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17 COMPRESSIVE AND SHEAR FAILURE
MODES IN BRITTLE MATERIALS

Z. MROZ and M. KOWALCZYK
Institute of Fundamental Technological Research, Warsaw,
Poland

Abstract

In brittle materials failure modes develop consecutively producing very frequently
periodic sequence of failure events. Under compression, the cracking mode develops
first, thus producing a set of oriented cracks inducing stress redistribution and
anisotropic response. The crushing and post-buckling modes are associated with
subsequent failure of cracked portions due to localized shearing or loss of stability.

The progression of particular modes 1s discussed by assuming existence of
discontinuity interfaces between modes with proper evolution rules. An
incremental problem associated with moving interface is formulated. The evolution
rate of the interface follows from the energy condition of propagation of a set of
cracks (cracking interface).

Several examples are treated in detail. Cracking and erushing around a circular
hole is considered first. Next, this analysis is applied to study a rigid punch
indentation into a plate. The oscillatory character of force variation is exhibited
theoretically and confronted with experimental observations,

Keywords: Cracking, Crushing, Buckling, Indentation, Limit Load, Post-critical
State.

1 Introduction

The present paper is devoted to the analysis of progressive failure modes in brittle
materials, such as rock, ice, concrele, or ceramics. The constitutive models for
such materials are usually concerned with description of deformation response in
stable regime before the onset of localization and loss of stability after reaching the
maximal stress, cf. Jaeger and Cook (1976}, Derski et al {1989). The post-critical
stress-strain response was measured in some compression tests with the control set
on circumferential strain. However, there is no general methodology developed so
far in treatment of boundary-value problems associated with both stable and
post-critical regimes. In many technical problems such as rock crushing, cutting of

Fracture of Britide Disordered Materials: Concrete. Rock and Ceramics. Edited by G. Baker and B.L. Kanhaloo.
Published in 1995 by Taylor & Prancis. 2 Park Square, Milton Park. Abingdon, Oxon, OX14 4RN, ISBN: 0 419 19050 3,



Compressive and failure modes in britile materials 265

drilling, ice-plate interaction with off-shore platforms, etc., all progressive modes
should be accounted for in order to predict realistically the interaction pressures
and the sequence of failure modes. The present paper is devoted to these problems
and the necessary simplifying assumptions are introduced in order to provide
analytical solutions. In particular, we shall distinguish such modes as cracking,
crushing, shearing, and buckling. These modes are assumed to propagate within
the loaded material with proper interaction along interfaces. It will be shown that
the evolution of progressive failure modes induces periodicity of failure events with
the associated oscillatory character of a load-displacement curve.

In Section 2, the material model assumptions are presented and the evolution
problem of distinct damage zones will be foermulated in an incremental form. In
Section 3, the analysis of progression of cracked and crushed zones in the
axisymmetric case is discussed. In Section 3, the punch penetration problem is
analysed in the case of plane strain and plane stress, with the respective
load-displacement curve exhibiting oscillatory character associated with initiation
and termination of consecutive failure events. The reference to experimental
observation will be provided.

2 Material Model and Problem Formulation

Consider a problem illustrated in Fig. 1. The plane structure B of a brittle
material is rigidly supported on the boundary S, and loaded by a compressive
traction T on the houndary portion Sr. It is assumed that compressive loading
induces progressive cracking of the material. The cracks are assumed to follow the
trajectories of the major compressive stresses (or be perpendicular to the major
tensile strain trajectories), Fig. 1. For increasing load, the cracked domain
increases with its interface 55 moving into the undamaged domain. It is assumed
that the stiffness moduli at the interface vary discontinuously. In fact, the cracked
domain is characterized by an orthotropic stiffness matrix with vanishing stiffness
in the direction normal to the crack trajectories. For further increase of load, the
primary crack pattern is changed by generation of cracks inducing consecutive
fragmentation through shearing of strips between primary cracks. Alternatively,
buckling of strips may occur within the structure plane or in the transverse
direction. This second mode of failure will be called the crushing mode and the
interface 5. separates the crushing and cracking domains, Fig. 1b. The ultimate
failure will correspond to flow of crushed material to the free surface within the
plane or to lateral post-buckling with localised bending for a thin plate.

The present assumptions constitule a simplified model of cracking and crushing
zone propagation as in actuality there is a gradual transition from one to the other
mode. Instead of considering propagation condition for each crack, we assume the
moving interface to represent all cracks growth. The proper energy condition can
then be formulated, similar to the Griffith condition for a single crack.
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Figure 1: a) Propagation of cracked zone b) Propagation of crushed and cracked
ZONEs

Denote by . £, and o the displacement, strain and stress states. The states
within the intact domain be denoted by subscript 2 and within the damage zone
by subscript 1. On the interface S;, the tractions and displacements are
continuous, thus,

] =0 [T]=[end =10 onS; (1)
where [u] = u; — ;, denotes the discontinuity of % and similar notation applies to

other fields. However. the displacement gradients, strain and stress fields are
discontinuous, so that

1
u,, = an; lei] = i{a.-nJ + a;n;) ons, (2)

where a denotes the discontinuity vector and n is the unit normal on 5, directed
into the undamaged domain. Assume the damaged and undamaged materials to
satisfy the linear relations

o = Ci{e = E” oy = Chle; — 5:.;:1 (3)

where € and C; are the elasticity matrices and ], €} are the inelastic or initial
strains. In view of (1) and (2), the following equation is obtained to specify the
discontinuity vector a

Aza =b or A[?}jkak = b‘, [4:]
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where
4 =nGn b= -n[Cle ~ nC\¢) + n,Cye (5)

Here A, denotes the acoustic tensor and b is the interface "force vector™.
The propagation of interface will now be considered as an evolution process

specified by the transformation velocity ¢(z,t). When the interface S; moves, the
first equation (1) provides

: ;] . ¢
[tl.‘] = [EE—_ + Ui ¥, = [?;;] + aﬁ’n =0 {ﬁ)
so that
i &n; =) (1)

where @, = ¢;n; denotes the normal propagation velocity component, i; denotes
the total time derivative and du, /8t is the local derivative, The second equation
(1) now provides the Lraction continuity condition

-2}

As the time derivative of the unit veclor nis

] nggr =10 {8)
Oz,

f, = (nymy — §ic )i (9)

we obtain the local stress rate discontinuity condition

da; - doy; .
[Bisln; = [ = ] = lou) ners — [3—:__ﬂ e (10)

Equations (7} and {10} provide the boundary conditions for the rate problem
associated with propagation of interface. Denoting by &, &, 4y, and by o, &, i,
the local rates of state fields in two body portions, we can write the equilibrium
and boundary conditions for those rates, namely

3{l)iu =0 o = Cig

(11)

5“}.',?1: =0 on S'r fﬁn},‘ =0 on S,.

and similar equations within the undamaged domain. The interface discontinuity
conditions (7) and (10} then provide supplementary equations generating
non-vanishing solutions. Let us note that we have now a non-typical houndary
value problem when discontinuities in both displacement and traction rates are
specified on the interface S,.
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The stability conditions associated with moving damage interface were
discussed in detail by Dems and Mrdz (1985) where the limit state criteria were
derived. The relevant stability eriteria for a system of cracks in a brittle solids
were derived by Bazant and Ohtsubo (1977).

The generalized forces associated with interface propagation can be derived by
considering the variation of potential or complementary energies of the body. The
potential energy

I]l[u,SJ:fU{s)dV—f‘]"’-udS-r (12)

is now a function of both displacement field and interface position. The variation
of I1 equals

T I
f =f?3—;‘td1f'+j[bj<,c,,d51 (13)

where {/(e) is the specific strain energy. However, in view of the virtual work
principle and (6), there is

/unédb’ =/T‘[i~qu, - meAa,c':“d& (14)
and (14) can be expressed as follows

N(w,S,) = f (U] = T @) ,d8; = j HpodS, (15)
where

H=[U]-T-a (16)

is the generalized force associated with the interface propagation.

An alternative expression for the force H can be obtained by decomposing
stress and strain at the interface into "exterior” and "interior” or hidden portions
of, " and &, €. In a local orthogonal system n, a, 3, the external stress o
corresponds Lo the interface traction and is represented by the components @,
Ty Tnp- Similarly, the external strain €* is represented by the components &,,,
Enos Enge Since at the interface there is {d"l =) and [s"‘} = 0, we have

{a-s]:[aq,-s"+ah-z"j|=a"’-[.r‘l“]+[o"']-sh (17)
and the generalized force is
H=[U]-T a=}(d-[¢] +[e"] -2 [¢]) =

L] o [4) "
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2b

Figure 2. Axisymmetric cylinder with different stress stage zomes: 1) crushed 2)
cracked 3) elastic

This expression will be used in analysing the damage interface propagation.

3 Axisymmetric Cracking and Crushing Modes

Let us first consider an axisymmetric problem of a cvlinder acted on by internal
pressure and in the limit case of a hole in an infinite continuum. For the plane
strain case, the material is assumed to be in elastic, cracking or crushing state
developed in the course of progressive deformation. Figure 2 presents the respective
states within the cylinder. The detailed analysis was presented by Kowalezyk and
Mraz (1988) following previous studies by Ladanyi (1967) and Hellan (1984).
Assume the macrocracks to develop along radial directions and the cracked
material to be regarded as an orthotropic material of vanishing stiffness moduli in
circumferential direction. The total strain components £, and £, in radial and
circumnferential directions are decomposed in the cracked zone as follows

g =t +¢f =€ +ef (19}

where &%, &5 are the elastic strains and &f, &/ are the fracture strains. In the crushed
zone, the material is assumed to behave like an isotropic granular medium in the
limit equilibrium state specified be the Coulomb yield condition. We have therefore

A g =€ 4 £f (20)

where £f, £} are the plastic strains.
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The equilibrium equations are

acr,+a,.-—-a. =0 (21)

ar r

and the strain displacement relations take the form

a i e
£, = 3:: £ = N “2:'

In the elastic zone, the Hookes law for an isotropic material applies, thus

1 4+ | + v

= 5 (1 =w)a, = vay &= 3 (1 = vyo — vay] (23)
In the cracked zone there is
5{:(] o =10 e:’}[l (24)

Assume the cracked zone to contain many cracks propagating from the internal
bondary # = a to the interface boundary v = r., Using the Geiffith condition of

crack propagation, the potential energy releage calenlsted at the progressing
interfate r = r, is assurtied to be equal io fracture toughness of n ceacks, so that

gl
H2ar, = ki Y Ey ] (25)

or using (18), we have
re [-:r,’{r,_.}] =nk} {26)

The crushed zone follows the cracked zone for increasing internal pressure and
the material is assnined to satisfy the Coulomb yield condition

Fil=o ~a + (o, +o.)sinpg — 2Ccosp =0 Fs=oa.—8 =0 (21)
Fr=o,—o+ (o +o.)sing - 2Ccosp =0 Fy=0-58=0

where the initial coliesion equals Cy and in passing to a crushed state it drops to
the residual value €, = 0. Similarly, the initial tensile strength 5, drops Lo zero
when cracks develop. The friction angle ¢ is assumed constant during the process.
Here F} = 0, [; = 0 represent the shear mode and Fy = 0, Fy = 0 correspond to
the tensile mode of flow. The flow rule specifies the plastic strain rates, namely
s

AP
do, =2 (28)

de,

P
r
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where A and gili = 1,2,3,4) specify the plastic potentials

Q=0 —0+ o+ o )sind =20, cosp =0

, (29)
@=0—o+ (o, +a.)sing — 2C, cosp =0

where i is the dilatancy angle. The potentials g; and gy are assumed to be
identical to F3 =0, F; =0.

3.1 Solutions for specific zones

At the initial stage, the elastic zone occurs within the whole cylinder. The stress
and strain distribution are governed by Lame equations, so that

_l+4wv pr? B
B="F bz—rg[““z"}’"*?]

2 v 2 2
Pel’ b Pl b
g (o) wd ()

where v, = a,p, = p. The critical pressure initiating cracking now is

b —a?

Pe= Sam (31)

The second phase. r. > a,r; = a corresponds to existence of two zones: elastic
and cracked. In the elastic zone, the Lame solution applies with internal zone
radius speciflying the interface between cracked and elastic zones. The pressure
acting on the interface is obtaimed from the solution for two zones and the crack
propagation condition must be satisfied at r = r,.

In the cracked zone we have

(32)

where the integration constants A; and A; follow from the radial stress and
displacement continuity at r = r.: [o.{r.)] = [.{r.)] = 0. Using the condition
a.(r;) = p and the cracking condition (26) at r = r., the relation between the
radius 7, of cracked zone and the pressure p, at r =r,. is

n b —r?
P==-"’f;”'r‘—'nm (33)
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Since at the onset of crack propagation there is r. = a,p, = p., hence in view of
(31) and (33), there is

Su=Kn/= (34)

The internal pressure within the tube is now explicitly related to the size of
cracked zone, namely

3 2
Te bf — 72 (35)

a b+

p=25

The relation p(r.) exhibits limit point at the crifical crack length
Tee = B{v/17 = 4)'/? for which p, = 0.46253“/5-;‘7:;. The loading process is unstable
for . > .-

As in the cracked zone there is a uniaxial stress state, o, # 0, o, = 0, the
crushing starts when the pressure p exceeds the compressive strength 5.. Thus, for
p > 5., the crushed zone propagates from the internal cylinder boundary. The
equilibrium equations (21) and the yield condition (27) provide the static field

& = Agrl o = oy Ayr® ! (36)
where Aj is the integration constant and

P =sing (37)

aj =
I 1 +siny

Substituting {36} into the Hookes law, the elastic strains are calculated, namely

£ 5 t"(! = v = poy ) Agr® !
E
1+w (e
&= [(1 = v)ey = u])Agr™~!
E
Next, using the flow rule (28) and integrating plastic strain rates, we have
el = —A(l —siny) el = M1 +sing) A0 (39)
so that
1 —siny
B PN g 40
& B M= ¥y (40)

and the plastic strain distribution is obtained from the compatibility condition

fr+il = c% [rlef + £8)] (41)
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Finally, we obtain

2 2
p_ 1= 1-ag
& =

Aafa=_1 + A_'r"{a:!'i'”

E o+ a
(42)
_l+w 14+ o 40y = Sdk
w= = 0-n2aT ~u]A3r,+A4f

where the integration constants are determined from the continuity conditions for
tractions and displacements on the interface between crushed and cracked zones

[or(rs)] = [ur(rg)] = 0 (43)

and a.(r., ] = p.,. For the critical value of r; the pressure reaches its maximum
and the unstable phase begins. However, for an infinite value of b, that is for the
case of hole in an infinite body, the deformation process is stable and continuing
progression of crushed and cracked zones occurs. The pressure acting at r = ry
now is

fr. b — rE

The detziled analysis of unloading zones for & cylinder was presented by
Kowalezyk and Mrdz (1988). To illustrate the solution we present the zone
evolution for

St _ 6.001 %=um12 r=03 p=p=20° (45)

Figure 3 presents the diagram of pressure dependence on the size of the cracked
zone and Fig. 4 provides the pressure displacement diagrams. In the next example,
the solution for bfa = oo will be applied to study punch penetration.

4 Punch penetration into a brittle material

The axisymmetric solution of the preceding section will now be used to construct a
simplified solution of punch indentation in plane strain and plane stress cases,
When a rigid punch is penetrated into an elastic semiplane, the stress
concentration zones at punch edges induce localized cracking and crushing beneath
the punch, cf. experimental data in papers by Pang et al (1989), (1990), Swain
and Lawn (1976), Tokar (1990), Wagner and Schumann (1971), Wijk (1989),
Lindqvist and Lai {1983). It is assumed that a crushed zone of radius ry is formed
with the hydrostatic stress state. This zone acts as a pressure loading on the
remaining material thus inducing cracking and subsequent shearing or buckling of
the cracked material blocks. It is assumed that the cracked zone is bounded by a
circle of radius r. and radial lines 7 = £ay, Fig.3. The cracks are assumed to
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Figure §: Simplified punch indentation model: 1) punch 2) crushed zone 3) cracked
zone

propagate along radial directions, so the axisymmetric solution can be assumed to
predict the radius r. of the cracked zone. For simplicity, we neglect the progressive
crushing and growth of the initial crushed zone of radius r;. The subsequent
failure mode within the plane develops in a form of localized shearing along
velocity discontinuity lines, inducing motion of material toward the free surface.
For an elastic-plastic material the stage of development of localized shear bands
should be considered. However, we assume that the failure mechanism develops
instantaneously similarly as in rigid-plastic materials. On the other hand. in-plane
stress stale, the cracked beams are assumed to buckle in the out-of-plane mode
and subsequently they deform in a post-buckling stage until total failure of beams
occurs due to bending fracture of end cross-sections.

The post-critical stage is analysed by assuming the beams to be rigid with end
cross-sections connected to the foundation by nonlinear springs of specified
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characteristics. These simplified assumptions are introduced in order to generate
the analytical solution before more accurate incremental analysis will be provided.

4.1 Progression of cracking zone

Assuming the crushed zone to be fixed and specified by the radius rp = a, the
axisymmetric solution will be applied setting b — co. The cracking condition now
is assumed in the form
" ~
alr.) = 5 (r‘l) “St(i) (46)
].E rf

where & is a positive exponent. For & = 0 we oblain the strength condition and for
K % the energy condition. By selecting proper value of &, one can account for the
fact that now cracking develops within an annular segment of unspecified angle o
and of number of cracks, The constants A, and Ay occurring in (32) are now
obtained from displacement and radial stress continuity conditions, so that

Ay = =85, (‘_j)“
e

A, '-E,i?.m-, (’"—’) [+ (1 = v}In(r))

Te

(47)

1

The pressure p, is calculated from (46). Since py = —o,{r;} the pressure in the
crushed zone heneatl the punch is

ol r n-l

rr=5(2) (48)
Fe

For 0 < k < 1, the growth of the fracture zone requires monotonic growth of punch

pressure. Hence for some value r = r.., a new failure mode is to develop within the

fractured zone,

4.2 Shear failure (plane strain case)

The second failure mode is assumed in a form of limit failure mechanism developed
both in eracked zone and undamaged zones, typical for limit analysis, Fig.d. The
shear planes AgA;, AoAz, Ay Ay and AyAy constitute Kinematically admissible
failure mechanism. However AgAy, AoA;z, A1 A2 are passed through the cracked
zone of reduced cohesion. On the other hand, A;4, passes through the undamaged
material so the initial cohesion and angle of friction should be used in calculating
the dissipation rate. The balance of rate work and internal dissipation now is, cf.
Mroz and Drescher (1968)

2DpVo = 2CL Vs cosp (49)



Compressive and failure modes in brittle materials 277

Figure : Kinematically admissible failure mechanism [third cycle in plane strain
case}

where £ is the punch hall-widih, I; denotes the length of the discontinuity line
As A, Vp is the punch velocity &nd V5 is the velocity of block Ay A A2 In writing
{49) we neglect the residual cohesion on 434, A3 A, and ApA, assuming it to be
much smaller then (. Using hodograph and geometric relations, we obtain

- By
P*‘Cﬂ(D'i*

cos(ag = @)cos(ay — oy — ay + 2p)cos¢
sinfag — 2p)sin(ap — 2¢) cos(ay — ay)

51 Oy COS O )

cos ag cos{ag — a; — ay) (50)

where the angles aq, ¢, a; and the displacement uy = u(ry) are shown in Fig.4.
The critical pressure is obtained by determining the minimum of p{ag, oy, oz) with
respect to failure mode angles ag, oy, .

4.3 Buckling failure (plane stress case)

In the case of plate thickness i small with respect to punch width 2D, the plane
stress condition prevails and the cracked material can be regarded as a set of
tapered beams supported at r = r.. The out-of-plane buckling mode of beams is
therefore considered. The post-buckling response induces localized cracking and
softening at r = r_, which involve decreasing load acting on the beam.

Denoting k = r¢/r., and introducing the plane stress elastic constants
v, = /(1 +v), E, = E(1 +2v)/{1 + v)*, we obtain the punch displacement and
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pressure in the form

= " V’rluw} In(k)] w=—§% (51)

Denote by b, and by the widths of cracked beams at r = r, and r = ry, by
F = prhby the force acting on beam of length | = r, — ry. Depending on geometric
parameters the buckling mode can occur within the plane or out-of-plane. The

corresponding critical taper ratios are denoted by k, and k.. The following
relations specify &, and k. at buckling

be(ky)

Tor iy RO Eal® = py (R by =

(52)

t(kf—] L - : _
48!2{k,)ﬁ’“‘)£"h ps(k:)hby =0

where #, and 8. denote the buckling coefficients provided by Zyczkowski (1956) in
the tabular form. It follows from (51) that the critical taper ratio k. and buckling
mode are determined by the condition k., = max{k,, k.). The values of b, and by are

=l

b =

2 .
o by = —ayry (53)

where n denotes the number of cracks and oy = arccos{D/r¢) is the opening angle
of the cracked zone,

The post-buckling analysis is carried out by assuming the buckled bar as rigid
with the inelastic hinge support at r = r.. The bending moment M, at the hinge
depends on the rotation angle ¥ according to the relations

Ce if <
M) = { Codo—Cip =gy if do< D <y (54)
0 if 0, <1

where ¥ and ¥, denote critical values of ¥ indicating the onset and termination of
the hinge failure process. Here (' denotes the hinge stiffness in the elastic stage

and ) is the postcritical softening modulus. The value of Cy is obtained from the
value of the critical buckling load, Cy = F(k.J(k.). The value of ¥y is obtained by

assessing the rupture stress of material fibers in tension, so that

g F ke (ke) o

e

(55)
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where compressive stress was neglected. The value of ¥, evaluated for ice is of the
order 107°, Higher values can be obtained by accounting for the compressive
stress, thus

Flk)

S;=—W

dolhetgdy + 6I(k. )| (56)

The value of #; corresponds to M,(d,) = 0. The punch displacement and stress
vary in the posteritical stage according to the relations

s
g E,::'{E[“ +1) = In{k,)] +L(k )1 - cosd)

M)
PI= Wk hb sin 0

(57)

When @ = j, the consecutive loading cycle commences and the periodic sequence

of eracking, buckling, post-buckling modes develops.

4.4 Discussion of theoretical solutions

For numerical analysis, the following parameters were assumed

8§ =0TMPa S.=5MPa E=10GPa
(58)
v=03 @ =190

typical for ice, cf. Sunder and Connor (1984). The problem parameters are

D, h, n, ay and C,. The experimental data indicate that for brittle matcrials the
critical stress for punch indentation is of the order of p. /5, = 4-10, <f. Wijk
(1989), and the cracked zone radius reaches the values r. /D = 2-8. cf. Pang et al
{1990). For the plane strain case, the cracked zone and punch pressure evolution
are shown in Fig. 7-5 as functions of punch displacements u; /D for different
values of the angle ay of cracked zone {assumed s = 0). It is seen that the
predicted values are within the range of experimental observation. For specified
values of oy, the growth of cracked zone and maximal pressure is due to growth of
the length of shear band in the final failure mode. Figures 9-10 show the
respective curves for the plane stress case. The experiments carried for jce plates
indicate that the maximal stress is reached at small punch displacements with
subsequent drastic reduction of pressure for progressive punch penetration, cf.
Michel and Toussaint (1977). The same character of load-displacement diagram
was predicted by the present model. The effect of crack number on variation of
buckling mode from in-plane to out-of-plane is illustrated in Fig. 11. Here the plot
of lines k; = k. are shown with in-plane buckling (W) occurring below the curve
and out-of-plane buckling occurring above the curve (Z). The effect of buckling
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Figure 7: Relation between cracked zone radius and punch penetration depth (plane
strain case)
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Figure 9: Influence of hinge softening stiffiess on relation between punch pressure
and punch penetration depth (plane stress case)
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Figure 11: Effect of erack number on variation of buckling mede

mode leads to a new idea of damage mechanism in brittle materials. The buckling
of cracked material was also considered by Bazant et al (1993).

5 Concluding Remarks

The present analysis provides the insight into the progression of failure modes in
brittle materials. These are termed as cracking, crushing, buckling, post-buckling
and shearing modes. The analysis of consecutive modes and of their interaction
provides the resulting force-displacement diagram, usually of oscillating character,
indicating periodicity of mode evolution. The qualitative assessment provides
results confirmed by experimental data and observation. A more refined analysis is
needed predicting number of cracks and their evolution. However such analysis
would be much more complex.
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