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17 COMPRESSIVE AND SHEAR FAILURE 
MODES IN BRITTLE MATERIALS 

Z. MR6Z and M KOWALCZYK 
Institute of Fundamental Technological Research, Warsaw, 
Poland 

Abstract 
In brittle materials fai lure modes develop consecutively producing very frequently 
periodic sequence of fai lure events. Under compression, the cracking mode develops 
first, tbus producing a set of oriented cracks inducing stress redistribution and 
anisotropic response. The crushing aJld post· buckling modes are associated with 
subsequent failure of cracked portions due to localized shearing or loss of stability. 

The progression of p&rticular modes is discussed by assuming existence of 
discontinuity interfll.eea betwetln modes with proper !)volution ru les. All 
incremental problem associated with moving interface is formulated . The evolution 
rate of the interface follows from the energy condition of propagation of a set of 
cracks (cracking interface). 

Several examples are treated in detail. Cracking and crushing around a circular 
hole is considered first. Next, this analysis is applied to study a rigid puncb 
indentation into a plate. The oscillatory character of force variation is exhibited 
theoretically and confron ted with experimental observations. 
Keywords: Cracking, Crushing, Buckling, Indentat ion, Limit Load, Post-critical 
State. 

1 Introduction 

The present paper is devoted to the analysis of progressive failure modes in brittle 
materials, such as rock, ice, concrete, or ceramics. The constitutive models for 
such materials are usually concerned with description of deformation response in 
stable regime before the onset of localization and loss of stability after reaching tbe 
maximal stress, d. Jaeger and Cook (1976), Derski et al (1989). The posl·crit-ical 
stress-strain response was measured in some compression tests with the control set 
on circumferential strain. However, there is no general methodology developed so 
far in treatment of boundary-value problems associated with both stable and 
post-critica.l regimes. In many technical problems such as rock crusbing, cutting of 

Froctun of Brittle Di$1.H'd.er<'d Mottrials: Com:rtt~. Rod. and CtromlcJ. Edited by 0 . Baker and B.L Ka.rihaloo. 
l'ullli.sbed in 1995 byTaylo< &l'rancis. 2 Potk Squ3l<. Millon Potl<.Abitlgdoa. ()ron. OXI4 4RN.ISBN: 0 419 190503. 
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drilling, ice-plate interaction with off-shore platforms, etc., all progressive modes 
should be accounted for in order to predict realistically the interaction pressures 
and the sequence of failure modes. The present paper is devoted to these problems 
and the necessary simplifying assumptions are introduced in order to provide 
analytical solutions. In particular, we shall distinguish such modes as cracking, 
crushing, shearing, and buckling. These modes are assumed to propagate within 
the loaded mMerial with proper interaction along interfaces. It will be shown that 
the evolution of progressive failure modes induces periodicity of failure events witb 
the associated oscillatory chara<:ter of a load-displacement curve. 

In Section 2, the material model assumptions are presented and the evolution 
problem of distinct damage zones will be formulated in an incremental form. In 
Section 3, the analysis of progression of cracked and crushed zones in the 
axisymmetric. case is discussed. In Section 3, the punch penetration problem is 
analysed in the case of plane strain and plane stress, with the respective 
load-displacement curve exhibiting oscillatory character a.~sociated with initiation 
and termination of consecutive failurP events. The reference to experimental 
observation will be provided. 

2 Material Model and Problem Formulation 

Consider a problem illustrated in Fig. I. The plane st ructure 8 of a brittle 
material is rigidly supported on the boundary S. and loaded by a compressive 
traction T" on the boundary portion Sr. It is assumed that compressive loading 
induces progressive cracking of the materiaL The cracks are assumed to follow the 
trajectories of the major compressive stresses (or be perpendicular to the major 
tensile strain trajectories), Fig. 1. For increasing load, the cracked domain 
increases with its interface SJ moving into the undamaged domain. It is assumed 
that the stiffness moduli at the interface vary discontinuously. In fact, the cracked 
domain is characterized by an orthotropic stiffness matrix with vanishing stiffness 
in the direction normal to tbe crack trajectories. For fu rther increase of load, the 
primary crack pattern is changed by generation of cracks inducing consecutive 
fragmentation through shearing of strips between primary cracks. Alternatively, 
buckling of strips may occur within the structure plane or in the transverse 
direction. This second mode of fai lure will be called the crushing mode and the 
interface 5', separates the crushing and cracking domains, Pig. lb. The ultimate 
failure will correspond to flow of crushed material to the free surface within the 
plane OJ' to lateral post-buckling with localised bending for a thin plate. 

The present assumptions constitute a simplified model of cracking and crushing 
zone propagation as in actuality there i.s a gradual t ransition from one to the other 
mode. Instead of considering propagation condition for each crack, we assume the 
moving interface to repr~.sent ani cracks growth. The proper energy condition can 
then be formulated , similar to the Griffith ('()ndition for a single crack. 
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a} b) 

Figure 1: a) Propagation of cracked zone b) Propagation of crushed and cracked 
zones 

Denote by u, t:, and tT the displacement , strain and stress states. The states 
within the intact domain be delliOted by subscript 2 and within the damage zone 
by subscript l. On the interface $ 1 , the tractions and displacements are 
continuous , thus, 

(u] = 0 onS, (I) 

where {u] = l"l- u1 denotes the diswntinuity of u and similar notation applies to 
other fields. However, the displacement gradients, strain and stress fields are 
discontinuous , so that 

onS1 (2) 

where a denotes the discontinuity vector and n is the unit normal on 5 1 directed 
into the undamaged domain. Assume the damaged and undamaged materials to 
satisfy the linear relations 

(3) 

where C, and C 2 are the elasticity matrices and <!\ , E~ are the inelastic or initial 
strains. In view of (I) and (2), the following equation is obtained to specify t.he 
discontinuity vector a 

(4) 
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where 

A2 = nqn (5) 

Here A2 denotes tbe acoustic tensor and b is the interface "force vector" . 
The propagation of int.erface will now be considered as an evolution process 

specified by the transformation velocity <P(x, t). Wbeo the interface 5 1 moves, the 
first equation ( 1) provides 

[. I [&•] . [a"•] . u; = at + u;.;<p1 = 7ft + a;r,o. = 0 (6) 

so that 

[~ I [a";] . u; = at = - a;<p. (7) 

where .Pn = <j>;n, denotes the normal propagation velocity component, u; denotes 
the total time derivative and ou;/ot is the local derivative. The second equation 
( 1) now provides tbe traction oontinuity ~-onditioJJ 

(8) 

As the time derivative of the unit vector n is 

(9) 

we obtain the local stress rate discontinuity condition 

( 10) 

F:quations (7) and (10) provide the boundary conditions for tbe rate problem 
associated with propagation of interface. Denoting by b-., t,, it, , and by b-2, ~2 , it,, 
the local rates of state fields in two body portions, we can write the equilibrium 
and boundary conditions for those rates, namely 

u11 );1.; = o 
Utl)iini = 0 on Sr 

i;-, =C,t, 
fit•F = 0 on S. 

(11) 

and similar equations within the undamaged domain. The interface discontinuity 
conditions (7) and (10) then provide supplementary equations generating 
non-vanishing solutions. Let us note that we have now a non-typical boundary 
value problem when discont-inuities in both displacement and traction rates are 
specified on the interfaceS •. 
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The stability conditions associated witb moving damage interface were 
discussed in detail by Dems and Mroz (1985) where t.he limit state criteria were 
derived. The relevant stability criteria for a system of cracks in a brittle solids 
were derived by Baiarlt and Ohtsubo (1977). 

Tbe generalized forces associated with interface propagation can be derived by 
considering the variation of potential or complementary energies of the body. The 
potential energy 

n(u , S,) = j U(o:)dV - f Ti · w.JS1· ( 12} 

is now a function of both displacement field and interface position. The variation 
of n equals 

where U( o:} is the specific strain energy. However, in view of the virtual work 
principle and (6), there is 

and (14) can be expressed as follows 

where 

H = [U)- T· a 

is the generalized force associated with the interface propagation. 

(13} 

(14) 

( 15} 

(16) 

An alternative expression foT the force H can be obtained by decomposing 
•tress and strain at the interface into "exterior" and "interior" or hidden portions 
t:l', u" and .:•, .:". In a local orthogonal system n,o,{J, the external stress t:l' 
corH:sponds to the interface traction and is represented by the components "••• 
"""" u,.p. Similarly, the external strain.:" is represented by the components e .. , 

<no, <no· Since at the interface there is [t:~J = 0 and (~thJ = 0, we have 

and the generalized force is 

1/ = [U} - T · a = ~ (t:l -js•] + [u"]· eh- t:l'. [.:>]) = 

~ ([u"]· .:h _ t:l'. [~toj) 

( 17) 

( 18) 
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0 c ~ .0 
N N N N 

Figure 2: Axisymmetric cylinder with different stress stage zones: 1) crushed 2) 
cracked 3) elastic 

This expression will be used in analysiug t he damage interface propagation. 

3 Axisymmetric Cracking and Crushing Modes 

Let us fi rst consider an axisymmetric problem of a cyli nder acted on by internal 
pressure and in the limit case of a hole in an infinite continuum. For the plane 
strain case, the material is assumed to be in elastic, cracking or crushing state 
developed in the course of progressive deformation. Figure 2 presents the respective 
states within the cylinder. The detailed analysis was presented by Kowalczyk and 
Mroz (1988) fo llowing previous studies by Ladanyi (1967) and HcUan (1984). 

Assume the macrocracks to develop along radial directions and the cracked 
material to be regarded as an orthotropic material of vanishing stiffness moduli in 
ci rcumferential direction. The total strain components£, and ~, in radial and 
circumferential directions are decomposed in the cracked zone as follows 

(19) 

wbere e~,e~ are the elastic strains and e!,e{ are the fracture strains. In t.he crushed 
~one, the material is assumed to behave like an isotropic granular medium in tbe 
limit e<Juilibrium state specified be t he Coulomb yield condition. We have therefore 

e,. = e~ + e~ (20) 

where e~, ef are the plastic strains. 
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The equi li brium equa~ions are 

{}a, a, - a, 0 -+--= 
8r r 

and ~he strain displacement relations take the form 

11 
c, =-

r 

In the elastic ~<me, the Hookcs law for an isotropic ma~crial applies, thus 

l +v 
c~ = --g- {(I - v)a, - va1) • I + v (( I c1 = E I - v)a1 - vu, 

In the cracked zone !.here is 

c! = 0 a, = 0 

(21) 

(:!2) 

(23) 

(24) 

Assume t he cracked zone to contain many cracks propagating from the internal 
b<mntfar)' r = a to th1: itrtertat:e l:mun<'111ry r = r·.. Usint; tht Otiffltl1 cnndli itm l1f 
crack propagt~!lon, tloe pofent.ial ~nergy releas~ r.alcnlated at the progressing 
interfate r = r, is !I.'!Surtlecl to he equal to (rt,cture toughness of n ~tlltks, ~'Q that 

(25) 

or using ( 18), we have 

(26} 

The crushed zon~ follows the cracked zone for increasing internal prcs$urc and 
the material is assumc<d to satisfy the Coulomb yield condition 

F, = u, - u , + (u, +u,)sin o,o- 2Ccos<,O"' 0 

F1 = u, - a, + (a, + u,) sin o,o- 2C cos <,0 = 0 

r":s = t7 r - s, = 0 
F3 =a, - S, = 0 

(27) 

where the initial cohesion equals Co and in passing Loa crushcJ state it drops to 
the residual value(;, "' 0. Similarly, the in itial tensi le strength S, drops to zero 
when cracks develop . The fri ction angle <pis assumed constant during the process. 
Here F1 = 0, F1 = 0 represent t he shear mode and F3 = 0, F. = 0 correspond to 
the tensi le mode of flow. The flow rule specifics the plastic strain rates, namely 

.• ; i)g, e'- ,_ ' - 8a, 
.• ; fJg; 
t, = ,.., -

fJa, 
(28) 
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where A and 9;( i "" I, 2, 3, 4) specify the plastic potentials 

9t == <1, - <7, + (<7c + <7,)sin.P - 2C9 cos.P =: 0 
92 = <7,- <fc + (u, + <7,)sin,P- 2C.cost/J = 0 

where .P is t.he dilatancy angle. The potentials 93 and 94 are assumed to be 
identical to F3 = 0, F4 = 0. 

3.1 Solutions for specific zones 

(29) 

At the initial stage, the elastic zone occurs within the whole cylinder. Tbe stress 
and strain distribution arc gove·rned by Lame equations, so that 

u = ----'-'- (I - 2v)r +-I + v p r
2 

[ b
2

] 

E b2 - r~ r· 

"• = -•-•- I - - u1 = - '- ·- I + -pr
2 

( b') pr2 ( b,) 
b2 - rl r2 b' - r; r2 

where r·, = a, p, =: p. The critical pressure ini tiating cracking now is 

b2
- a2 

p,. = S, b2 + a2 

(30) 

(31) 

The secood phase, r, >a, r1 =a corresponds to existence of two zones: elastic 
and cracked. In the elastic zone, the Lame solution applies with internal zone 
radius specifying the interface between cr~ked and elastic zones. The pressure 
acting on the interface is obtained from the solution for two zones and the cr~k 
propagation condition must be satisfied at r = r,. 

In the cracked zone we have 

A, 
cr,. =-

r "• = 0 

where the integration constants A1 and A2 follow from the radial stress and 
displacement continuity at. r = r,: [u,(t, )] = [u,(r,)] =: 0. Using the condition 
<1,(r1) == p and the cracking condition (26) at r = r., the relation between the 
radius r, of cracked zouc and the pressure p, at. r = r, is 

(32) 

(33) 
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Since at the onset of crack propagation there is r, = a, p, = p., hence in view of 
(31) and (33), there is 

s. = !{, {IF v-:;;;, (34) 

The internal pressure withi n the tube is now explicitly related to the size of 
cracked zone, namely 

_ S Ar,b1 -r: 
p - , b1+1 a r, 

(35) 

The relation p(r,) exhibits limit point at the critical crack length 
r,, = b( v'l1- 4)112 for which p., = 0.4625$1~. The loading process is unstable 
for rc > re~· 

As in the cracked zone there is a uniaxial stress state, q, f: 0, cr1 = 0, the 
crushing starts when the presSUire p exceeds the compressive strength S •. Thus, for 
p > S,, the crushed zone propagates from the internal cylinder boundary. The 
equilibrium equations (21) and the yield condition (27) provide the static field 

(36) 

where A3 is the integration constant and 

I - sin <p 
o• = I +sin<;> 

(37) 

Substituting (36) into the Hookcs law, the elastic strains are calculated, namely 

< l+v(l ) ' o o-l e., = --g- - v - va1 ·"3r 

~: = 1 ; v 1(1 - v)a1 - v])A3r"•-• 
(38) 

Next, using the flow rule {28) a.nd integrating plastic strain rates, we have 

E~ = -A(I - sin .P) ef= A(l +sint/J) (39) 

so that 

I- sin l,& o, = 
I +sin 1,& 

(40) 

and the plastic strain distribution is obtained from the compatibility condition 

(41) 
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Finally, we obtain 

(42) 

where the integration constants arc determined from the continuity conditions for 
tractions and displacements on the interface be~ween crushed and cra<:ked zones 

(13) 

and u, ( , . ., ) =< Pc
1

• For the critical value of r 1 the pressure reaches its maximum 
and the unstable phase begins. However, for an infinite value of b, that is for the 
case of hole in an infinite body, the deformat ion process is stable and cont.inuing 
progression of crushed and cracked zones occurs. The pressure acti ng at r = r 1 
now IS 

T he detailed analysi~ of unloading zones for a cyli nder was presentR.d by 
Kowalczyk and Mroz (1988). To illustrate the solution we present the zone 
evolution for 

~ = 0.001 ~ = O.OOL2 1/ = 0.3 

(44) 

(45} 

Figure 3 presents the diagram of pressure dependence on the size of the cracked 
zone and Fig. 4 provides the pressure displacement diagrams. In the next example, 
the solu tion for bfa = oo will be applied to study punch penetration. 

4 Punch penetration into a brittle materia l 

The axisymmetric solution of the preceding section will now be used to construct a 
simplified solution of punch indentation in plane strain and plane stress CaSeS. 
When a rigid punch is penetrated into an elastic semiplane, the stress 
concentration zones at. punch edges induce localized cracking and crushing beneath 
the punch, cf. experimental data in papers by Pang et al (1989), {1990), Swain 
and Lawn ( 1976), Tokar (1990), Wagner and Schumann (197 1), Wijk (1989) , 
Lindqvist and Lai (1983). It is assumed that. a crushed zone of radius r1 is formed 
with the hydrostatic stress state. This zone acts as a pressure load ing on the 
remaining material thus inducing cracking and subsequent shearing or buckling of 
the cracked material blocks. It is assumed that the cracked zone is bounded by a 
circle of radius r, and radial li nes T = ±a'f, Fig.3. The r.racks are a.~sumed to 
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Figure 3: Pressure dependence on the size of cracked zone 

1.2 

0.8 

0.4 

0.0;..-8 =--0-j.o~'--------l 
-0.015 0.0 0.015 0.03 

u(b)/o 

Figure 4: Pressure dependence on the internal surface displacement 
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Figure 5: Simplified punch indentation model : I) punch 2) crushed zone :J) cracked 
zone 

propagate along radial directions, so the axisymmetric solution can be assumed to 
predict the radius r, of the cracked zone. For simplicity, we neglect the progressive 
crushing and growth of the initja) crushed zone of radi us r1. The subsequent 
fai lure mode within the plane develops in a form of localized shearing along 
velocity discontinuity lines, inducing motion of material toward the free surface. 
F'or an elastic-plastic material t .he stage of development of localized shear bands 
should be considered. However, we assume that the failure mechanism develops 
instantaneously similarly as in rigid-plastic materials . On the other band. in-plane 
stress state, the cracked beams are assumed to buckle in the out-of-plane mode 
and subsequently they deform in a post-buckling stage until total fai lure of beams 
occurs due to bending fracture of end cross-sections. 
The post-critical stage is analysed by assuming the beams to be rigid with end 
cross-sections connected to the foundation by nonlinear springs of specified 
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characteristics. These simplified assumptions are introduced in order to generate 
the analytical solution before more accurate incremental analysis will be provided. 

4 .1 Progression of cracking zone 

A~~uming the crushed zone to be fixed and spccifie<l by the radius ,., = a, the 
axisymmetric solution will be applied setting b- oo. The cracking condition now 
is assumed in the form 

a 1(r,) = S, CJ = S, (~)' (46) 

where " is a positive ~xponent. f-or " = 0 we obtaiu the strength conditiou and for 
" = ~ the energy condition. Hy scl~~ctiug prop~r value of K, one cnn account for the 
fact that now cr11cking devflops within an nnnulnr segment of unspecified angle o 1 
and uf number of cracks. The constants A, and A2 occurring in (32) are now 
obtained from displacement and radial str~ss continui ty conditions, so that 

(,., )" A1 = -S,r, ;:; 

I +". (r')" A 2 = lf'"S,•·, ;:; p + ( I - v) ln(r,)) 
(47) 

The pre~sur<" p, is calculated from (46). Since p1 = - a,(•·1) the pressure in the 
crush!'d zunc beneath the punch is 

PI =Sr c~r ' (48) 

For 0 < K < I, the growth of the> fro.r.ture zone r<!quire; munotonic gruwtlo of punch 
pressure. Hence for some valr.re r ==, .• ., a new failun: mode is to develop within the 
fractured <:une. 

4.2 Shear failure (plane strain case) 

The second failure mode is assun1ed in a form of limit fai lure mechanism developed 
both in cracked zone and undamaged zones, typical for limit analysis, Fig.4. The 
shear planes AoA1• AoA,, 111 A, and /\,!13 constitute kinematically admissible 
failure mechanism. However A0 A1, A0 A2 , A1A2 are passed through the cracked 
zone of reduced cohesion. On tne other hand, !12 .43 passes through the undamaged 
material so the initial cohesion and angle of friction should be used in calculating 
the dissipation rate. The balance of rate work and internal dissipation now is, cf. 
Mroz and Urcscher (1968) 

(49) 
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A2 

Figure 6: Kinematically admissible failure mechanism (third cycle in plane strain 
case) 

where D is the punch half.widlh, l2 denotes lhe length of the discontinuity line 
A:A3 • Vo is the punch ''elocity and V2 is the velocity of block A1A:A3. In •.-riling 
(49) we neglect the residual cohesion on AoA2 A2 A1 and A0 A1 assuming it to be 
much smaller then C0 . Using hodograph and geometric relations, we obtain 

C (
ul sino1 cOSCif ) 

p "' 0 - + ---~--'---;-
D coso0 cos(a0 -o, - o/) 

cos(a0 - <;) cos(o-0 - a-1 - "I+ 2<,?)cos<;> 
sin(a1 -2<p)sin(a2 - 21")cos(a2 -a1) 

(50) 

where the angles a 0 , a, cr2 and the displacement u 1 = u( r 1) are shown in Fig.4. 
T he critical pressure is obtained by determining the minimum of p(cr0,a,o,) with 
respect to failure mode angles a 0 ,cr,o2 • 

4 .3 Buckling failure (plane stress case) 

In the case of plate thickness h small with respect to punch width 2D, tbe plane 
stress condition prevai ls and the cracked material can be regarded as a set of 
tapered beams supported at r = r, . The out·of·plane buckling mode of beams is 
therefore considered. The post-buckling responsE' induces localized cracking and 
softening at r· = r., which involve decreasing load acting on the beam. 

Denoting k = r,/r., and int roducing the plane stress clastic constants 
v" = v/(l + v), E.= E( I + 2v)/(I + vj1 , we obtain the punch displacement and 
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pressure in th<> form 

Sr 
u1 :: 

1 ~[( I + v) - ln(k)} 
E,.vk 

S, 
PJ=-..jk 

Denote by b, and b1 the widths of cracked beams at r = r, and r = r1, by 

(51) 

F = p1hb1 the force acting on beam of length l = r,- r·1. Depending on geometric 
parameters the buckling mode can occur within the plane or out-of-plaue. The 
corresponding critical taper ratios are denoted by k, and k, . The following 
relations specify k , and k, at buckling 

b,(k,) 3 
_
18

l2(k,)O,(k,)E .. h - P!(k, )hb, = 0 

b,(k,) 3 

4St2(k,{(/<,)E .. h - PJ(k,)hb, = 0 

(52) 

where 0, and e, denote the buckling coefficients provided by iyczkowski {1956) in 
the tabular form. It follows from (51) that the critical taper ratio k, and buckling 
mode are determined by the condition kc = max(k,,k,) . The values of b, and b1 are 

b.= b, 
k 

2 
bj = - -CtjTJ 

n - l 
(53) 

where rt denotes the number of cracks and O:J = arccos(Dfrt) is the opening angle 
of the cracked zone. 

The post· buckling analysis is carried out by assuming the buckled bar as rigid 
with the inelast ic hinge support at r = r, . The bending moment M9 at the hinge 
depends on the rotation angle ~ according to the relations 

if 11$t?o 

if 110 <{)${)1 

if.?,<t9 

(54) 

where -{)0 and t1 1 denote critical values of {) indicating the onset and termination of 
the hinge failure process. Here Co denotes the hinge st iffness io the elastic stage 
and C1 is the postcri t ical softening modulus. The value of Co is obtained from the 
value of the critical buckling load, Co = F(ke)l(ke)· The value of {)0 is obtained by 
assessing the rupture stress of material fibers in tension, so that 

(55) 
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where compressive stress was neglected. The value of {}0 evaluated for ice is of the 
order 10-s. Higher values can be obtained by acmunting for the compressive 
stress, thus 

(56) 

The value of .?, corresponds to M9 ( {J,) = 0. The punch displacement and stress 
vary in the postcritical stage according to the relations 

S1r1 u,= 17[(1+v)-ln(k.)]+l(k, ){l - cos{}) 
Envk 

M9 (0) (57) 

When{)= ~,., tbe consecutive loading cycle commences and the periodic sequence 
of cracking, buckling, post· buckling modes develops. 

4.4 Discussion of theoretical solutions 

for numerical analysis, the following parameters were assumed 

S, = 0.7M Pa S, = 5M Pa E = IOCPa 

1.1 = 0.3 cp= 20° 
(58) 

ty pical for ice, cf. Sunder and Connor ( 1984). The problem parameters are 
0, h, n, o 1 and C,. The expeTimental data indicate that for brittle materials the 
critical stress for punch indentation is of the ord(:r of p, jS, = 4- 10, cf. \Vijk 
(1989) , and the cracked zone radius reaches the values r./ 0 = 2-8, cf. Pang et al 
{1990). For the plane strain case, the cracked zone and punch pressure evolution 
are shown in F'ig. 7- 8 as functions of punch displacements u1jO for different 
values of the angle O'J of cracked zone (assumed "= 0). It is seen that the 
predicted values are within the range of experimental observation. F'or specified 
values of o-1, the growth of cracked zone and rna.ximal pressure is due to growth of 
the length of shear band in tbe final failure rnode. Figures 9-10 show Lbe 
respective curves for the plane stress case. The experiments carried for ice plates 
indicate that the maximal stres.s is reached at small punch displacements with 
subsequent drastic reduction of pressure for progressive punch penetration, cf. 
Michel and Toussaint ( 1977). The same character of load·displacement diagram 
was predicted by the present model. The effect of crack number on variation of 
buckling mode from in·plane to out-of-plane is illustr;,ted in Fig. I I. Here the plot 
of lines k, = k, are shown with in·plane buckling (W) occurring below the curve 
and out·Of·plane buckling occurring above the curve (Z). The effect of buckling 
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Figul"'' 7: Relation betwet-n cracked zone radius and punch penetration depth (plane 
straiu case) 
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Figure 8: Relation between punch pressur~ and punch penetration depth (plane 
strain case) 
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Figure 9: Influence or hinge sonening Ntiffne..s on relation bel ween punch pressure 
and punch penetration depth (plane stress case) 
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Figure 10: Relation between punch pressure and punch penetration depth (plane 
stress case) 
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Figure II: Effect of crack number on variation of buckling mode 

mode leads to a new idea of damage mechanism in brittle materials. The buckling 
of cracked material was also considered by Ba'l.ant et al (1993) . 

5 Concluding Remarks 

The present analysis provides the insight into t.h., progression of fai lure modes in 
brittle materials. T hese are termed as cracking, crushing, buckling, post-buckling 
and shearing modes. The analysis of consecutive modes and of their interaction 
provides the resultiug force-displacemen~ diagram, usually of oscillating character, 
indicating periodicity of mode evolution. The qualitative assessment provides 
results confirmed by experimental data and observation. A more refined analysis is 
needed predicting number of cracks and their evolution. However such analysis 
would be much more complex. 
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