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Modelling of progressive damage evolution in rocks 

Zenon Mr6z & Maciej Kowalc:t.yk 
Institute of Fundamental Teclmo/ogical R l'.l't 'fll 'l 'h , War.l'llll{ /'olmul 

ABSTRACT: The ultimate failure of rock is preceded by progression of consecutive damage modes pro­
ducing very frequently periodic sequence of failure events . The cracking mode is associated with a 
set of oriented cracks inducing stress redistribution and orthotropic material structure. The crushing 
and post-buckling modes are associated with subsequent failure of cracked portions thus inducing total 
collapse. 
The evolution of damage zones and the ultimate failure modes are discussed for several cases, namely 
a.) axisymmetric stress state around a borehole with internal pressure inducing progression of damage 
b) interaction of a rigid punch with rock mass and the variation of penetration force is derived by 
considering progression of cracking, crushing and shearing modes. 

1 INTRODUCTION 

The present paper is concerned with the analy­
sis of progressive failure modes in brittle materi­
als, such as rock, ice, concrete, or ceramics. The 
constitutive models for such materials so far pro­
posed are usually aimed to describe deformation 
response in the stable regime before reaching the 
maximal stress and post-critical strain localiza­
tion, cf. Jaeger and Cook (1976), Derski et a! 
(1989) . However, in many technical problems such 
as rock crushing, cutting or drilling, ice plate inter­
action with off-shore platforms, etc., there is a need 
to account for all progressive failure modes with 
account for post-critical stress-strain response and 
localized slip or fracture modes. The present paper 
is addressed to such class of problems and simpli­
fied assumptions are introduced in order to gener­
ate analytical solutions. Our aim is to demonstrate 
that evolution of progressive failure modes induces 
periodicity offailure events with load-displacement 
curves exhibiting oscillatory character with devel­
opment and termination of particular modes . The 
present paper is also aimed to illustrate general 
properties of solutions of boundary-value problems 
for brittle-plastic materials, namely periodicity of 
failure events, interaction of progressive failu re and 
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plastic flow, scale effect , etc. The major failure 
modes discussed are cracking, crushing, localized 
shear, buckling and post-buckling of cracked ele­
ments. 

In Section 2, the analysis of progression of 
cracked and crushed zones in the axisymmetric 
case is discussed. In Section 3, the punch pene­
tration problem is analysed in the case of plane 
strain and plane stress . The load deflection curve 
is derived and the consecutive failure events are 
discussed in detail. 

2 CRACKING AND CRUSHI NG OF ROCK IN THE 

VICINITY OF BOREH OLE 

Let us f1rst consider an axisymmetric problem of 
a cylin«er acted on by internal pressure and in 
the limit ca.se of a. borehole in an infinite contin ­
uum. Assuming t he plane strain case, we assume 
the material to be in elastic, cracking or crushing 
sta te, depending on the actual stress state . Figure 
1 presents the respective states with in the cy linder. 
The detailed analys is was presented by 1\,HI':dr zyk 
and Mr6z (1988), follow ing previous stud ies by 
Ladanyi (1 967 ) and Hela.n (1984 ). 

Assume the ma.crocracks to develop a long ra­
di al direc ti ons a. nd the cracked rock to be regarded 



2a 
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Figure 1: Axisymmetric cylinder with different 
stress stage zones: I} crushed 2} cracked 3} elastic 

as an orthotropic material of vanishing stiffness 
moduli in circumferential direction. The total 
strain components cr and c1 in radial and circum­
ferential directions are decomposed in the cracked 
zone as follows 

( 1) 

and in the crushed zone there is 

(2) 

where c~, c~ are the elastic strains, c!, c{ are the 
fracture strains, c~, cf are the plastic strains . It 
is assumed that in the crushed zone the material 
behaves like a granular isotropic medium, of spec­
ified residual cohesion C and the angle of internal 
friction <p. The equilibrium equations are 

OUr Ur - Ut O a;+--r-= (3) 

and strain-displacement relations take the form 

au 
lOr= or 

u 
lOt=­

r 
(4) 

The Hookes law for an isotropic material now pro­
vides 

c: = 1; v ((1- v)ur- vut) 

c~ = l+ v ((1- v)ut- vur) 
E 

(5) 

160 

In the cracked zone, there is 

,, = () (6) 

i\9HIInw the cril<:kr:d 7.rmr: to contai n many 
cracks propagat.i ng from t.fw intr:rnll.l b(Jundary 
r = a to the inter face bc,unrl;,,ry r = r. . Using 
the Griffith condition of crack propaga.t.irm , t,he po­
tential energy release calcu lated at the pr(J~rr:sHing 
interface r = r. is assumed to be equal 8 f.rr,~~ in­
tensity (or fracture toughness) of n cracks , sr, that 

(7) 

where the bracket I[ J I denotes the discontinuity at 
r = r., [u~(r.) ] = u~(rd)- ul(r;). 

The crushed zone follows the cracked zone for 
increasing internal pressure and the material sat­
isfies the Coulomb yield condition 

F1 = u1 -ur +(ur + u1) sin cp-2Co coscp = 0 

Fz = Ur- u1 +(ur + u1) sin cp-2Co cos <p = 0 
(8) 

where S, denotes the tensile yield stress and Co is 
the initial cohesion. Here F1 = 0, F2 = 0 repre­
sent the shear mode, F3 = 0, F4 = 0 correspond to 
tensile mode of flow . In the crushed zone it is usu­
ally assumed that the residual cohesion vanishes, 
Cr = 0. The flow rule specifies the strain rates i~ , 

if, namely 

(9) 

where ~ > 0 and g; is the plast ic potential , 

9z=Ur-Ut+(ur+ut)sin 1,b -2C9 cost/; =0 
( 1 0) 

where V' is the dilatancy angle and C9 is a co nstant. 
The potential s 93 = 0 and g4 = 0 are identical to 
F3 = 0, F4 = 0. 

2. 1 Solutions for specific zones 

At the initia l stage, the e last ic zo ne occurs within 
the whole cy linder. The stress and strain dis tri ­
bution are governed by Lame equations and the 
critical pressure initi ating cracking is 

(11) 



where S1 is the characteristic tensile strength. 
The second phase corresponds to existence of two 
zones: elastic and cracked. In the elastic zone, 
the Lame solution applies with internal zone ra· 
dius specifying the interface between Cf!\cked and 
elastic zones . The pressure acting on the interface 
is obtained from the solution for two zones and 
the crack propagation condition must be satisfied 
at r = r • . 

In the cracked zone we have 

(1 2) 

where the integration constants follow from the ra­
dial stress and displacement continuity at r = rf . 

Using the condition CTr(rJ ) = p and the cracking 
condition ( 7 ) , the relation between the radius of 
cracked zone r • and the pressure p. acting at r = r • 
lS 

( 13) 

Since at the onset of crack propagation there is 
r. =a, p. = Pc, hence in view of ( 11) and ( 13 ) , 
there is 

(14) 

The internal pressure within the tube is now ex­
plicitly related to the size of the cracked zone, 
namely 

( 15) 

The relation p(r.) exhibits limit point at the criti­
cal crack length rec and the loading process is un ­
stable for r. > rec · 

As in the cracked zone there is a uniaxia l stress 
state CTr ":/; 0, u1 = 0, the crushing starts when 
the pressure p exceeds the compressive strength 
Sc . Thus for p > Sc , the crushed zone propagates 
from the internal cylinder boundary. 

The next stage corresponds to existence of 
crushed, cracked and elastic zones. At the inter­
face between crushed and cracked zones there is 
Pi = Sc and for the radius re = rec 1 the radius 
rf attains its maximum. The equilibrium evolu­
tion of states is achieved by assuming progression 
of cracked and crushed zones. The pressure act ing 
at r = r J now is 
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(16) 

The details of further progression are discussed 
by Kowal czyk and Mroz (1988). Here, we only 
present the evolution of zones for 

St = 0.001 
E 

1/ = 0.3 

Co = 0.0012 
E 

'P = 1/J = 20° 

( 17) 

In the case b/ a = oo , the progression of both 
cracked and crushed zones is stable and the respec­
tive diagrams are shown in Fig.2. Stability condi­
t ions for the case of progressing da mage in terfaces 
were considered by Dems and Mr6z ( 1985). 
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Figure 2: Evolut ion of cracked zon e 

3 PUNCH PENETRATION INTO PLASTIC-BRITTLE 

MATERIAL 

The axisymmetric solut ion of the preced ing section 
will now be used to construct a simplified solu­
tion of punch indentation in plane st rain and plane 
stress cases . 'vVhen a rigid punch is penetrated 
into an elast ic semiplane, the stress concentration 
zones at punch edges induce localized cracking 
and crushing beneath the punch, cf. experi men­
tal data in papers by Pang et a l ( 1989) , (1990) , 
Swain and Lawn ( 1976), Tokar ( 1990 ). \Vagner and 
Schumann (1971 ), Wij k (1989 ), Li ndqvist an d Lai 
(1983) . It is assumed th a t a crushed zone of radius 
r1 is formed with the hydrostati c stress state. This 
zone acts as a pressure loading on the remain ing 



material thus inducing cracking and subsequent 
shearing or buckling of the cracked material blocks . 
It is assumed that the cracked zone is bounded 
by a circle of radius r. and radial lines r = :J:c.v,, 
Fig.3. The cracks are assumed to propngnt.•~ ;dong 
radial directions, so the axisymmetric solution can 
be assumed to predict. the radius 7'0 of the cracked 
zone. For simplicity, we neglect the progressive 
crushing and growth of the initial crushed zone 
of radius r/. The subsequent failure mode within 
the plane develops in a form of localized shearing 
along velocity discontinuity lines, inducing motion 
of material toward the free surface. For an elastic­
plastic material the stage of development of local­
ized shear bands should be considered . However, 
we assume that the failure mechanism develops in ­
stantaneously similarly as in rigid-plasti c materi­
als. On the other hand , in-plane stress state, the 
cracked beams are assumed to buckle in the out­
of-plane mode and subsequently they deform in a 
post-buckling stage until total failure of beams oc­
curs due to bending fracture of end cross-sections. 
The post-criti cal stage is analysed by assuming 

Figure 3: Simplified punch indentation model: l ) 
punch 2} crushed zone 3) cracked zone 
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the beams to be rigid with end cross-sections con­
nected to the foundation by nonlinear springs of 
Rpccified characteristics . These simplified assump­
tionR Me introduced in order to generate the an­
alytiod ao lut.ion before more accurate incremental 
analysis will be provided. 

3.1 Progression of cracking zone 

Assuming the crushed zone to be fix ed and speci­
fied by the radius r 1 = a, the axisymmet ric sulu­
tion will be applied setting b ---> oo. The cracking 
condition now is assumed in t he form 

( 18) 

where K is a positive exponent. For K. = 0 we ob­
tain the strength condition and for K. = ~ the en­
ergy condition. By selecting proper value of K, one 
can account for the fact that now cracking devel­
ops within an annular segmen t of unspecified angle 
a 1 and number of cracks. The constants A1 and 
A2 occurring in ( 12 ) are now obtained from dis­
placement and radial stress cont in uity conditions, 
so that 

(19) 

The pressure p. is calculated from ( 18 ). Since 
PJ = -a'r(r,) the pressure in the crushed zone be­
neath the punch is 

(20) 

For 0 < K. < 1, the growth of the fracture zone re­
quires monoton ic growth of punch pressure. Hence 
for some value r = rec, a new failure mode is to 
develop within the fractured zone. 

3.2 Shear fa ilure (plane strain case) 

The second fa ilure mode is assumed in a form of 
limit failure mechanism developed both in cracked 
zone and undamaged zones , typical for limit anal­
ysis, Fig .4. The shear planes AoA1 , AoA2. A 1A 2 

and A2A3 consti tute kinematica lly admissible fail­
ure mechanism. However Ao!\ 1 , A oA2, A 1 A 2 are 
passed through the cracked zone of reduced co­
hesion . On the other ha nd , A2A3 passes through 
th e undamaged materi al so the initial cohesion and 



angle of friction should be used in calculating the 
dissipation rate. The balance of rate work and in­
ternal dissipation now is, cf. Mroz and Drescher 
(1968) 

(2 1) 

where D is the punch ha lf- width, /2 denotes the 
length of the discontinuity line A2A3 , V0 is the 
punch velocity and v2 is the velocity of block 
A 1A2AJ- In writing ( 21 ) we neglect the resid­
ual cohesion on AoA2 A2A1 and AoA1 assuming it 
to be much smaller then C0 • Using hodograph and 
geometric relations , we obt ain 

n (UJ sin a 1cosa, ) p = vo - + ------,...:.....---<-----,-
D cos a 0 cos ( ao - a1 - a J) 

cos(ao- <p) cos(ao- a1 -a,+ 2<p) cos <p 

sin(at- 2cp)sin(a2 - 2<p)cos(a2 - a,) 

(22) 

where the angles a 0 , a 1 , a 2 and the displacement 
UJ = u(rJ) are shown in Fig.4. The critical pres­
sure is obtained by determining the minimum of 
p( ao, at, a2) . 

u, 

Figure 4: Kinematically admissible failure mecha­
nism (third cycle in plane strain case) 

3.3 Buckling failure (plane stress case) 

In the case of plate thickness h small with respect 
to punch width 2D, the plane stress condition pre­
vails and the cracked material can be regarded as 
a set of tapered beams supported at r = r,. The 
out-of-plane buckling mode of beams is therefore 
considered. The post-buckling response induces 
localized cracking and softening at r = r, , which 
involve decreasing load acting on the beam. 

Denoting k = r,/r., and introducing the plane 
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stress elastic constants lin = 11/ ( 1 + 11), En = E( 1 + 
211)/(1 + 11) 2 , we obtain the punch displacement 
1~nd preRsure in the form 

S t 
PI = ..jk (23) 

Denote by b, a nd b1 th e wi dt.bH of cracked beams 
at r = r, and r = rf, by F = P1 hb1 t bl! force 
acting on beam of length I = r,- r1. Dewmding 
on geometric parameters the buckling mode can 
occur within the plane or out-of-plane. The cor­
responding cri t ical ta per ra tios are denoted by k1 

and k,. The following rela tions specify kt and k, 
at buckling 

4~~~~i) Ot(kt)Enh
3

- PJ(kt) hbl = 0 

4~~~~k~) O,(k, )Enh
3

- PJ(k, )hbl = 0 

(24) 

where 01 and (}, denote the buckling coeffi cients 
provided by Zyczkowski (1956) in the tabular form. 
It follows from ( 23 ) that the cr itical taper rat io 
kc and buckling mode are determined by the con­
dition kc = max(kt. k,). The values of b, and b1 
are 

(25) 

where n denotes the number of cracks and a 1 = 
arccos(Dfr!) is the opening angle of the cracked 
zone. 

The post-buckling analysis is carried out by as­
suming the buckled bar as rigid with the inelastic 
hinge support at r = r,. The bending moment 
M9 at the hinge depends on t he rotation angle .,'} 
according to the relations 

if t9 ~ t9o 

if t9o<t9 ~t9 1 

if .,'}1 <19 

(26) 

where t9 0 a nd 19 1 denote critical values of .,'} indi­
cat ing the onset and termination of the hinge fail ­
ure process. Here Co denotes t he hinge stiffness in 
t he elast ic st age and c1 is t he postcriti cal soften­
ing modulus. The value of C0 is obtained from the 
value of the critical buckl ing load , Co = F( kc)l( kc)· 
The value of t9 0 is obtained by assessing the rup­
ture st ress of material fibers in tension, so that 



(27) 

where compressive stress was m~gh•ct.•••l. 'l'h•• va.ln" 
of .,'}0 evalu ate<i for ice i ~ of t.lw on lr ~r 10 · ~. llil',hn 
values can be obt.ainr•d hy ac.r·oun t.in g for l.l w co rn 
pressive stress, t.hns 

F(k,.)" [I o '1( ' )] S, == - h,h 'l Hn rdgvn + h hOc (28) 

The ,·a lue of t91 corresponds to M9 (!'J 1 ) == 0. The 
punch d isplacement and stress vary in the post­
critical stage according to the relations 

(29) 

\lv'h en !'J == ~7r, the consecutive loading cycle com­
mences and the periodic sequence of cracking, 
buckling , post-buckling modes develops. 

3.4 Discussion of theoretical so lu tions 

For numerical analys is, t he following parameters 
were assumed 

51 = 0.7MPa Sc = 5MPa 

E == lOGPa 'P == 20° v = 0.3 
(30) 

typical for ice, cf. Sunder and Connor ( 1984). The 
problem parameters are D , h, n, a 1 and C1 . The 
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Figure 5: Relation between cracked zone radius and 
punch penetration depth (plane strain case) 
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experimenta l data indicate that. for brittle mate­
rials t.fw crit ical stress for punch indentation is of 
t.l~r! or<lr!rofpr. / S'r. == 1 -10 , d. Wijk (1989), and the 
na.t:k.,d ~on< ' r;tdin H rr~adrcs the valu es r,/ D == 2- 8, 
d. I 'a. rr1~ d a. I ( I !J!HJ) . F()f the plane st. ra in case, 
t.ht ~ t:r<tt:kt!d z'"'' ' a.rrd prnrdr prcHHure CV() Iu tion are 
shown in Vi,~ . !J lj a.u frrrr• .tiuw; ,,f prrndr di sp lace­
rnent.H 1tJ/ /) for diffr·!r'"''· ·t~. lrr "!H r,f t.hr: an.~~; l e Ci.J 

of cracked ;~,one (aHa rn rrr:d K IJ) . ft. i:> H'!r:n t.hat 
the predicted values arc wit. hit r tlw til.lif.I,': r,f r:zpe r­
irnental observation. F(Jr C>pcr:ifir:d .,,.,, , ~., ,,f '.if, 
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Figure 6: Relation between punch pressure and 
punch penetration depth (plane strain case) 
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Figure 7: lnjlf<t:nct: of hinge softening stiffness on 
relation between punch pressure and pun ch pene­
tration depth (plane stress case} 
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Figure 9: Effect of crack num ber on variation of 
buckling mode 

the growth of cracked zone and maximal pressure 
is due to · growt h of the length of shear band in 
the final failure mode. Figures 7-8 show the re­
spective curves for the plane stress case. T he ex­
periments carried for ice pla tes indicate t hat the 
maximal stress is reached a t small punch displace­
ments with subsequent drastic reduction of pres­
sure for progressive punch penetra tion, cf. Michel 
and Toussaint (1977). The same ch aracter of load­
displacement diagram was predicted by the present 
model. The effect of crack number on vari a tion of 
buckling mode from in-plane to out-of-plane is il-
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lustmt.ed in F ig .9. Here t he plot of lines ke = k. 
il.rr. shown wit. h in- pla ne buck ling (W) occurring 
IJe low t. lw c&&rv': ;tnd out-of-p l;we buckli ng occur­
ri ll /~ above l.hr: r urvc (X). The dfect of buckling 
&llod r: lcadH 1.11 a. new idt·!il, of da. rna.~~;e mecha nism in 
britt le mater ia ls. T he L..ur; kli&l!5 (Jf r:rM:kcd rna.t,erial 
was a lso co nsidP.red by llaiar&i. (:I. a,l ( I ~YJ J). 

4. CO NCLUD ING REMAH.K S 

The present analysis provides the insight. inth the 
progress ion of fa ilure modes in brittl e; rnaterial s. 
These are termed as cracking , crushin g , bu ckling, 
post-buck liug and shear ing modes. The <w,~ly­

sis of consecu tive modes and of their interaction 
prov ides the res ult ing force- disp lacement diagram, 
usua lly of oscillat ing character, indicat ing period­
icity of mode evolution. The qualitat ive assess­
ment provides res ul ts confirmed by experime ntal 
data an d observat ion . A more refin ed analys is is 
needed predicti ng number of cracks and thei r evo­
lu t ion . However such analysis would be much more 
complex . 
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