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Abstract: This study examines the use of various eddy
current induction techniques to evaluate the stability of
austenite in SS316L steel subjected to plastic deformation.
This deformation, which occurs locally in austenitic steel
structures under operational loads, leads to a martensitic
transformation. This transformation affects both the
mechanical and magnetic properties of the steel. The mar-
tensitic phase content, being ferromagnetic, can be quanti-
tatively assessed using a ferritoscope and other magnetic
induction methods. The research explores techniques based
on the analysis of impedance signal changes obtained using
the NORTEC defetoscope and the WIROTEST device devel-
oped by the author’s team. By examining the phase angle, ET
signal amplitude, and resonance frequency changes in the
eddy current excitation system, the study aims to quantita-
tively assess the martensitic phase content in samples sub-
jected to plastic deformation. These results were verified
through comparison with data from a ferritoscope and
X-ray diffraction analysis. Additionally, the eddy current

technique facilitates surface screening of the specimen,
making it possible to identify cracks and locate the marten-
sitic transformation front in areas of stress concentration.

Keywords: eddy current, martensitic transformation, addi-
tive manufacturing, stainless steel, non-destructive testing,
WIROTEST device

1 Introduction

Austenitic steels are widely used in various industrial
applications due to their high mechanical strength, corro-
sion resistance, and the stability of their non-magnetic
properties, particularly in electrical and energy sectors.
In these applications, maintaining the stability of paramag-
netic austenite is crucial, as the formation of a ferromag-
netic martensitic phase can occur under operational loads,
both mechanical and thermal. The stability of austenite is
primarily influenced by its chemical composition and the
content of stabilizing alloying elements.

Austenitic steels are susceptible to martensitic trans-
formation under plastic deformation conditions [1], and
this process is more intensive at low temperatures [2]. It
has been reported that in the case of 304 steel, ε-martensite
(hexagonal close-packed [HCP], paramagnetic) forms at the
beginning of deformation and reaches a peak value at about
5% of tensile strain. After exceeding this value, the volume
fraction of this phase decreases to almost zero at 20% of
plastic strain. On the other hand, the volume fraction of
α′-martensite (body-centered cubic [BCC], ferromagnetic)
increased steadily with deformation. At higher strain values,
the α′ phase was the only martensite phase present in the
material volume [3]. The transformation is accompanied by
a change in the magnetic properties of the steel, which
allows the use of magnetic techniques to assess its effects [4].

Similar results were reported for the AISI 316 steel
deformed during rolling and subsequent tension test [5].
These properties are of great importance in the case of
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parts manufactured using additive technologies, because
during the printing process, ferrite is precipitated at the
grain boundaries of austenitic steel, the share of which
reaches 6% [6,7]. Since the ferrite volume fraction in the
structure of austenitic steel can adversely affect fatigue
strength [8,9] it is advisable to control its content. The for-
mation of martensite can be detected and evaluated by
X-ray diffraction (XRD) [10] neuron diffraction [11], elec-
tron backscatter diffraction (EBSD) [12], magnetic methods
including the eddy current method [13], metallography,
and other techniques [14]. Monitoring the ferrite content
released during martensitic transformation is crucial for
evaluating the corrosion resistance of steel. Corrosion stu-
dies have demonstrated that martensitic transformation,
induced by cold forming processes and cyclic loading
conditions, significantly affects the corrosion resistance
of AISI 316 austenitic stainless steel [15,16]. The forma-
tion of martensite is highly dependent on factors such as
chemical composition, austenitic grain size [17], deforma-
tion temperature [18], and other variables. One should
highlight that eddy current method is particularly sensitive
to changes in the electrical resistivity and magnetic perme-
ability of materials, which are influenced by variations in
chemical composition, hardness, mechanical strength, and
the degree of cold work. Consequently, this technique pro-
vides an indirect measurement of the overall physical and
chemical properties of a material. It has been shown to be
sensitive enough to detect phase transformations in stain-
less steels [19].

Plastic deformation of conventional and additive man-
ufacture (AM) specimens may significantly influence their
magnetic properties due to deformation-induced marten-
sitic transformation [20]. The metastable ASSs exhibit ten-
dency toward diffusion-free phase transformation during
plastic deformation, especially when temperatures tend to
0 K [21]. In this process, initial austenite with a face-cen-
tered cubic (γ) structure transforms into martensite ε with
a HCP structure and subsequently into martensite α′ with a
BCC structure. It is worth noting that the transformation
can also occur directly and, during tension at room tem-
perature, mainly martensite α′ is observed [21,22].

Therefore, this article presents an investigation into
the stability of austenite in 316 steel samples, produced
from both rolled sheets and via AM, under static tensile
loading conditions.

2 Methodology

The tests were conducted on two types of flat specimens:
conventional (R) 316L and AM 316L.

The conventional specimens were fabricated using
electrical discharge machining from a commercial 316L stain-
less steel sheet (2mm thickness) with the tensile axis parallel
to the rolling direction (RD). The semi-products were supplied
in cold-rolled and annealed conditions (Figure 1). In such a
form, the materials are typically used for structural compo-
nents working in cryogenic conditions, down to the tempera-
ture of superfluid helium, 1.9.

The AM process utilizes Ultrafuse 316L, a metal–polymer
composite filament specifically engineered for fused filament
fabrication (FFF). This filament comprises over 80% metal
powder, bound by a unique polymer matrix that is fully
removed during debinding and sintering. The result is a
high-strength, corrosion-resistant part composed entirely of
316L stainless steel. The printing process was conducted using
an Ultimaker S5 printer with the following optimized para-
meters: a glass print platform coated withMagigoo PROmetal
adhesive, a 0.4mm hardened steel nozzle, platform tempera-
ture of 110°C, and printing temperature of 230°C. No print
cooling was applied. The layer thickness was set to 0.15mm,
with a print speed of 25mm/s and a fill density of 100%.

Debinding followed the Badische Anilin-und Soda-Fabrik
(BASF) process, using a Nabertherm NRA 40/02-CDB debinding
furnace at 120°C with HNO3 at a concentration of >98%. Nitric
acid was fed at a typical rate of 30 L/h, along with nitrogen
purging gas at 500 L/h, ensuring safe and consistent processing.
The debinding phase concludes upon reaching aminimalmass
loss of 10.5%.

The final stage, sintering, was conducted in a 100% pure,
dry hydrogen atmosphere. The sintering cycle involved a
controlled temperature ramp as follows:

Figure 1: Ultrafuse 316L filament, created by BASF for producing stain-
less steel parts through 3D printing, was employed (as an example of the
possibilities of FFF technology).
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• From room temperature to 600°C at a rate of 5 K/min,
followed by a 1 h hold at 600°C.

• From 600 to 1,380°C at a rate of 5 K/min, followed by a 3 h
hold at 1,380°C.

• Gradual furnace cooling to complete the process.

The initial microstructure (Figure 3) of the as-received
materials in all cases consists of equiaxial grains with recrys-
tallization twins present in some of the larger grains. The
average grain size in the conventional 316L steels, equaling
19.2 µm, while FFF 316L has average grain diameter of 37 µm.
All steels have a heterogeneous distribution of grain sizes.

Each specimen was divided into 14 areas, 10 of which
were in the gauge section (Figure 4). In each area, the ferrite
content and electromagnetic parameters were measured.

The following tests were conducted to measure the
ferrite content formed during the plastic deformation of
specimens:
• Manual measurement of the ferromagnetic martensitic
phase content, using a DMP30 ferritoscope.

• Manual measurement of impedance parameters (phase
angle and amplitude) using the lift off technique and
NORTEC 600 eddy current flaw detector.

• Automatic measurement of the amplitude and resonance
frequency of the eddy current signal using developed
setup based on the WIROTEST device made by WIT
Łukasiewicz (Figure 5).

• Profile of the ferrite phase content using XRD and XRDynamic
500 diffractometer.

Ferrite phase content, phase angle, amplitude, and
resonance frequency were measured in all specimens

Figure 2: AM 316L specimen: (a) printed part and (b) final part after
sintering.

Figure 3: As-received microstructures of the investigated materials: inverse pole figure maps in the top row and grain size distributions (equivalent
circle diameter) in the bottom row.
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using the above-mentioned techniques before and after
static tensile tests performed up to 8% in plastic deforma-
tion. Subsequently, one series of specimens was subjected
to five loading–unloading tensile cycles, to obtain 1% defor-
mation in the first cycle, 2% in the second, 4% in the third, 6%
in fourth, and 8% of plastic deformation in the last, fifth cycle.
After subsequent loading cycles, the ferrite content and impe-
dance parameters were measured in each measuring area.
Measurements with the WIROTEST setup (Figure 5) and XRD
tests were performed after loading. The results obtained with
these techniques refer only to the state before and after
plastic deformation to a certain level.

The feritscope, widely used due to its speed and
non-destructive nature, provides reliable results when cali-
brated appropriately [23]. The feritscope measures ferro-
magnetic microstructures in materials, primarily ferrite
but also α′ martensite, which has a ferromagnetic BCC
structure. It cannot measure ε martensite, as this para-
magnetic, HCP phase does not generate a detectable mag-
netic signal. ε martensite is transitional, reducing with
plastic strain and converting to α′ martensite at higher
strains [23,24].

The feritscope detects voltage proportional to mag-
netic properties, but differences between ferrite and mar-
tensite magnetic permeability necessitate conversion of
the readings. Talonen et al. [23] established a widely cited
proportionality coefficient of 1.7 for martensite content,
supported by other researchers [24].

Talonen et al. [23] demonstrated a linear relationship
between martensite content and feritscope readings up to
55%, with a bilinear approximation beyond this. The for-
mula for martensite content (%) based on feritscope read-
ings is

( )
〈 〉

= ⎧⎨⎩
⋅ ≤

⋅ + ∈M %
1.7 Fr, Fr 50

0.5357 Fr 58.2143, Fr 50,78 .

The martensite content was measured using the ferit-
scope Fisher FMP 30, an instrument that detects all magnetic
phases, including ferrite. The martensite content for ASS can
be calculated from the feritscope reading according to the
formula presented by Talonen et al.

Thus, in the manuscript the ferrite content measured
by means of commercial NORTEC 600 flaw detector was
verified by feritoscope and WIROTEST measurement, as
well as by XRD analysis.

3 Results

At the beginning of experimental procedure, three speci-
mens of 316L steel (produced via rolling – R and AM) were
subjected to static tensile loading at 77 K, inducing a similar
plastic strain in AM and R. For these specimens, the results
are reported for the states before and after deformation

Figure 4: Specimen cut from sheet metal R 316L (a) and printed AM
316L (b).

Figure 5: Automated system for measuring the amplitude and frequency
of the eddy current signal by WIROTEST.

Figure 6: Profiles of ferrite content measured along the symmetry axis
for the rolled (R) and printed (AM) specimens after plastic deformation at
77 K, obtained by XRD method.
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Figure 7: Profiles of ferrite content (a), phase angle (b), and impedance
amplitude (c) changes measured for the rolled (R) and printed (AM)
specimens, before and after deformation at 77 K.

Figure 8: Resonance frequency (a) and eddy current voltage amplitude
(b) obtained by WIROTEST in the scanning mode. Ferrite content profiles
for five states of plastic deformation, without elastic stresses (measure-
ment at force 0) (c).
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(Figures 7 and 8). For one pair of samples (AM and R), ferrite
content measurements and commercial flaw detection data
were collected after each cycle of tensile loading (Figures 9
and 10). In the case of AM 316L some initial ferrite grains are
present at austenite grain boundaries as a result of high
temperature sintering process, while the R316L sample pre-
sents typical single-phase microstructure (Figure 3).

Figure 6 presents the ferrite phase content measured
using the XRD method for two specimens manufactured by
different techniques. The graphs illustrate the profile of
ferrite content percentages at successive measurement
points along the sample axis. To achieve a substantial
amount of ferrite, experiments were carried out at 77 K
(liquid nitrogen temperature). At this temperature, the
deformation-induced phase transformation in austenitic steels
occurs withmuch greater intensity compared to similar defor-
mation conducted at room temperature [21]. This allowed for
a comparison of ferrite distribution between conventionally
manufactured and additively manufactured 316L steel. One
can observe increased ferrite phase content in the AM spe-
cimen, both in the non-plastically deformed area (grip part)
and along the entire length of the gauge area (Figure 6).

The result shown in Figure 8a shows the ferrite
contents in previously specified areas of the specimens
measured by using ferritoscope. Uniaxial tensile tests were
carried out at 77 K. Similar to the XRD measurements, an
increased ferrite phase content was observed in the printed
specimens, both, in the initial state and after deformation.
The similar trend was observed during phase angle measure-
ments (Figure 7b) and impedance amplitude measurements
(Figure 7c) executed by applying an eddy current probe at the
established measurement points. These are the results of the
sintering process of AM specimens (Figure 2).

Subsequently, measurements of the resonance frequency
and the voltage amplitude of the eddy current signal induced
by the WIROTEST setup developed by the authors were pre-
sented. Figure 8a shows the frequency values obtained in
automatic mode for two rolled and two AM specimens after
plastic deformation. Since theWIROTEST setup alsomeasures
the voltage amplitude of the induced eddy currents, Figure 9b
presents the results of these measurements for two pairs of
specimens after plastic deformation. The eddy current ampli-
tude changes along the axis of plastically deformed specimens
indicating the possibility of detecting deformed areas and
related sensitivity to the manufacturing method and the cor-
responded ferrite content. Furthermore, in the case of 316R, a
local increase of the amplitude value was observed. Plastic
front propagation is observed in 316L, but only at 77 K. This
peak is related to the presence of the martensitic transforma-
tion front [22]. The results obtained for five static load cycles

Figure 9: Ferrite content profiles (a) and eddy current phase angle
profiles for five states of plastic deformation measured during unloading
(b) and loading (c).
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are presented only for the rolled 316L steel specimen. They
include measurements of the ferrite content and the phase
angle value after each cycle, in the unloaded stage (force 0)
and at the maximum load applied (force max). The aim of
such interrupted test was to assess the effect of elastic defor-
mation on the measurable parameters. Figure 8c shows the
increase in ferrite content along the specimen axis in sub-
sequent cycles, i.e., as a function of increasing strain, for the
unloaded variant. Figure 9a presents the changes in ferrite
content measured at the maximum force of subsequent load
cycles. With the increase of the plastic deformation level,
differences in ferrite content are visible for the unloaded
and maximum load conditions (Figure 9b and c). It is so
called Villari effect [25,26].

4 Discussion

All applied research techniques demonstrate sensitivity to
changes in the content of ferrite which result from manu-
facturing processes and deformation-induced phase trans-
formation. The results of tests conducted under cyclic
loading indicate the potential for identifying elastic defor-
mation in both phases: austenite as well as in ferrite
(Figures 8 and 9). This implies that flaw detector measure-
ments, commonly used for detecting potential cracks, can
also be utilized to identify and monitor the evolution of
deformation-induced phase transformations in austenitic
stainless steels. In the case of impedance amplitude mea-
surements using theWIROTEST setup, two specimens exhib-
ited a peak value near the end of the measurement section

(points 10 and 11). This is likely associated with the location
of the martensitic transformation front. However, this effect
was not consistently observed. The results obtained from
techniques based on magnetic induction demonstrate sensi-
tivity to changes in magnetic permeability, which are linked
to the presence of the ferromagnetic martensitic phase.

One should highlight the suitability of eddy current (EC)
methodology in ferrite content identification. The comparison
between feritscope and XRD techniques presented in Figure
10 proved the high efficiency of presented methodology.

5 Conclusions

Eddy current methodology is a promising non-destructive
technique for indirectly measuring martensite formation
in 316L during plastic deformation, though it comes with
certain limitations. 316L, an austenitic stainless steel, can
undergo deformation-induced phase transformation from
austenite to martensite during, which it alters its magnetic
properties. Since eddy currents are sensitive to changes in
the material’s electrical conductivity and magnetic perme-
ability, they can indirectly detect the presence of marten-
site, which is ferromagnetic, unlike the non-magnetic
austenitic phase. This makes EC a suitable method for tracking
martensitic transformation in real-time during mechanical
loading without interfering with the deformation process.
The high sensitivity of EC to local changes in phase composition
is an advantage, allowing the detection of even small volume
fraction of martensite. Additionally, EC is fast, scalable, and can
be applied to complex geometries, making it versatile for in situ
industrial applications. However, its sensitivity to other factors,
such as temperature variations, strain-inducedmicrostructural
changes unrelated to martensite formation, and surface condi-
tion,may complicate accurate phase quantification. Calibration
with complementary techniques like XRD or magnetic
Barkhausen noise analysis might be required to enhance the
accuracy of martensite content determination. Thus, while EC
is suitable for detecting trends in martensitic transformation
during plastic deformation, precise quantification and isolation
of martensite may necessitate careful control of experimental
conditions and the integration of additional methodologies.
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