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In this study, we investigate the semianalytic solution of the fifth-order Kawahara partial differential equation (KPDE) with the
approach of fractional-order derivative. We use Caputo-type derivative to investigate the said problem by using the homotopy
perturbation method (HPM) for the required solution. We obtain the solution in the form of infinite series. We next triggered
different parametric effects (such as x, t, and so on) on the structure of the solitary wave propagation, demonstrating that the
breadth and amplitude of the solitary wave potential may alter when these parameters are changed. We have demonstrated that
He’s approach is highly effective and powerful for the solution of such a higher-order nonlinear partial differential equation
through our calculations and simulations. We may apply our method to an additional complicated problem, particularly on the
applied side, such as astrophysics, plasma physics, and quantum mechanics, to perform complex theoretical computation.
Graphical presentation of few terms approximate solutions are given at different fractional orders.

1. Introduction

PDEs have important applications in physics, engineering,
and other applied sciences. (ey can describe different
phenomena and processes of real-world problems. One of
the important KPDE arises in the theory of magnetoacoustic
and shallow-water waves. Furthermore, it arises in the
theory of shallow-water waves with surface tension and
magnetoacoustic waves in plasmas. (erefore, several ana-
lytical and numerical methods have been established in
literature to investigate the prosed problems of PDEs. For
instance, [1] authors have used the comparison method for
the solution of the famous Kawahara equation. In the same
line, a procedure was developed in [2] for the exact solution
of the said problem. Also, authors [3] have computed the
solution of the Kawahara equation by using symbolic

computation. In this study, we apply a semianalytic HPM to
solve the fifth-order KPDEs. As in the last several decades’
investigation, traveling-waves solutions for nonlinear
equations played an important role in the study of the
nonlinear physical phenomenon [4].(ementionedmethod
provides an efficient approach to solve a nonlinear problem.
(eKPDEwas first suggested by Kawahara [5] in 1972. Since
these nonlinear equations need to be solved by using some
approximate methods, researchers have solved several
nonlinear problems by using HPM. (is method was first
proposed by He [6] and has been applied in [7] for the
solution of differential equations and integral equations in
both linear and nonlinear cases. (e said method is a
combination of topological homotopy and traditional per-
turbation methods. (e advantage of this method is to
provide an analytic approximate solution in applied sciences
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with a capacious range, and in this method, a small pa-
rameter is not necessary for an equation.(is method is also
applied to the system of the nonlinear system of equations as
in [8] for the analytic approximate solution for the model of
rabies transmission dynamics.

Because of the popularity of fractional calculus and
applications in many fields of science and engineering [9],
fluid mechanics [10], some more frequent applications in a
diverse area of science by using fraction calculus have been
investigated in [11, 12]. (e mentioned derivative extends
order from integer to any real or complex number which
provides a detailed explanation to physical problems.
Fractional derivatives can produce a complete spectrum of
the geometry which includes its integer counterpart as a
special case. Motivated from the aforesaid work, we extend
the given KPDE [13].
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where g is a continuous function, while ρ, σ, andc are the
nonzero arbitrary constants to fractional order as
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while 0< β≤ 1, 2< κ≤ 3, 4< δ ≤ 5, and g: R⟶ R is con-
tinuous function.

For the demonstration of our problem, we testified the
example given by Albert [14] as
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with the initial condition

u(x, 0) �
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169

sech4
x
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13

√􏼠 􏼡, (5)

by using fractional derivative in Caputo sense. We also
present the solutions graphically and then, at the end,
provide conclusion and discussion.

2. Preliminaries and Notations

Here, we recall some preliminaries and notations from [15].

Definition 1. Caputo fractional-order derivative of a func-
tion ϕ on the interval [0,∞) is defined as

c
D

α
0+ϕ(t) �

1
Γ(n − α)

􏽚
t

0
(t − s)

n− α−1 dn

ds
n ϕ(s)ds, (6)

where n � [α] + 1 and [α] represent the integral part of α.

Definition 2. If α> 0, the Caputo fractional integral is de-
fined as

I
αϕ(t) �

1
Γ(α)

􏽚
t

0
(t − s)

α−1ϕ(s)ds, (7)

where α ∈ (0,∞).

Lemma 1. =e following result holds:

I
n

CD
n
0+ϕ(t)􏼂 􏼃 � ϕ(t) + a0 + a1t + a2t

2
+ · · · + an−1t

n− 1
,

(8)

for arbitrary ai ∈ R, i � 0, 1, 2, 3, . . . , n − 1, where n � [η] + 1
and [η] represent the integral part of η.

3. A General Algorithm about HPM

Consider a general type problem given by

A(μ) − f(r) � 0, r ∈ Ω, (9)

with boundary condition as

β μ,
zμ
zn

􏼠 􏼡 � 0, r ∈ Γ, (10)

where A is a general differential operator, β is a boundary
operator, f(r) is a known analytic function, and Γ is the
boundary of the domain Ω. (e operator A is divided into
linear part L and nonlinear part N. (erefore, (9) can be
written as

L(μ) + N(u) − f(r) � 0. (11)

By HPM, we can construct a homotopy as

v(r, p): Ω ×[0, 1]⟶ R, (12)

satisfying

H(v, p) � (1 − p)[L(v) − L(μ)] + p[A(v − f(r))] � 0,

(13)

which is also equivalent to

H(v, p) � L(v) − L μ0( 􏼁 + pL v0( 􏼁 + p[N(v) − f(r)] � 0,

(14)

where p ∈ [0; 1] is an embedding parameter, and μ0 is the
initial approximation of the given equation that satisfies the
boundary conditions; we have

H(v, 0) � L(v) − L μ0( 􏼁 � 0,

H(v, 1) � A(v) − f(r) � 0.
(15)

Keeping these points, we construct the required solution
to equation (11) as

v � v0 + p
1
v1 + p

2
v2 + p

3
v3 + · · · . (16)

Furthermore, by taking limit as p⟶ 1 in the ap-
proximation equation (16), one has

lim
p⟶1

v � lim
p⟶1

v0 + p
1
v1 + p

2
v2 + p

3
v3 + · · · , (17)

which yields
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v � v0 + v1 + v2 + v3 + · · · . (18)

Equation (18) represents the semianalytic solution of the
problem equation (9).

4. Approximate Solution to
Considered Problem

Here, in view of HPM as discussed in previous section, we
proceed as
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We assume the solution of equation (2) as follows:
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Now, using equation (20) in (19) and comparing the
coefficients of pi, for i � 0, 1, 2, 3, . . ., we have
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⋮

(21)

From system equation (21), we get

Zeroth-order problem
Consider zeroth-order problem as

z
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zt
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zt
α . (22)
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u0 � g(x). (23)
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Where
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ξ � c
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Now, taking the limit as p⟶ 1 in equation (20), we get
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4 Journal of Mathematics

 1469, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2021/6045722 by Instytut Podstaw

ow
ych Problem

ow
 T

echniki PA
N

, W
iley O

nline L
ibrary on [30/05/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Hence, (29) is a required solution of the fractional-order
KPDE.

4.1. Fractional Temporal Numerical Example. Consider the
fractional-order KPDE given by

z
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with initial condition
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Using HPM, equation (21) yields that
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Using equations (20) and (33), we get the following
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⋮
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Zeroth-order problem
From equation (34), we get the zeroth-order problem
or u(x, 0):
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First-order problem
From equation (35),
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which gives
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u1(x, t) � −
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(38)

If we use p⟶ 1, then solution of equation (31) implies
that

u(x, t) � u0 + u1(x, t) + u2(x, t) + · · · u(x, t) �
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(39)

In Figures 1–4, we present graphical presentation of
solutions.

5. Fractional Spatial Numerical Solution

Consider the equation with orders 0< β≤ 1, 2< κ ≤ 3, 4
< δ ≤ 5 for fractional spatial numerical solution, that is,

z
α
u

zt
α + u

z
β
u

zx
β +

z
κ
u

zx
κ −

z
δ
u

zx
δ � 0, 0< α≤ 1. (40)

In this equation, for the fractional spatial solution, we
only consider the first fractional derivative with order β for
the sake of eliminating long calculations.(erefore, the first-
order problem is turn out to be as follows.

First-order problem
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(41)

implies that
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(42)

Hence, the solution at p⟶ 1 becomes
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Figure 1: 3D fractional temporal numerical solution u(x, t) for order α ∈ (0, 1], κ � 4, and δ � 5.
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u(x, t) � 􏽘
∞

i�0
ui(x, t), (43)

which implies that

u(x, t) � u0 + u1(x, t) + u2(x, t) + · · ·
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(44)

6. Results and Discussion

In Figure 1, we have plotted the temporal solution of the
fractional-order Kawahara partial differential equation

against position x and time t based on equation (35), for
different fractional-order α, the plot shows that with α
amplitude of the solitary wave potential increases while its
width squeeze in size slightly. In Figure 2, we have the
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Figure 2: 2D fractional temporal numerical solution u(x) for order t � 0.01, κ � 4, and δ � 5.
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comparison of the solitary wave temporal solution u(x)

against x for t � 0.01 and with different fractional-order α;
this simulation shows a more clear picture of amplitude and
dispersion variation with α. Figure 3 is the contour plot of
solitary wave propagation against x and t for order α � 0.6.
In Figure 4, the plot is among solitary wave propagation
u(x, t) against x and for different time t, which shows a very
interesting situation of the solitary waves structure; while at
the smaller time, we found a compressive type of solitary
wave, but when we take the time t greater than 0.6, then we
observe the refractive type of the solitary wave and that

waves increase its amplitude with time t and also its dis-
persion property.

In Figure 5, we have the 3D spatial numerical solution
u(x, t) of solitary wave propagation against x and t for
differential spatial-order β based on equation (40); the
simulation shows us that with spatial-order fluctuation,
amplitude of the solitary wave change slightly, but the width
of the solitary wave change dramatically in greater steps;
likewise in Figure 6, we have shown the 2D cross-sectional
wave of Figure 5 that demonstrates the amplitude and width
of the solitary wave clearly with spatial-order β for t � 0.01.
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Figure 3: Contour of fractional temporal numerical solution u(x) for order α � 0.6, κ � 4, and δ � 5.
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Figure 4: 2D fractional temporal numerical solution u(x) for order α � 0.6, κ � 4, and δ � 5.
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Figure 5: 3D fractional spatial numerical solution u(x, t) at order β ∈ (0, 1], κ � 3, δ � 5.
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Figure 6: 2D fractional spatial numerical solution u(x) at orders α � 0.9, β � 1, κ � 3, δ � 5, and time t � 0.01.
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Figure 7 is the contour plot of solitary wave spatial solution
against x and t.

7. Conclusion

Upon the use of the homotopy perturbation method (HPM),
we have investigated the Kawahara fractional-order partial
differential equation of fifth-order under fractional order. By
using Caputo derivative of fractional order separately on
temporal and spatial bases, obtained the semianalytical
solution for the Kawahara frictional-order differential
equation. We have then stimulated various parametric ef-
fects (such as x, t, α, and β) on the structure of the solitary
wave propagation that demonstrates that the width, as well
as the amplitude of the solitary wave potential clearly, can
change with the change of these parameters. We have shown
through our calculation and simulation that He’s technique
is very useful and power full for the solution of such a
higher-order nonlinear partial differential equation. We can
extend our calculation to other complex problems especially
to the applied side such as astrophysics, plasma physics, and
quantum mechanics to solve a complex theoretical calcu-
lation by that technique.
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