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Abstract
Steel surface defects in both flat and long products are undesired not only from an aesthetic point of view, but also can lead
to severe deterioration of material performance. Manual defect inspection is slow and costly, and thus, automatization of
such processes is of interest. Several steel surface defect datasets have been made publicly available so far, and the most
famous of them is the Northeastern University (NEU) surface defect database. Many research on surface defect inspection
has already been conducted using this dataset, and excellent prediction capabilities were demonstrated in the open literature.
More recently, this dataset was extended to account for effects that are expected to occur in real industrial scenarios, such as
motion blur, non-uniform illumination, and noise. The extended dataset containing images with those modifications was also
made publicly available (E-NEU). In previous papers on the subject, it was shown that using deep learning models trained
on the NEU dataset to the E-NEU dataset does not necessarily lead to correct predictions. In this paper, based on the steel
surface defects analysis, it is demonstrated that the performance of deep learning architectures can be effectively improved
by applying image preprocessing techniques.

Keywords Surface defects classification · Quality control · Steel surface · Long products · Flat products

Highlights

• Classification performance of different convolutional
neural network architectures as applied to steel defect
datasets is assessed.

• An effect of image perturbations on classification is stud-
ied.

• It is demonstrated that image preprocessing can consid-
erably improve the classification results.

1 Introduction

Thanks to its availability and properties, various types and
grades of steel constitute a major metallic material used
by various industries such as civil engineering, energy
(including nuclear), shipbuilding, automotive, or household

B Karol Frydrych
Karol.Frydrych@ncbj.gov.pl

1 NOMATEN Centre of Excellence, National Centre for
Nuclear Research, Sołtana 7, Otwock 05-400, Poland

2 Institute of Fundamental Technological Research, Polish
Academy of Sciences, Pawińskiego 5B, Warsaw 02-106,
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appliances, to give only the most obvious examples. Steel
surface defects in both flat [1] and long products [2] are an
important manufacturing problem. On the one hand, they are
not only detrimental for surface appearance, but also decrease
resistance to corrosion and fatigue strength [3, 4]. On the
other hand, surface defects cause more than 50% of total hot
rolling scraps and cost hundreds of millions of dollars each
year [2]. Therefore, major steel companies are involved in
research devoted to their mitigation [5].

Traditionally, surface quality control was done manually
by humans [6], butmachine visionmethods started to be used
for that purpose already in the 1990s [4]. The topic of sur-
face defects inspection (and steel surface defects inspection
in particular) received considerable attention (cf., e.g., [7]),
and was also reviewed from several points of view. Neogi,
Mohanta, andDutta [6] reviewed the literature related to steel
surface inspection based on vision. This paper is very impor-
tant from the point of view of practical applications, as the
authors identified major challenges related to applications
of vision systems. These include high speed of the mov-
ing surface (20m/s for flat products and up to 100m/s for
long products), issues related to proper choice of illumina-
tion, camera type, time required for processing, etc. A similar
topic was reviewed in [8]. The defect detectionmethods were
divided into statistical, spectral,model, andmachine learning
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(ML) methods. Recently, vision-based steel defect detection
problems have also been reviewed in [9].

Applications of ML in continuous casting of steel (a pro-
cess where liquid steel is poured into the mold and then
continuously withdrawn downwards) were recently summa-
rized in [10]. The defects that can be present in such a
process were divided into surface defects (transverse corner
cracks, longitudinal corner cracks, transverse cracks, lon-
gitudinal facial cracks, star cracks, deep oscillation marks,
pinholes and macro inclusions) and internal defects (internal
corner cracks, side halfway cracks, center-line segregation,
halfway cracks, nonmetallic inclusions, subsurface streaks,
shrinkage cavity, diagonal cracks and porosity). The various
applications ofML highlighted were: prediction of breakout,
prediction of steel defects, prediction of steel quality, clog-
ging detection, process parameter optimization, prediction of
steel temperature in tundish, detection of ladle change, and
detection of mold level fluctuation.

The topic of surface defects inspection (not limited to steel
strips) was also recently reviewed in [11], especially from the
real-time inspection applicability point of view. Deep learn-
ing based defects inspection methods were categorized into
defect classification, detection, and segmentation (cf. Figure
2 in [11]). Typical challenges such as low image quality in
real industrial scenarios, difficulties in obtaining enough data
for training, etc., were also discussed in [11]. Concerning the
required processing speed, in most of the research papers, it
was assumed that the velocity of the steel strip is about 20m/s.
Liu et al. estimated that the required system processing speed
at this velocity is 20 frames per second (FPS). Note, how-
ever, that in [4], it was reported that the velocity of the steel
strip inmodern cold rollingmill has reached 45m/s, and wire
rod velocity exceeds 130m/s. As outlined in [12], there are
several bottlenecks when it comes to providing the required
processing speed when the rolling speed exceeds 20m/s.

Another review focused on the entire machine vision sys-
tem for steel surface defects detection rather than just the
processing module [4]. However, even though the paper was
published only recently (2023), the part describing the image
processing algorithms focused on traditional methods, while
paying less attention to deep learning based approaches. The
review is, however, quite useful to see the big picture. For
instance, Table 1 in [4] provides lists of defect types in vari-
ous steel surfaces.

One of the results of defects presence is, of course, poor
visual quality of the steel surface, which may be unaccept-
able, especially in the case of flat products. However, defects
may be also detrimental from other points of view. For
instance, crazing may cause rupture, inclusions affect the
state of stress in steel structures, patches and pitted surface
can have an effect upon the resistance to wear and corrosion
[8, 13]. Surface defects can also severely decrease the fatigue

resistance, cf. [14]. Defect-fatigue linkages are further dis-
cussed in Section4.4.

As already mentioned above, currently, the defect inspec-
tion task is mostly done using machine learning (ML)
approaches. Those include both “traditional” techniques like
support vector machines (SVM), decision trees (DT), and
artificial neural networks (ANNs), as well as deep convo-
lutional neural networks (DCNNs). The application of the
first type of approach was most often reported more than
a decade ago, cf., e.g., [1, 15]. An example is the paper
[5], where the efficiency of different ML tools in mill scale
defects classification based on images taken in a hot rolling
mill located in Cracow, Poland was investigated. The authors
compared the efficacy of ANN, SVM, and DT in performing
this task. Eight defect types, namely rolled-in primary scale,
secondary scale, “V” scale, peeled roll scale, tiger/red scale,
heavy scale, single strip scale, and bad descaling, were con-
sidered. Another paper [16] reported SVM classification of
five strip steel surface defect types (roller mark, rust spot,
emulsion spot, side mark, and scrape). An interesting aspect
of the paper is the optimization of SVM hyperparameters
using the genetic algorithm.

Despite the potential present in traditionalML techniques,
their crucial disadvantage is the necessity of feature extrac-
tion and selection. The convolution operation that is inherent
in DCNNs eliminates the feature extraction step. Thus, it is
possible to feed the network directly with images. Both tra-
ditional ML and DCNNs have to be trained on datasets. One
such dataset was published by researchers from Northeast-
ern University (so-called NEU dataset) [17, 18] (a thorough
review of available steel-related datasets can be found in
[19]). The images were captured after laminar cooling using
4 CCD cameras. The gray projection algorithm was applied
to remove the defect-free images. Defects were divided into
6 classes: patches (Pa), pitted surface (PS), inclusion (In),
crazing (Cr), scratches (Sc), and rolled-in scale (RS), cf.
Fig. 1. In the original paper reporting the dataset creation
[17], the authors applied the adjacent evaluation completed
local binary patterns (AECLBPs), which can be considered
as an example of a traditional ML technique. However, in
most of the more recent papers, the classification task was
performed using DCNNs, cf, e.g., [13, 20, 21]. Note that
[17] prepared two variants of their dataset [18] suited for
both types of tasks, namely NEU-CLS (for classification)
and NEU-DET (for defect detection). As the focus here is
on classification, only the NEU-CLS variant is considered.
Since the present paper does not concern defect detection or
segmentation tasks, readers interested in steel surface defects
detection and segmentation are referred to other articles, e.g.,
[4, 8, 22–25] and [26–29], respectively.

Even though some analysis of the influence of noise was
performed already in [17], it was suggested in [30] that in
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Fig. 1 Randomly selected examples of six kinds of defects a patches, b pitted surface, c inclusions, d crazings, e scratches, and f rolled-in scale
[17, 18]

real industrial conditions, the quality of classification of steel
products by analytical imaging methods is influenced by var-
ious external conditions, such as motion blur, non-uniform
illumination, and camera noise. In order to take into account
the above-mentioned process conditions, the authors artifi-
cially modified the images from the previously mentioned
NEUdataset [17] (and thus created the extendedNEUdataset
(E-NEU)). For each modification, they applied two inten-
sity levels. In the case of motion blur, the length of camera
motion Lcm was set equal to 2 or 5. For non-uniform illumi-
nation, the luminance range α of bias fields was set to ±0.4
or ±1. The signal-to-noise ratio (SNR) in the case of cam-
era noise was either 20 or 35db. The results of modifications
applied to images presented in Fig. 1 are shown in Fig. 2.Note
that the E-NEU dataset for each modification and intensity
level provides 5 random realizations and only one of them
is shown in Fig. 2. Using various SqueezeNet-based CNN
models, it was possible to achieve 100% accuracy of classi-
fication for the set without modification and 97.5% for the
set with artificially introduced additional effects occurring
in real production conditions. Therefore, especially the latter
result gives very high hopes for the application of machine
learning and artificial intelligence methods in steelmaking
processes.

To the best of the authors’ knowledge, in contrast to the
vast research effort concerning the original NEU dataset,
publishedworks using theE-NEUdataset are scarce. It seems
that only Nath, Chattopadhyay, and Desai in their papers [31,
32] paid attention to this challenging dataset. The approach
used by these authors (histogram equalization plus adver-
sarial training through neural structure learning) is indeed
interesting and provided an accuracy of 92.4%,which is good
but still worse than the accuracy reported in the paper intro-
ducing the E-NEU dataset [30]. It can be thus seen that: on
the one hand, further improvement of accuracy over the E-
NEU dataset is very challenging, while on the other, very
limited research effort was taken to solve the problem.

Since low-quality images in real industrial settings due
to noises, motion blur, or uneven illumination can make
the solutions optimized for clean database images inappli-
cable [11, 30], the aim of this paper is to investigate ways to

improve the applicability of deep learning techniques to low-
quality images expected to be obtained in such conditions. In
order to achieve this goal, the methodology reported in a pre-
liminary study related to the classification of defects present
in the NEU dataset [33] had to be improved. It was demon-
strated that combining image preprocessing techniques with
state-of-the-art deep learning methods can lead to satisfac-
tory predictions even with the challenging E-NEU dataset.

The article is structured as follows. After this introduc-
tory section, Section2 describes the machine vision and deep
learningmethods used in the present paper. Section3 presents
the results, while Section4 provides a thorough discussion
of the obtained results and puts them into a broader context.
Finally, Section5 shows the conclusions and outlines future
research directions.

2 Methodology

2.1 Gray level histograms

Gray level histograms are an example of traditional or classi-
cal machine vision techniques [34, 35]. In the present paper,
the histogramswere generated inWolframMathematica. The
methodology is very simple. First, the images belonging to a
given category were imported and assembled together. In the
next step, the gray levels were normalized so that their values
go from 0 to 1. Then, the histograms representing how many
pixels corresponded to a given gray level were plotted.

2.2 Convolutional neural networks

In the present article, two CNN architectures are studied. The
first one is the EfficientNet-v2-s [36] (as implemented in the
PyTorch library [37]) that was already used in our previous
paper [33] to classify the defects present in the NEU-CLS
dataset. The scheme of EfficientNet-v2-s (EN2s) is shown
in Fig. 3. The EfficientNet-v2-s is a part of the Efficient-
Net model family optimized for floating point operations per
second (FLOPs) and parameter efficiency [38]. The aim of
developing EN2s was to improve the speed of training with a
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Fig. 2 The images from the E-NEU dataset corresponding to images of
defects a patches, b pitted surface, c inclusions, d crazings, e scratches,
and f rolled-in scale) presented in Fig. 1. Fu et al. [30] obtained these

images by applying additional modifications (motion blur, non-uniform
illumination, camera noise) to the original defect images collected in
[17]

similar efficiency ofmodel parameters. EfficientNetwas cho-
sen for its state-of-the-art performance in image classification
tasks with significantly fewer parameters and FLOPs com-
pared to traditional architectures such as ResNet or VGG.
It utilizes a compound scaling method that uniformly scales
the network’s depth, width, and resolution, enabling efficient
use of model capacity. Given the fine-grained nature of steel
defect detection, EfficientNet’s capacity to capture rich visual

features makes it highly suitable. Moreover, using Efficient-
Net enabled us to take advantage of the pre-trainedmodel. As
can be seen in Fig. 3, the applied architecture consists of a 3×
3 convolution layer, 3 layers of 3 × 3 fused mobile inverted
bottleneck convolution (MBConv) [39], 3 layers of 3 × 3
MBConv layers, 1 × 1 convolution layer, and finally pool-
ing and fully connected layers. Since the weights pretrained
on the ImageNet dataset were used, additional learning on
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Fig. 3 Scheme of the
EfficientNet-v2-S (EN2s) [36]
convolutional neural network
architecture

the datasets examined in this contribution was limited to 20
epochs in order to avoid overfitting and limit training time.
The effect of the number of epochs is further discussed in the
Discussion Section 4.

The second architecture was based on the description pro-
vided in [30]. It was constructed by joining SqueezeNet
[40, 41] with Multi-Respective Field Learning Module (SN-
MRFLM) [30], cf. Fig. 4. SqueezeNet was selected for its
ability to deliver AlexNet-level accuracy with a model size
of less than 5 MB. Its architecture is based on fire mod-
ules, which consist of squeeze (1 × 1) and expand (1 ×
1 and 3 × 3) convolutions, effectively reducing the num-
ber of parameters without sacrificing accuracy. In industrial
applications—such as real-timequality control onproduction
lines—low latency and minimal memory footprint are criti-
cal. Therefore, SqueezeNet seemed to be the best choice for
our application. As the architecture was described in detail
in [30], here we only summarize the key information. The
pre-trained SqueezeNet 1.0 model with 8 so-called fire mod-
ules serves as a backbone network. A fire module consists
of squeeze and expand layers and was described in detail

elsewhere [30, 40]. The Multi-Respective Field Learning
Module (MRFLM) was proposed in [30] in order to generate
scale-dependent high-level features for accurate steel surface
defect classification. It consists of parallel 1 × 1 and 3 × 3
convolution layers, each followed by a rectified linear unit
(ReLU) activation function. The outputs are concatenated,
and then average pooling and convolution are applied.

In the learning process for both architectures, the adap-
tive moment estimation (Adam) optimizer with learning rate
equal to 10−5, weight decay equal to 10−6, and L2 regu-
larization was used. Note that the hyperparameters applied
in the present paper are standard and consistent with those
used in the scientific literature. A detailed analysis of the
hyperparameters influencewas not performed. Readers inter-
ested in hyperparameters influence studies should consult
other reports. Data splits were done automatically using the
train_test_split function from scikit-learn, with a
seed equal to 42. This was done both for NEU and E-NEU
datasets. For network training,wedid not set a randomseed to
any specific value; thus, they were by default taken from sys-
tem randomness. The code was implemented using Pytorch

Fig. 4 Scheme of the SN-MRFLM network obtained by joining the SqueezeNet network [40] with the Multi-Respective Field Learning Module
[30]
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and performed on a desktop workstation supplied with Dual
Nvidia Quadro RTX4000 8GB GPU. The simulations were
performed on the Ubuntu 20.04 operating system.

Standard metrics were used for the evaluation of the net-
work’s performance. Accuracy measures the proportion of
correct predictions made by the model across the entire
dataset. It is calculated as the ratio of true positives (TP)
and true negatives (TN) to the total number of samples:

Accuracy = T P + T N

T P + T N + FP + FN
. (1)

Precision measures the proportion of true positive predic-
tions among all positive predictions made by the model. It
is calculated as the ratio of TP to the sum of TP and false
positives (FP):

Precision = T P

T P + FP
. (2)

Recall, also known as sensitivity or true positive rate, mea-
sures the proportion of true positive predictions among all
actual positive instances. It is calculated as the ratio of TP to
the sum of TP and false negatives (FN):

Recall = T P

T P + FN
, (3)

F1 score is a metric that balances precision and recall. It is
calculated as the harmonic mean of precision and recall. F1
score is useful when seeking a balance between high preci-
sion and high recall, as it penalizes extreme negative values
of either component:

F1 = 2
Precision · Recall
Precision + Recall

. (4)

In order to study classification performance separately for
each class, a confusion matrix (CM) can be applied. In such
a matrix, each row corresponds to the actual images and each
column to predictions. In the ideal case, there is always 100%
of TPs on the diagonal and 0% everywhere else. However,
if the classification performance is worse, the CM can give
more insight into class-specific performance. For instance,
Fig. 5 shows the results of image classification applied to 3
dog breeds. One can see that only half of the images showing
a husky were classified correctly. Another 30% of images
with husky were classified as german shepherd and 20% as
labrador. On the other hand, 95% of labradors were correctly
classified by the hypothetical network, and 5% of labradors
were classified as german shepherds.

Fig. 5 Illustration of the confusion matrix concept

2.3 Image pre-processing

Rather than modifying the network architecture, one can
study classification improvement potential with image pre-
processing. To this aim, one method of image contrast
enhancement and 4 noise filtering methods were studied. All
the methods were imported from OpenCV (cf., e.g., [42])
Python library.

Image histograms themselves were already described in
Section2.1. Histogram equalization (HE) on the other hand,
is a method to improve the image contrast by stretching out
the intensity range. It proceeds by mapping a histogram of
a given image to another histogram that has a wider and
more uniform distribution of intensity values. The idea is
schematically shown in Fig. 6.

Concerning image smoothing,whose influenceon improv-
ing the classification accuracy was also studied, 4 methods
were used. For each method, windows of 3 × 3, 5 × 5, and
7 × 7 pixels were considered. The blur (B) filter is applied
by convolving an image with a normalized box filter. This
operation replaces the central pixel with the mean of all the
pixels under the kernel. Median blur (MB) differs from the
previous one in that the median of pixels is taken instead of
a mean. The next method is the Gaussian blur (GB), which
differs from B in that it takes a Gaussian kernel instead of a
box filter. The last method to be used is the bilateral filter BF.
It is similar to GB in that it also works as a weighted average
of pixels. However, in BF, also pixel intensity variation is
accounted for so that edges can be preserved. For more info
about BF, see [43].

3 Results

3.1 Conventional image analysis

The purpose of generating image histograms was twofold.
First, to have more insight into the differences between
defect images. Second, in order to see how various distor-
tions introduced in [30] lead to information loss. Gray level
histograms of each defect class are shown in Fig. 7. Look-
ing on the histograms, one can certainly point out some key
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Fig. 6 A scheme explaining the histogram equalization idea (reprinted from https://en.wikipedia.org/wiki/Histogram_equalization under CC BY
2.0 license)

differences between defect classes. For example, the his-
togram for rolled-in scale (Fig. 7f) is clearly different from
the histogram for patches (Fig. 7a). On the other hand, the
histogram for patches (Fig. 7a) is somewhat similar to the

histogram for pitted surface (Fig. 7b). Namely, both have
more or less flat distribution of gray levels with a sharp peak
near one. Note, however, that the origin of the peak is clearly
different: in the case of patches, the peak is related to big,

Fig. 7 The histograms for six kinds of defects: a patches, b pitted surface, c inclusions, d crazings, e scratches, and f rolled-in scale
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Fig. 8 The histograms for patches—influence of additional effects: motion blur with Lcm equal to a 2 and b 5; non-uniform illumination with α

equal to c ±0.4 and d ±1; camera noise with SNR equal to e 20db and f 35db

Fig. 9 The histograms for
rolled-in scale—influence of
non-uniform illumination with α

equal to ±1: a original image
histogram and b after
modification

Fig. 10 The histograms for
crazings—influence of
non-uniform illumination with α

equal to ±1: a original image
histogram and b after
modification

Fig. 11 The influence of non-uniform illumination with α equal to ±1 on image histogram of each defect type: a patches, b pitted surface, c
inclusions, d crazings, e scratches, and f rolled-in scale
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Table 1 Results of case 1—both training and testing on NEU

Model F1 score Accuracy Precision Recall

EN2s 1.0 1.0 1.0 1.0

SN-MRFLM 0.9917 0.9917 0.9917 0.9917

nearly black stains (cf. Fig. 1a) and in the case of pitted sur-
face, it is related to small black dots (cf. Fig. 1b). Yang and
Liu [28] complained that crazing and rolled-in-scale are very
similar and thus their unambiguous discrimination is very
challenging. While some similarity can be seen when look-
ing on Fig. 1d and f, the histograms are qualitatively similar
(showing one wide peak) but the position of the maximum is
shifted to the right for pitted surface (Fig. 7d), and to the left
for rolled-in scale (Fig. 7f).

Now, let us see how image modifications introduced in
[30] affect the image histograms. In Fig. 8, one can see the
effect of various modifications on images of patches. The
influence of motion blur (with Lcm either 2 or 5) is very weak
(see Fig. 8a and b). Non-uniform illumination mostly acts by
smoothing out the distribution and increasing the value of the
sharp maximum at 1 (see Fig. 8c and d). Adding noise has
the contrary effect—the height of the sharp peak on the right
is decreased. The analogous figures for other defect types are
shown in the Appendix (Figs. 17–21).

In the case of rolled-in scale, one can see a very clear
effect of non-uniform illumination, especially with α ± 1
(cf. Figs. 9 and 21). Namely, the height of the maximum is
greatly reduced, and its width considerably increases. A quite
interesting example is the effect of illuminationon the crazing
defect image histogram (cf. Figs. 10 and 19). As can be seen
in Fig. 10b, a new peak corresponding to black points comes
into existence that was absent in Fig. 10a. The new histogram
is thus more similar to the histogram for patches (cf. Fig. 7a)
than for crazing.

As can be seen above, the non-uniform illumination, espe-
cially with the higher luminance range value, introduces
the biggest change in image histograms. Therefore, a new
Fig. 11 was prepared that shows image histograms for each
defect type after modification by non-uniform illumination
with α = ±1. The figure can be compared with Fig. 7.
One can see that even though the image histograms for
clean images of defects could be discriminated from each
other, the image histogram for defect images modified with

Table 2 Results of case 2—training on NEU, testing on E-NEU

Model F1 score Accuracy Precision Recall

EN2s 0.7029 0.6832 0.8461 0.6832

SN-MRFLM 0.8835 0.8822 0.8956 0.8822

Table 3 Results of case 3—training on E-NEU, testing on NEU

Model F1 score Accuracy Precision Recall

EN2s 0.9693 0.9694 0.9713 0.9494

SN-MRFLM 0.9668 0.9667 0.9684 0.9667

non-uniform illumination presented in Fig. 11 cannot be dis-
tinguished anymore. In particular, histograms for patches,
pitted surface, inclusion, and crazing look very similar. Also,
the histograms for scratches and rolled-in scale are very sim-
ilar to each other.

To conclude, one can notice that the histograms can be
helpful for distinguishing some defect categories, but for oth-
ers, the histograms are very similar, even though the defects
are not. The modifications present in the E-NEU dataset
have a considerable impact on their shape. The most promi-
nent example is the severe non-uniform illumination (Fig. 11)
which makes seeing differences between defect categories
in histograms almost impossible. Considering the above, it
is clear that histograms cannot serve as a reliable tool for
defect classification, especially for theE-NEUdataset. Usage
of other tools, such as CNNs, should be thus considered.

3.2 Convolutional neural networks

In most of the papers based on the NEU dataset published
so far, both training and testing were performed on the NEU
dataset. The training dataset was typically obtained by tak-
ing 80% of the images, and the remaining ones served as a
testing dataset. In [30–32], the training was performed also
on the NEU dataset, but the trained model was tested also on
the diversity-enhanced E-NEU dataset. Here, we exercised a
more elaborate approach. Namely, 4 cases were investigated:

1. training on NEU, testing on NEU,
2. training on NEU, testing on E-NEU,
3. training on E-NEU, testing on NEU,
4. training on E-NEU, testing on E-NEU.

The purpose of such combinations is to thoroughly examine
what is the effect of the diversity enhancement present in the
E-NEU dataset on the classification performance. Each case
was tested using both EN2s and SN-MRFLM. The metrics
corresponding to the results are summarized in Tables 1, 2,

Table 4 Results of case 4—both training and testing on E-NEU

Model F1 score Accuracy Precision Recall

EN2s 0.9897 0.9897 0.9902 0.9897

SN-MRFLM 0.9996 0.9996 0.9996 0.9996
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Fig. 12 Confusion matrices for case 1—both training and testing on NEU: a EfficientNet-v2-s and b Multi-Respective Field Learning Module
(SN-MRFLM). Numerical values available for copying are additionally presented in Supplementary Table 14

3, and 4. The corresponding confusion matrices (CM) are
shown in Figs. 12, 13, 14, and 15.

Table 1 shows the metrics obtained for the models trained
and tested on the NEU dataset (without enhancements).
EN2s provided perfect classification, while SN-MRFLM
achieved over 99% accuracy. In order to see the classifica-
tion performance with respect to each defect, it is useful to
investigate the confusionmatrices (Fig. 12). EfficientNet-v2-
s led to 100% correctly classified images in each category.
The SN-MRFLM had difficulties with pitted surface, inclu-
sions, and scratches: 1.7% of such images were classified
incorrectly. For the remaining 3 defect categories, 100% of
images were correctly classified.

Now, let us look on the case where the models were
trained using the NEU dataset and tested using the diversity-
enhanced images (case 2). This corresponds to the situation
examined also in [30–32], where the system is supposed to
be trained on clean data and then applied in the industrial
conditions, where various disturbances occur. This time, the
SN-MRFLM, specifically developed for such a case, shows
its superiority in tackling this task over EfficientNet-v2-s.
Table 2 shows that the overall accuracy of EfficientNet-v2-s
is only 68%, while SN-MRFLM scored over 88%. It is thus
seen that although the performance of both architectures on
clean images (case 1) is similar, and even slightly better in
the case of EN2s, SN-MRFLM is visibly better on perturbed

Fig. 13 Confusion matrix for case 2—training on NEU, testing on E-NEU: a EfficientNet-v2-s and b Multi-Respective Field Learning Module
(SN-MRFLM). Numerical values available for copying are additionally presented in Supplementary Table 15

123



The International Journal of Advanced Manufacturing Technology

Fig. 14 Confusion matrix for case 3—training on E-NEU, testing on NEU: a EfficientNet-v2-s and b Multi-Respective Field Learning Module
(SN-MRFLM). Numerical values available for copying are additionally presented in Supplementary Table 16

images. On the other hand, one has to admit that the classi-
fication performance of SN-MRFLM also deteriorated.

Let us now take a look on classification results for each
defect type separately (Fig. 13). In the case of EfficientNet-
v2-s, the percentage of true positives for some defect types
is really low. Only 39.0% of crazing images were classified
correctly, while 60.8% of them were classified as pitted sur-
face. 52.2% of rolled-in scale images, as well as 43.0% of
patch images, were classified as pitted surface. For the rest
of the classes, the fraction of true positives is at least 78%,
and in the case of scratches, it is 99.7%. Note that there was
a strong tendency of the model to classify other defect types
as pitted surface. SN-MRFLM performed visibly better than
EN2s in this case—the lowest fraction of TPs was 71.5% (for

crazings). Also, inclusions and rolled-in scale defects were
difficult for this architecture (83.1% and 87.6% of correct
predictions, respectively).

Case 3 seems to be a rather academic example, where
the model is trained on images containing diversity enhance-
ments (E-NEU) and tested on clean images (NEU). Nev-
ertheless, we have included this case for completeness. It
is interesting to see that prediction performance in this case
(Table 3) slightly deterioratedwrt. case 1 (Table 1). The accu-
racy of EN2s dropped to 96.9% (2.8% decline), and that of
SN-MRFLM dropped to 96.6% (2.5% decline). The conclu-
sion is thus that the model trained on distorted data achieves
a lower score on clean data. When analyzing each class sepa-
rately (Fig. 14), EN2s have the most difficulties with correct

Fig. 15 Confusion matrix for case 4—both training and testing on E-NEU: a EfficientNet-v2-s and b Multi-Respective Field Learning Module
(SN-MRFLM). Numerical values available for copying are additionally presented in Supplementary Table 17
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classification of scratches (similarly as in case 1). This time,
this category is also the most difficult for SN-MRFLM.

The last combination (case 4) is a situation where the
model was both trained and tested on the E-NEU dataset.
This situation seems to be possible to occur in a real situ-
ation, e.g., when it was not possible to obtain sufficiently
high-quality training data. The prediction performance was
similar to case 1: it is 99% for EN2s and almost 100% for
SN-MRFLM (cf. Table 4). Figure15 shows the confusion
matrices for both networks. The correct classification of the
pitted surface was the most troublesome for both architec-
tures.

3.3 CNNs on preprocessed data

Nath, Chattopadhyay, and Desai [31] reported improvement
of classification results when preprocessing the perturbed
images from theE-NEUdataset using histogramequalization
(HE). Therefore, we have also checked if pre-processing the
images with histogram equalization improves the classifica-
tion. Table 5 reports the results (averaged over 10 trainings),
which should be compared with Table 2. One can see that
applying HE to all the images improved classification per-
formance to a moderate level in the case of EN2s. However,
in the case of SN-MRFLM, it led toworse classification accu-
racy.

Since HE did not provide any breakthrough improvement,
other image preprocessing options were considered. Namely,
the filters described in Section2.3 were separately applied to
all images (with windows 3 × 3, 5 × 5, and 7 × 7 pixels).
The results are shown in Table 6. One can see that this time,
the results were considerably improved. What is even more
interesting, EN2s on preprocessed images achieved similar
performance as SN-MRFLM.The best accuracy (highlighted
in Table 6) was obtained with Gaussian blur in the case of
EN2s and bilateral filter in the case of SN-MRFLM (using 7
pixel window in both cases). For EN2s, the best accuracywas
equal to 97.9%, and for SN-MRFLM, it was equal to 98.6%.
Note that the table shows mean values over 10 network train-
ings. Tables reporting each training result separately and the
corresponding standard deviations are provided in the Sup-
plementary Material. The confusion matrix corresponding
to the best results obtained with EN2s and SN-MRFLM is
shown in Fig. 16. This time, the crazing images were most

Table 5 Results of case 2: training onNEU and testing on E-NEUwhen
all images were preprocessed using histogram equalization (HE)

Preprocessing F1 score Accuracy Precision Recall

EN2s 0.680 0.671 0.833 0.671

SN-MRFLM 0.764 0.768 0.778 0.768

Values averaged over 10 network trainings are shown

Table 6 Results of case 2: training onNEU and testing on E-NEUwhen
all images were preprocessed with one of the filters: blur (B), median
blur (MB), Gaussian blur (GB), and bilateral filter (BF)

Preprocessing F1 score Accuracy Precision Recall

EN2s

No 0.713 0.712 0.813 0.712

B 3 0.884 0.885 0.910 0.885

B 5 0.929 0.929 0.941 0.929

B 7 0.926 0.925 0.939 0.925

MB 3 0.906 0.903 0.920 0.903

MB 5 0.934 0.933 0.944 0.933

MB 7 0.894 0.892 0.924 0.892

GB 3 0.905 0.903 0.921 0.903

GB 5 0.955 0.955 0.962 0.955

GB 7 0.971 0.971 0.973 0.971

BF 3 0.881 0.879 0.912 0.879

BF 5 0.920 0.918 0.939 0.918

BF 7 0.877 0.880 0.908 0.880

SN-MRFLM

No 0.881 0.879 0.904 0.879

B 3 0.961 0.961 0.964 0.961

B 5 0.963 0.962 0.965 0.962

B 7 0.921 0.923 0.941 0.923

MB 3 0.949 0.949 0.953 0.949

MB 5 0.964 0.963 0.966 0.963

MB 7 0.965 0.965 0.968 0.965

GB 3 0.965 0.965 0.966 0.965

GB 5 0.955 0.955 0.958 0.955

GB 7 0.966 0.966 0.968 0.966

BF 3 0.948 0.948 0.953 0.948

BF 5 0.963 0.963 0.965 0.963

BF 7 0.972 0.971 0.972 0.971

The highest accuracies for each CNN architecture are highlighted. Val-
ues averaged over 10 network trainings are shown

difficult for classification in the case of EN2s, and inclusion
images were the most troublesome for SN-MRFLM.

To the best of the authors’ knowledge, there are only 3
papers where the efficiency of the models was tested over
the E-NEU dataset. In [30] (the original paper presenting the
E-NEU dataset), the authors trained their model on the NEU
dataset and tested onbothNEUandE-NEUdatasets,which in
the nomenclature of the present paper corresponds to cases 1
and 2, respectively. Fu et al. proposed the SqueezeNet-based
architecture (applied also here and denoted SN-MRFLM)
to solve the classification problem and obtained an accu-
racy 100% when testing on NEU (analogous to our case
1) and 97.5% when testing on E-NEU (analogous to our
case 2). They did not present other metrics though. Con-
cerning accuracy in case1, 100% is the same as the result
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Fig. 16 Confusion matrix for case 2: training on NEU and testing on
E-NEU, with image preprocessing: a Gaussian blur (7 × 7 window)
+ EfficientNet-v2-s and b bilateral filter (7 × 7 window) + Multi-

Respective Field Learning Module (SN-MRFLM). Numerical values
available for copying are additionally presented in Supplementary Table
18

of EfficientNet-v2-s and slightly better than 99.2% obtained
with SN-MRFLM in our case, cf. Table 1. Differences in
results corresponding to the same architecture (SN-MRFLM)
may result from different learning strategies or hyperparam-
eter tuning. More interestingly, 97.5% accuracy obtained in
[30] on the E-NEU dataset using the SN-MRFLM is much
better than 53.7%obtainedwith EfficientNet-v2-s and 88.2%
obtained with SN-MRFLM in our case, cf. Table 2. The large
difference between the accuracy obtained using SN-MRFLM
in [30] and us is difficult to explain at this stage.

On the other hand, to the best of the authors’ knowledge,
there are no reports of better accuracy on the E-NEU dataset
than 97.5%as reported in [30].Nath et al. [31] used histogram
equalization and another network architecture and obtained
only 92.4% accuracy. To sum up, 97.1% accuracy obtained
in the present paper by applying EN2s with Gaussian blur
and SN-MRFLMwith bilateral filtering is similar to the best
result reported in [30] and by far outperforms the second best
result reported in [31], cf. Table 7. Note, however, that the
values reported here were averaged over 10 network train-
ings, while it seems that in [30] this was just one result. Due
to randomness, it could happen that the result reported in
op. cit. was obtained by chance in a single network train-
ing. For example, in our case, in one of the training (see

Table 7 Best accuracy when training on NEU dataset and testing on
E-NEU dataset reported in the literature and in the present contribution

Fu et al. [30] Nath et al. [31] This work (average)

97.5% 92.4% 97.1%

Supplementary Table 5), the highest training accuracy was
even 98.7%.

4 Discussion

4.1 Number of epochs for Efficient Net

In this paper, in the case of EN2s, we have chosen 20 epochs
in order to avoid overfitting. Now, let us check what is the
result of this choice. Table 8 presents the effect of the num-
ber of epochs on classification metrics in case 2 (case 1 is
shown in Supplementary Table 13). Note that each result
was obtained after a single training, and thus some statis-
tical fluctuations are unavoidable. In general, no significant
improvement in classification accuracy is seen when increas-
ing the number of epochs to more than 20, and thus, it can
be concluded that the selected number of epochs is optimal.

4.2 Time of classification

In order to assess the real-world applicability of the devel-
oped technique, we have computed time of image prepro-
cessing and inference. These data are presented in Table 9.
Parameters of the computer used for those computationswere
provided in Section2.2. In general, the preprocessing time
does not exceed 6ms. The average inference time in the case
of EN2s is around 42ms, and in the case of SN-MRFLM,
it is around 7ms. The total time does not exceed 49ms for
EN2s and 14ms for SN-MRFLM. As pointed out in Section
11 of [6], for a strip going at a speed of 20m/s, the maxi-
mum total time is 12.5 ms. According to this criterion, EN2s
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Table 8 Classification metrics of case 2 (training using NEU, testing
on E-NEU) with EN2s—effect of the number of epochs

No. of epochs F1 Accuracy Precision Recall

1 0.6413 0.6595 0.7422 0.6595

2 0.6412 0.6573 0.7741 0.6573

3 0.5651 0.5748 0.7691 0.5748

4 0.7381 0.7464 0.8074 0.7464

5 0.6119 0.6120 0.7369 0.6120

6 0.6767 0.6770 0.8123 0.6770

7 0.6631 0.6676 0.8399 0.6676

8 0.6710 0.6640 0.8132 0.6640

9 0.7672 0.7666 0.8431 0.7666

10 0.5339 0.5488 0.8155 0.5488

12 0.6819 0.6873 0.8130 0.6873

14 0.6047 0.6165 0.7956 0.6165

16 0.7396 0.7231 0.8757 0.7231

18 0.6948 0.6859 0.8083 0.6859

20 0.7040 0.6958 0.7979 0.6958

40 0.6104 0.6089 0.7466 0.6089

60 0.6744 0.6644 0.7843 0.6644

80 0.5820 0.5950 0.7707 0.5950

100 0.6895 0.6810 0.8411 0.6810

120 0.7603 0.7433 0.8417 0.7433

140 0.7071 0.7030 0.8476 0.7030

160 0.6795 0.6676 0.7677 0.6676

180 0.7391 0.7321 0.8309 0.7321

200 0.6080 0.5892 0.8145 0.5892

is not suitable for image processing at this speed, while in
the case of SN-MRFLM, some schemes are rather below
the boundary (no preprocessing, histogram equalization and
blur), some others are close to this boundary (median blur and
bilateral filter, especially with 7 × 7 window), while Gaus-
sian blur violates this boundary to some extent. Note that
the best accuracy in the case of SN-MRFLM was observed
with a bilateral filter with 7× 7 window (cf. Table 6), whose
total time is just below the limit estimated in [6]. This seems
to be a good prognostic for future applications, but the real
applicability should be thoroughly re-evaluated concerning
specific manufacturing conditions, as well as the hardware
applicable on-site.

4.3 Predicting defects

The present paper focuses on defects classification, while
neglecting two other components of defects inspection,
namely defect detection and defects segmentation. Note that
defects inspection as a whole is only related to the exist-
ing defects and is blind to the process of their formation.
However, analyzing the process of defects formation is also

an interesting research direction. For example, in [44], finite
element method (FEM) study was carried out in order to
redesign the caliber rolling process, so that the creation of
surface defects in AISI 4140 steel was limited. Note that the
study was not purely theoretical; rather, the results were veri-
fied in the actual rodmill of SEAHBESTEEL Inc. at Kunsan,
Korea. FEM study of initiation and growth of surface defects
during hot rolling was reported in [45]. The main conclusion
from this paper was that increase of friction increases the
probability of defect formation.

4.4 Defects and fatigue

The linkages between material defects and fatigue are very
significant, cf., e.g., [46–48]. These linkages are also recog-
nized by means of so-called Kitagawa diagrams [49]. The
impact of surface defects on very high cycle fatigue (VHCF)
was analyzed in [50]. The case of clean spring steel was con-
sidered (which is important, since in high-strength steels, the
fact that there are many internal crack initiation sites could
make the study of surface defect influence irrelevant).

As pointed out in [47, 51], the important information
from the fatigue point of view is the maximum defects size.
[52] studied VHCF behavior of medium carbon structural
steel and concluded that surface defects with dimensions
more than 200μm were the primary crack initiation site.
Note, however, that the defect size cannot be considered
as the independent quantity as it depends on steel type and
microstructure. For example, defects of about 50 μm do not
decrease the fatigue strength in the case ofmild steel [48], but
in the case of high-strength steels even defects below 10 μm
can be detrimental [53]. Based on these assumptions, [54]
proposed the material-dependent critical defect size. Defects
larger than this size should be considered detrimental for
fatigue resistance. The critical size for the materials studied
in op. cit. is on the order 100 μm.

Note that material defects should be considered in two
ways in this case, i.e., as surface defects or defects occur-
ring in themicrostructure of the steel.Microstructural defects
are mainly related to the effects of metallurgical processes,
including the effects of deoxidation and segregation of
steel, which lead to the formation of non-metallic inclusions
or microcracks in the microstructure, as well as to ther-
mal processes during hot forming. In turn, surface defects
are considered in the paper, and unfortunately, there is no
direct information on the sizes of defects included in the
NEU dataset [17]. However, based on common metallurgi-
cal knowledge, we assume that such defects are macroscopic
defects, with the order of magnitude of 0.5 mm upwards, vis-
ible on the surface and capable of being recorded by image
capture and analysis devices, thus almost one order of mag-
nitude higher than the critical microstructural defect size
established in [54]. Such defects can be highly harmful from
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Table 9 Preprocessing and inference times for case 2 (training on NEU and testing on E-NEU) when all images were preprocessed with histogram
equalization (HE) or one of the filters: blur (B), median blur (MB), Gaussian blur (GB) and bilateral filter (BF)

EN2s SN-MRFLM
Preprocessing Preprocessing Average inference Total Preprocessing Average inference Total

time [ms] time [ms] time [ms] time [ms] time [ms] time [ms]

No 3.137 43.322 46.459 2.325 7.685 10.010

HE 2.726 42.348 45.074 1.996 7.292 9.288

B 3 2.369 41.815 44.184 2.350 7.438 9.788

B 5 2.543 42.198 44.741 2.675 7.269 9.944

B 7 2.673 42.034 44.707 2.888 7.358 10.246

MB 3 3.154 42.519 45.673 2.875 7.397 10.272

MB 5 3.118 42.661 45.779 3.359 7.369 10.728

MB 7 4.917 42.271 47.188 4.985 7.448 12.433

GB 3 5.906 41.839 47.745 5.936 7.702 13.638

GB 5 4.451 42.322 46.773 4.951 7.538 12.489

GB 7 5.567 42.530 48.097 5.181 7.531 12.712

BF 3 3.584 42.717 46.301 3.440 7.299 10.739

BF 5 4.669 42.178 46.847 4.232 7.436 11.668

BF 7 5.960 42.067 48.027 4.918 7.298 12.216

First line shows results where no filter was applied. Values were averaged over 10 network trainings

the point of view of fatigue, but in this case, in addition to
the length, their depth, the nature of propagation or the defect
area (in the case of rolled scales or clusters of macroscopic
non-metallic inclusions) should also be taken into account.
This issue requires further research.

4.5 Steel defects inspection in long products

Note that although it seems that steel surface defect inspec-
tion received more attention in the context of flat products,
there are also some studies devoted to long products, e.g.,
[2, 15, 22, 23, 55]. In [15], a modified SVM approach tak-
ing into account process knowledge was applied to classify
defects (seams, scales, and cracks) in hot-rolled bars. A fur-
ther step forward was made in [2], where the occurrence
of defects was predicted based on the process parameters
usingBayesianmodeling. In [22], amethod of detecting three
types of defects on steel bars (pit, scratch, and overfill) was
described. In [23], a method calibrated for pit defects on steel
bars was reported. In [55], an innovative semi-supervised
anomaly detection model was used for defect detection on
rail surfaces (both rails coming directly from the production
line and in-service rails).

5 Conclusions

In the article, the performance of two deep learning archi-
tectures in classifying steel surface defects from the widely

cited NEU dataset and the less-known diversity-enhanced
E-NEU dataset was tested. The effectiveness of increas-
ing the classification performance on the E-NEU dataset by
image preprocessing was also studied. The main conclusion
is that image preprocessingwithwell-knownfilters can effec-
tively increase the classification accuracy, above the values
achievable by applying even themost fined-tunedCNNarchi-
tectures only. Accuracy improvement was demonstrated by
comparing with available research reporting studies on the
E-NEU dataset. In addition, the industrial applicability of the
developed framework was studied by analyzing the prepro-
cessing and inference time. Finally, gray level histograms for
NEU and E-NEU datasets were reported for the first time.

Note that this paper focused on testing and improving the
noise robustness of defect classification by using the publicly
available E-NEU dataset. One should, however, bear in mind
that image distortions in the E-NEU dataset have been them-
selves introduced artificially. The industrial applicability of
the developed methodology should be further elaborated by
testing on images that have disturbances related to real man-
ufacturing conditions.

Appendix

Figures17, 18, 20, and 21 show the histograms modified by
diversities included in the E-NEU dataset for pitted surface,
inclusion, crazing, scratches, and rolled-in scale.
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Fig. 17 The histograms for pitted surface—influence of additional effects: a original images; motion blur with Lcm equal to b 2 and c 5; non-uniform
illumination with α equal to d ±0.4 and e ±1; camera noise with SNR equal to f 20db and g 35db

Fig. 18 The histograms for inclusion—influence of additional effects: a original images; motion blur with Lcm equal to b 2 and c 5; non-uniform
illumination with α equal to d ±0.4 and e ±1; camera noise with SNR equal to f 20db and g 35db
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Fig. 19 The histograms for crazing—influence of additional effects: a original images; motion blur with Lcm equal to b 2 and c 5; non-uniform
illumination with α equal to d ±0.4 and e ±1; camera noise with SNR equal to f 20db and g 35db

Fig. 20 The histograms for scratches—influence of additional effects: a original images; motion blur with Lcm equal to b 2 and c 5; non-uniform
illumination with α equal to d ±0.4 and e ±1; camera noise with SNR equal to f 20db and g 35db
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Fig. 21 The histograms for rolled-in scale—influence of additional effects: a original images;motion blurwith Lcm equal tob 2 and c 5; non-uniform
illumination with α equal to d ±0.4 and e ±1; camera noise with SNR equal to f 20db and g 35db
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