(h) Sy =S, and I, =1

which implies that

Si' = S;
a(h)

(119)

= —vO, IS — 5, S (120)
Consider the second equation of model (2), and use
dEy/dt = (E)' — E})/w(h) Ez=E,",Sy=S, and I, =1
which implies that:

u:v(ﬂm‘“ —(n +p+0)E" (121)
w(h) v~ h h
Consider the third equation of model (2), and use

dl/dt = (I — L)/w(h) , and I; = I;"" which implies that:
[;:rl — 157
@(h)

=mE™" — () + 6 +Q+h)1. (122)
Consider the fourth equation of model (2), and use
dH/dt = (H"' — H')/w(h) , and H = H" which implies that:
o _ ) _
- ]1+1 _ N H’+l.
w(h) h h ((Sl + /2)

Consider the fifth equation of model (2), and use

dR;/dt = (Ri™" — R)/m(h) , and R = R™" which implies that:

Ri+l _ Ri
w(h)

(123)

:V1];,+1 +V2Hi+l —61R[+1. (124)

Consider the sixth equation of model (2), and use
ds,/dt = (S —S)/w(h) , L =1, and S,=S"" which
implies that:

SH~1 _ Si
@(h)
Consider the seventh equation of model (2), and use
dE,/dt = (E"' — E')/w(h) , and E = E™" which implies that:
B - E, i Qi i
~oty = VehST = ()BT
and finally, the last equation of model (2), and use

dl,/dt = (IT' — [)/@(h) , and I, = I'"" which implies that:

=0 — VO, IS — 5,8 (125)

(126)

I —r , .

‘w(h) t= '12Et\'+1 - 021?»[' (127)
where w(h) [42]

w(h)=1—¢" (128)

is a real-valued function satisfying the condition w(h)—0 as
h—s0.

7.1. Analysis of the scheme

Theorem 7.1. The NSFD scheme (120)—(127) [41,43] is used to
numerically interpret a dynamical system on the biological
feasible domain A of the continuous model (2).

Proof. At first, let us consider the system of Egs. (4) and des-
critize them, such that:

dNp Q P

i —(X]*é]N}',*th*aE[,,

Ny s (129)
Ta T 2T 02l

For the system of Eqgs. (129), now the descritization become:

N — N o Q. p o

h TTh gy N g D 1

@ (h) u = ol IR T (130)

A+l ]vl .

Y — g, — §,N, 131
w(h) % 2y (131)

We prove the condition of positivity of the scheme (120)-(127),
which can be represented by NSFD scheme as: from Eq. (120),
we have

St = — VOIS = 618,
Sy 0 (1 +e M) Sy + 618 = S+ (1 — ey,
Si+] _ S'ﬁ+(lfe’/’)ac]

T [0 (1—e M) +0y]

(132)
From Eq. (121):

| _pi o .
Eﬁ;(h)En _ v0111v51h+1 _ ('7] +P + 51)Elﬁ+17
Ef' + (L=e™)(n +p+0)E = B, +v0i(1—e")S; L,

E = EL 0, (1—e "SI E
BT I (I=e M i +p+o1)]

(133)
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Similarly, for the rest of the equations:

L+n(1—e"E

[ = , 134
(N N (W) A R WS (134)
; H 4 h(l —e ™!
H* = — 135
[T+ (1= 7)1 +77) (133)
R+ — R, +(1- 5’7/7)[711;5+1 + VZHIH} (136)
L [1468(1 —eM) ’
. Si, + 062(1 — e’/’)
St = v , , 137
YT 4 (1= e (v L + 6y)] (137)
EH— E, +v0,(1 —e LS, (138)
T+ (=) (64 my)]
) Il ] _ ,—h Ei+l
i+1 v+7]2( e ) v (139)

C T e o)

Thus, the NSFD scheme of the model (2) is obtained as (132)—
(139) [44]. From Egs. (120)—(124) implies that
Nt — N Q, p

_ _ Canl SN (R
w(h) = 0o 51Nh I

E 14
51 h 51 h ( O)

which is the exact finite difference of Eq. (130) while from Egs.
(125)—(124) implies that
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which is the exact finite scheme for the Eq. (131). The system
of difference equations given in Eqgs. (132)—(139) are not in a
form suitable for computation. Since each of these equations
is linear in S, £ 7 HTY R ST ET and I a rather

long but elementary calculation gives:

(141)

Si+] o S;ﬁ»(lfe Moy
h T 0 (1—e M E40y]
EHI - E;’+l'0]1:“(1*6’7/’)(Slﬁ+(1*£’7/’)1[)
h T (T=e M) (g +p+0)][14V0) (1—e ) I 4-51] ?
i+1 _ G
I, =Gy
i+l _ Gy
H* =G
Rt — R; + Gs + G (142)
h [+o1(I—e ] T [I+01(1—e"M] T [1+01(1—e"M)]
gt Sm-e)
v T [ (l—e ) (v0r I +62)]
B+ — Ei+v0y (1—e I (S oy (1—e7"))
v [1+-(1=e=M) (da+my)][1+(1—e =) (vO2 [ +62)] 7
) A — ’Hﬂz(l*t‘”’)(Ef‘Jr"ﬂz(l*f”’)l’r,(sfvﬂz('*8”')_))
v 502 (1—e M1+ (1—e Dorrm) 1+ M0, +5)]
40

w
S
T

N
o
T

Exposed Human Population
a8

5}
T

3}
T

Fig.2  Profiles of Susceptible S;(z) and Exposed Ej(¢) human population with a dashed line for equilibrium position, left and right hand

figures respectively.
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Fig. 3  Profiles of Infected 7,(¢) and Hospitalized H(¢) human population with a dashed line for equilibrium position, left and right hand
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where, Gy =1, +n (1 —e™(E, +v0, (1 — e (S, + (1—- n (1=e™ (B, +v0, I (1—e ") (S, +(1—e o)), Gy=[1+
e ), Gr=[1+1—e")p+0+Q+n][1+(1—e")  (I—e")(S+p)|[l+(1—e)(p++Q+ W[1+(1— ") (n+
(o000 (143, Gy=H+ h(l—e (It pt S)][1490(1—e 48], Gs=(1—e ), (G1/Gr), and
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Fig. 4  Profiles of Recovered R;(7) Human and Susceptible S,(#) vector population with a dashed line for equilibrium position, left and
right hand figures respectively.
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Gs=(1—eM)y,G;3/G,. Consider the system of Egs. (142), such
that the right hand side of the system is positive for all >0,
while for step size 42> 0. There are also no limitations on the step
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size h for the above general NSFD scheme (142) of the model (2)
which is the powerful method been discussed in [40]. Next, the
significant of the NSFD scheme are the following:
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Fig. 10  Profile of the effect of parameter #, and v and the other hand 7, and v on basic reproduction number Ry, left and right hand

figures respectively.
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e The NSFD solution  (S;™, Eif! [ir! g+t RiF! s+t
E Y to model (2) is only determined by (S}, E}, Ik,
H'.R. S E

v

I'), with a step size i and non-negative
parameters in 3.

e The denominator function does not require a particular spe-
cialized form and is explicitly determined while the scheme
solution satisfies the positivity requirement for the step

size h.

The 2-6, the proposed model of Cutaneous Leishmaniasis
disease is simulated for sixteen hundred (1600) days to investi-
gate the equilibrium state of the solution curves while the sta-
bility of the curve we then make the x—axis adjusted to see the

best behavior in the span of sixteen hundred (1600) days. The
sub-figures in profile 2, Susceptible S;(¢) and Exposed Ej(7)
population are presented. The Susceptible S;(¢) population is
increasing in time and then stays in the equilibrium position
while the Exposed Ej(7) population is decreasing and stays
in the equilibrium position. In 3, the Infected 7;(¢) and Hospi-
talized H(t) population are shown which are both decreasing
in time and also staying in equilibrium position. This also
means that the disease is stable and the basic reproduction
number is less than one, in other words, Ry < 1. In the sub-
figures in 5, the Recovered human population is quickly
increased and then takes a step to decrease in time before
200 days. Also, the Susceptible Vector population is decreasing
in time and then in an equilibrium position. Sub—figures in 6,

Table 1 Sensitivity of the R, versus proposed parameters.
Parameter sk Value Parameter sko Value Parameter sk Value
v sho 1 o R 0.5000 o sk 0.5000
01 S(I;U —0.5048 02 sf).f" —1.1250 n s,’;o 0.0647
0, s[’;ﬂ 0.5000 0, S(’fﬂ 0.5000 o sfo —0.0622
1 p)
" s,ff‘“ —0.0146 h s,';" —0.3201 1> S»io 0.1250
Q sg“ —0.1630 Ry - 0.3771
Table 2 Description of compartments and the initial conditions.
No# Parameter Description of Compartment Initial Condition
1. Sh Susceptible Human population. 150
2. Ej Infected Human population. 40
3. Iy Exposed Human population. 15
4. H Hospitalized Human population. 10
S. R; Recovered Human population. 9
6. Sy Susceptible Vector population. 90
7. E, Infected Vector population. 70
8. 1, Exposed Vector population. 50
Table 3 Description, value and dimension of each parameter.
No# Parameter Description of Parameter Value Source
l. v Sand fly biting rate 0.01 0.01
2. o The new recruitment ratio of humans to the class at risk 10.1 [26]
3. ) The new recruitment ratio of vector to the class at risk 8.23 [26]
4. 1 Rate of Recovery of Infected human population 0.025 [26]
S. V2 Rate of Recovery of Infected human Population in hospital 0.63 Assumed
6. ! Natural Death Rate in human population 0.004 [26]
7. 02 Natural Death Rate in vector population 0.01 [26]
8. 0, The transfer probability of ACL from sandfly to human 0.009 [26]
9. 0, The CL probability of spread from human to sand fly 0.001 [26]
10. Q Death rate of infected human due to disease 0.28 Assumed
11. 0 Death rate of exposed human due to disease 0.10 Assumed
12. m Rate of infection of exposed human 0.7 [26]
13. 1 Rate of infection of exposed vector 0.03 [26]
14. h Transfer of infected human to hospital 0.55 Assumed
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Exposed Vector population is decreasing and on the other
hand, infection in the vector population is also decreased after
a few weeks which is a consequence of the Ry < 1.

Similarly, we also want to investigate the effect of some
parameters on the population such that in sub—figures of 7
and 8, the effect of Sand fly biting rate v causes a difference
in the Susceptible, Exposed and Infected human population.
As the value of v increasing the population takes long time
to reach the equilibrium states. Also, due to the effect of The
CL probability of spread from sand fly to human 6, the pop-
ulation leads to equilibrium state after taking long time and so
in Exposed and Infected human population. As a result of the
rate of hospitalization 7 of Infected human population, the
infection in the population is decreased and this is the advan-
tage of our model in which we included the effect of hospital-
ization in the I(¢) compartment, also the recovery is increased
due to the hospitalization of Infected population. Therefore,
our proposed model showing best results and is better than
the existing model.9.

The sub-figures in 1012, we check the effect of parameters
associated with Ry on Ry. We used several parameters such as
N1, M5, 01,0 ash, and 6, along with v in each figure. We took a
range of 0 to 3 for each parameter for the simulation.

Eventually, in the bar graph in 12, we present the sensitivity
analysis based on the 1 in which the parameter that can cause
the disease and the spread of the infection the most are v, oy, o,
and 0,. Also, these parameters should be controlled so that the
infection can not spread again in the population. The Ry com-
puted from the model is 0.3771 which is of course less than one
and needs to keep it less than one by controlling the above-
mentioned parameters.2

8. Conclusion

We have presented a detailed mathematical analysis of the
Cutaneous Leishmaniasis disease model. The concerned analy-
sis is devoted to the formulation of the model, the existence
theory of solution. Moreover, global and local stability
together with the computation of R, have been performed by
using various mathematical tools. In the concerned tools we
have used Lyapunov function method, and the compound
matrix method based on the Metzler procedure. Applying
the tools of numerical-functional analysis, we have presented
the sensitivity analysis of the model also. On using NSFD
scheme, an algorithm has been developed. With the help of this
algorithm, we have presented the models corresponding to
some reals values of the parameters graphically. The obtained
results and their graphical analysis have been explained in
details.
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