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Modelling of progressive damage evolution in rocks

Zenon Mr6z & Maciej Kowalczyk

Institute of Fundamental Technological Research, Warsaw, Poland

ABSTRACT: The ultimate failure of rock is preceded by progression of consecutive damage modes pro-
ducing very frequently periodic sequence of failure events. The cracking mode is associated with a
set of oriented cracks inducing stress redistribution and orthotropic material structure. The crushing
and post-buckling modes are associated with subsequent failure of cracked portions thus inducing total

collapse.

The evolution of damage zones and the ultimate failure modes are discussed for several cases, namely
a) axisymmetric stress state around a borehole with internal pressure inducing progression of damage
b) interaction of a rigid punch with rock mass and the variation of penetration force is derived by
considering progression of cracking, crushing and shearing modes.

1 INTRODUCTION

The present paper is concerned with the analy-
sis of progressive failure modes in brittle materi-
als, such as rock, ice, concrete, or ceramics. The
constitutive models for such materials so far pro-
posed are usually aimed to describe deformation
response in the stable regime before reaching the
maximal stress and post-critical strain localiza-
tion, cf. Jaeger and Cook (1976), Derski et al
(1989). However, in many technical problems such
as rock crushing, cutting or drilling, ice plate inter-
action with off-shore platforms, etc., thereis a need
to account for all progressive failure modes with
account for post-critical stress-strain response and
localized slip or fracture modes. The present paper
is addressed to such class of problems and simpli-
fied assumptions are introduced in order to gener-
ate analytical solutions. Our aim is to demonstrate
that evolution of progressive failure modes induces
periodicity of failure events with load-displacement
curves exhibiting oscillatory character with devel-
opment and termination of particular modes. The
present paper is also aimed to illustrate general
properties of solutions of boundary-value problems
for brittle-plastic materials, namely periodicity of
failure events, interaction of progressive failure and
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plastic flow, scale effect, etc. The major failure
modes discussed are cracking, crushing, localized
shear, buckling and post-buckling of cracked ele-
ments.

In Section 2, the analysis of progression of
cracked and crushed zones in the axisymmetric
case is discussed. In Section 3, the punch pene-
tration problem is analysed in the case of plane
strain and plane stress. The load deflection curve
is derived and the consecutive failure events are
discussed in detail.

2 CRACKING AND CRUSHING OF ROCK IN THE
VICINITY OF BOREHOLE

Let us first consider an axisymmetric problem of
a cylincer acted on by internal pressure and in
the limit case of a borehole in an infinite contin-
uum. Assuming the plane strain case, we assume
the material to be in elastic, cracking or crushing
state, depending on the actual stress state. Figure
1 presents the respective states within the cylinder.
The detailed analysis was presented by Kowalezyk
and Mréz (1988), following previous studies by
Ladanyi (1967) and Helan (1984).

‘Assume the macrocracks to develop along ra-
dial directions and the cracked rock to be regarded
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Figure 1: Azisymmetric cylinder with different
stress stage zones: 1) crushed 2) cracked 3) elastic

as an orthotropic material of vanishing stiffness
moduli in circumferential direction. The total
strain components €, and ¢; in radial and circum-
ferential directions are decomposed in the cracked
zone as follows

e =¢e+ef ee=¢+el (1)

and in the crushed zone there is

e = €L +e€f e =¢€f +¢} (2)
f

where €2, ¢¢ are the elastic strains, €/,¢{ are the
fracture strains, ?,€} are the plastic strains. It
is assumed that in the crushed zone the material
behaves like a granular isotropic medium, of spec-
ified residual cohesion C and the angle of internal
friction . The equilibrium equations are

0o, oy — 0y
=0
or % T (3)
and strain-displacement relations take the form
Ou u
Er = E &= — (4)

The Hookes law for an isotropic material now pro-
vides

1+v

(1 =v)o, —vay)
(1 =v)or — vo,)

£ =
1+v (5)

E

Ef =
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In the cracked zone, there is
(6)

Assume the cracked zone to contain many
cracks propagating from the internal houndary
r = a to the interface boundary r = r,. Using
the Griffith condition of crack propagation, the po-
tential energy release calculated at the progressing
interface r = r, is assumed to be equal stress in-
tensity (or fracture toughness) of n cracks, so that

[atz(re)] (7)

where the bracket |[ ]| denotes the discontinuity at
r=re, [o}(re)] = ol(r}) - af(ry)-

The crushed zone follows the cracked zone for
increasing internal pressure and the material sat-
isfies the Coulomb yield condition

(5'/:1() 0‘::0

nl(} =nr.

Fi=0i—0,+(0, +0,)sing—2C cosp =0

Fy=0,—0;+(0, + 0¢)sinp—2Cp cosp =0
(8)

F3
F4=G'L—Sg=0

ar—5¢=0

where S; denotes the tensile yield stress and Cj is
the initial cohesion. Here F} = 0, F; = 0 repre-
sent the shear mode, F3 = 0, £y = 0 correspond to
tensile mode of flow. In the crushed zone it is usu-
ally assumed that the residual cohesion vanishes,
C, = 0. The flow rule specifies the strain rates £?,
€V, namely

» _ i 9gi w3 O
R, G P §oH0
Er 80',- &t ao_t (9)
where A > 0 and g; is the plastic potential,
G1=0t—0,+(0r+0)sinp —2C, cosyp =0

(10)

g2=0,—0+(0,+0¢)sinyy —2C, cosyp =0

where ¢ is the dilatancy angle and Cy is a constant.
The potentials g3 = 0 and g4 = 0 are identical to
Fg = 0, F4 =i s

2.1 Solutions for specific zones

At the initial stage, the elastic zone occurs within
the whole cylinder. The stress and strain distri-
bution are governed by Lame equations and the
critical pressure initiating cracking is

(¢ a?)

Pe ZStm

(11)



where S; is the characteristic tensile strength.
The second phase corresponds to existence of two
zones: elastic and cracked. In the elastic zone,
the Lame solution applies with internal zone ra-
dius specifying the interface between cracked and
elastic zones. The pressure acting on the interface
is obtained from the solution for two zones and
the crack propagation condition must be satisfied

at r =r..
In the cracked zone we have
Oy = é'l‘ gy = 0
1= (12)
u= Arln r+ A,

where the integration constants follow from the ra-
dial stress and displacement continuity at r = ;.
Using the condition o,(ry) = p and the cracking
condition ( 7 ), the relation between the radius of
cracked zone r, and the pressure p, acting at r = r,
is

n (b —r?)

T (B A2 (13)

pe = Kj

Since at the onset of crack propagation there is
Te = @, Pe = pc, hence in view of ( 11 ) and ( 13 ),
there is

n

St=KI i
mTa

(14)

The internal pressure within the tube is now ex-
plicitly related to the size of the cracked zone,
namely
p= St\/i_________(bz = TZ)
GRS
The relation p(r.) exhibits limit point at the criti-
cal crack length .. and the loading process is un-
stable for r. > re..

As in the cracked zone there is a uniaxial stress
state o, # 0,0y = 0, the crushing starts when
the pressure p exceeds the compressive strength
S.. Thus for p > S, the crushed zone propagates
from the internal cylinder boundary.

The next stage corresponds to existence of
crushed, cracked and elastic zones. At the inter-
face between crushed and cracked zones there is
ps = S. and for the radius 7, = r.., the radius
ry attains its maximum. The equilibrium evolu-
tion of states is achieved by assuming progression

of cracked and crushed zones. The pressure acting
at r =r; now is

(15)
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[Te (B2 —r2)
= 5, [—>——=c 16
Py t Tk (b’+7‘3) (16)
The details of further progression are discussed
by Kowalczyk and Mréz (1988). Here, we only
present, the evolution of zones for

St Co

— = 0. — = 0.0012

I 0.001 7 (17)
v=0.3 p=19 =20°
In the case b/a = oo, the progression of both

cracked and crushed zones is stable and the respec-
tive diagrams are shown in Fig.2. Stability condi-
tions for the case of progressing damage interfaces
were considered by Dems and Mréz (1985).
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Figure 2: Evolution of cracked zone

3 PUNCH PENETRATION INTO PLASTIC-BRITTLE
MATERIAL

The axisymmetric solution of the preceding section
will now be used to construct a simplified solu-
tion of punch indentation in plane strain and plane
stress cases. When a rigid punch is penetrated
into an elastic semiplane, the stress concentration
zones at punch edges induce localized cracking
and crushing beneath the punch, cf. experimen-
tal data in papers by Pang et al (1989), (1990),
Swain and Lawn (1976), Tokar (1990), Wagner and
Schiimann (1971), Wijk (1989), Lindqvist and Lai
(1983). It is assumed that a crushed zone of radius
s is formed with the hydrostatic stress state. This
zone acts as a pressure loading on the remaining



material thus inducing cracking and subsequent
shearing or buckling of the cracked material blocks.
It is assumed that the cracked zone is bounded
by a circle of radius 7. and radial lines r = oy,
Fig.3. The cracks are assumed to propagate along
radial directions, so the axisymmetric solution can
be assumed to predict the radius 7. of the cracked
zone. For simplicity, we neglect the progressive
crushing and growth of the initial crushed zone
of radius ry. The subsequent failure mode within
the plane develops in a form of localized shearing
along velocity discontinuity lines, inducing motion
of material toward the free surface. For an elastic-
plastic material the stage of development of local-
ized shear bands should be considered. However,
we assume that the failure mechanism develops in-
stantaneously similarly as in rigid-plastic materi-
als. On the other hand, in-plane stress state, the
cracked beams are assumed to buckle in the out-
of-plane mode and subsequently they deform in a
post-buckling stage until total failure of beams oc-
curs due to bending fracture of end cross-sections.
The post-critical stage is analysed by assuming

z|

Te

Figure 3: Simplified punch indentation model: 1)
punch 2) crushed zone 3) cracked zone
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the beams to be rigid with end cross-sections con-
nected to the foundation by nonlinear springs of
specified characteristics. These simplified assump-
tions are introduced in order to generate the an-
alytical solution before more accurate incremental
analysis will be provided.

3.1 Progression of cracking zone

Assuming the crushed zone to be fixed and speci-
fied by the radius ry = a, the axisymmetric solu-
tion will be applied setting & — oo. The cracking
condition now is assumed in the form

i () =5 (2)

where « is a positive exponent. For x = 0 we ob-
tain the strength condition and for k = % the en-
ergy condition. By selecting proper value of &, one
can account for the fact that now cracking devel-
ops within an annular segment of unspecified angle
ay and number of cracks. The constants A; and
A occurring in ( 12 ) are now obtained from dis-
placement and radial stress continuity conditions,
so that

¥

Te

b4 (18)

Te

P
_1+vw ‘ Q)" (19)

Ay =125, (rc [+ (1 = »)ln(r)]

The pressure p, is calculated from ( 18 ). Since

p; = —o,(rs) the pressure in the crushed zone be-
neath the punch is

r K—1
=5 (_f)
pf t T

For 0 < k < 1, the growth of the fracture zone re-
quires monotonic growth of punch pressure. Hence
for some value » = r.., a new failure mode is to
develop within the fractured zone.

(20)

3.2 Shear failure (plane strain case)

The second failure mode is assumed in a form of
limit failure mechanism developed both in cracked
zone and undamaged zones, typical for limit anal-
ysis, Fig.4. The shear planes Ag4;, AoA,. A, 4,
and AjAj constitute kinematically admissible fail-
ure mechanism. However 454, ApA,, A;A; are
passed through the cracked zone of reduced co-
hesion. On the other hand, A,A3 passes through
the undamaged material so the initial cohesion and



angle of friction should be used in calculating the
dissipation rate. The balance of rate work and in-
ternal dissipation now is, cf. Mrdéz and Drescher

(1968)

2DpVo = 2C1Va cos ¢ (21)
where D is the punch half-width, /; denotes the
length of the discontinuity line A;As, V, is the
punch velocity and V, is the velocity of block
A;AAs. In writing ( 21 ) we neglect the resid-
ual cohesion on AgA; A3A; and AgA,; assuming it
to be much smaller then Cy. Using hodograph and
geometric relations, we obtain

u sin oy cos a
p=0Co L4 ! L
D cosagcos(ag — ay — ay)

(22)
cos(ap — @) cos(ap — ay — ay + 2p) cos ¢
sin(ay — 2¢) sin(az — 2¢) cos(az — ay)

where the angles ag, a7, o and the displacement
uy = u(ry) are shown in Fig.4. The critical pres-
sure is obtained by determining the minimum of
p(ao, aq, ag).
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Figure 4: Kinematically admissible failure mecha-
nism (third cycle in plane strain case)

3.3 Buckling failure (plane stress case)

In the case of plate thickness k small with respect
to punch width 2D, the plane stress condition pre-
vails and the cracked material can be regarded as
a set of tapered beams supported at 7 = r.. The
out-of-plane buckling mode of beams is therefore
considered. The post-buckling response induces
localized cracking and softening at r = r., which
involve decreasing load acting on the beam.
Denoting k = rs/r., and introducing the plane
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stress elastic constants v, = v/(1+v), E, = E(14+
2v)/(1 + v)?, we obtain the punch displacement
and pressure in the form

w= () - k) =2 (2)

Denote by b, and by the widths of cracked heams
at r = r. and r = ry, by [' = pshby the force
acting on beam of length [ = . — r;. Depending
on geometric parameters the buckling mode can
occur within the plane or out-of-plane. The cor-
responding critical taper ratios are denoted by £,
and k,. The following relations specify k, and k,
at buckling

be (k)
4812(k,)
be (k) 3 _
4wame&h pr(ks)hby =0

0((k¢)Enh3 e p/(kg)hbj =

(24)

where 6, and 0, denote the buckling coefficients
provided by Zyczkowski (1956) in the tabular form.
It follows from ( 23 ) that the critical taper ratio
k. and buckling mode are determined by the con-
dition k. = max(k;, k.). The values of b. and by
are

al

652% bf:nilaf'f'f (25)
where n denotes the number of cracks and ay =
arccos(D/ry) is the opening angle of the cracked
zone.

The post-buckling analysis is carried out by as-
suming the buckled bar as rigid with the inelastic
hinge support at » = r.. The bending moment
M, at the hinge depends on the rotation angle ¥

according to the relations

Ce if ¥ <9,
Cdo— C1¥ =Yg if Jo<¥ < (26)
0 if 9, <9

Mg(‘9)=

where Yoy and 9, denote critical values of ¥ indi-
cating the onset and termination of the hinge fail-
ure process. Here Cp denotes the hinge stiffness in
the elastic stage and C; is the postcritical soften-
ing modulus. The value of Cy is obtained from the
value of the critical buckling load, Co = F(k.)I(k.).
The value of ¥y is obtained by assessing the rup-
ture stress of material fibers in tension, so that



g F(kI(ke)Po

boh? e

S¢ =
where compressive stress was neglected. The value
of ¥g evaluated for ice is of the ovder 1075, Hipher
values can be obtained by accounting for the com
pressive stress, thus

F(k,

=24 PRy et + 61(k,)) (28)

5]

The value of ¥, corresponds to My(d;) = 0. The
punch displacement and stress vary in the post-
critical stage according to the relations

uy= g‘:/f_[ (14v)— In(k.)] + (ko) (1 — cos )

P )
T 1(k)hby sin 9

(29)

When ¢ = 17, the consecutive loading cycle com-
mences and the periodic sequence of cracking,
buckling, post-buckling modes develops.

3.4 Discussion of theoretical solutions

For numerical analysis, the following parameters
were assumed

S;=0.TMPa S.=5MPa

(30)
E =10GPa v=03 o =20°
typical for ice, cf. Sunder and Connor (1984). The

problem parameters are D, h, n, a; and Cy. The
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Figure 5: Relation between cracked zone radius and

punch penetration depth (plane strain case)

experimental data indicate that for brittle mate-
rials the critical stress for punch indentation is of
the order of p, /S, = 4-10, cf. Wijk (1989), and the
cracked zone radiug reaches the values v, / D = 2-8,
cf. Pang et al (1990).
the cracked zone and punch pressure evolution are

For the plane strain case,

shown in g5 6 an hinctions of punch displace-
ments ug/ D for different values of the angle af
of cracked zone (assumed « = 0). It i3 seen that

the predicted values are within the range of exper-

imental observation. For specified values of o,
600
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1 &e8 60 \
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Figure 6: Relation between punch pressure and
punch penetration depth (plane strain case)
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Figure 7: Influence of hinge softening stiffness on
relation between punch pressure and punch pene-
tration depth (plane stress case)
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Figure 8: Relation between punch pressure and
punch penetration depth (plane stress case)
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Figure 9: Effect of crack number on variation of
buckling mode

the growth of cracked zone and maximal pressure
is due to growth of the length of shear band in
the final failure mode. Figures 7-8 show the re-
spective curves for the plane stress case. The ex-
periments carried for ice plates indicate that the
maximal stress is reached at small punch displace-
ments with subsequent drastic reduction of pres-
sure for progressive punch penetration, cf. Michel
and Toussaint (1977). The same character of load-
displacement diagram was predicted by the present
model. The effect of crack number on variation of
buckling mode from in-plane to out-of-plane is il-
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lustrated in IPig.9. Here the plot of lines k, = k,
are shown with in-plane buckling (W) occurring
below the curve and out-of-plane buckling occur-
The effect of buckling
mode leads Lo a new idea of damage mechanism in
brittle materials. The buckling of cracked material
was also considerced by BaZzant et al (1993).

ving above the curve (7).

4. CONCLUDING REMARKS

The present analysis provides the insight into the
progression of failure modes in brittle materials.
These are termed as cracking, crushing, buckling,
post-buckling and shearing modes. The analy-
sis of consecutive modes and of their interaction
provides the resulting force-displacement diagram,
usually of oscillating character, indicating period-
icity of mode evolution. The qualitative assess-
ment provides results confirmed by experimental
data and observation. A more refined analysis is
needed predicting number of cracks and their evo-
lution. However such analysis would be much more
complex.
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