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Cancer can result from abnormal regulation of cells by their environment, potentially because cancer 
cells may misperceive environmental cues. However, the magnitude to which the oncogenic state 
alters cellular information processing has not been quantified. Here, we apply pseudorandom pulsatile 
optogenetic stimulation, live-cell imaging, and information theory to compare the information 
capacity of receptor tyrosine kinase (RTK) signaling pathways in EML4-ALK-driven lung cancer (STE-1) 
and in non-transformed (BEAS-2B) cells. The average information rate through RTK/ERK signaling 
in STE-1 cells was less than 0.5 bit/hour, compared to 7 bit/hour in BEAS-2B cells, but increased to 3 
bit/hour after oncogene inhibition. Information was transmitted by 50–70% of cells, whose channel 
capacity (maximum information rate) was estimated through in silico protocol optimization. In 
BEAS-2B cells, channel capacity of the parallel RTK/calcineurin pathway surpassed that of the RTK/
ERK pathway. This study highlights information capacity as a sensitive metric for identifying disease-
associated dysfunction and evaluating the effects of targeted interventions.
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 The existence of oncogenes throughout healthy human tissues underscores decades of studies showing that 
cancer arises not only from the presence of an oncogene but also from improper regulation of precancerous cells 
by their environment1,2. Such misregulation may result not only from changes in the cell’s environment but also 
from changes in how a cell responds to cues from that environment. However, how an oncogenic state alters a 
cell’s perception of its environment remains largely unexplored.

Biochemical signaling pathways regulate a cell’s response to its environment. For example, ligand stimulation 
of receptor tyrosine kinases (RTKs) triggers the RAS/RAF/MEK/ERK pathway (Fig. 1A), referred to here as 
the RTK/ERK pathway, which is responsible for cell proliferation, survival, and differentiation3. The RTK/
ERK pathway is often stimulated in transient pulses and regulates processes that require high spatiotemporal 
resolution, such as collective cell migration and embryogenesis4–6. RTK signaling also activates additional 
pathways, including the PI3K/AKT/mTOR and calcium signaling pathways, both of which are also dynamic and 
important for cell growth and division7–10. In line with the central role of RTKs in cell proliferation, mutations 
in RTKs and downstream pathways are frequently associated with cancer.

Although typically studied for their effects on the amplitude of tonic signaling, cancer mutations can disrupt 
additional features of signal transmission, including its kinetics or sensitivity, which may alter the cells’ ability 
to respond to extracellular signals appropriately11–13. One example is the EML4-ALK fusion oncoprotein14,15, 
which drives constitutive activation of ERK signaling but simultaneously suppresses signaling through RTKs, 
reducing the cell’s response to external growth factors. These disruptions can be reversed by targeted drugs, 
which restore responsiveness to growth factors and permit pulsatile ERK activity (Fig. 1B)12. Although examples 
of oncogene-induced changes in signal transmission continue to emerge, it is not clear to what extent cancer 
alterations corrupt a cell’s capacity to perceive its environment because changes in information transmission 
through dynamic signaling networks have not been quantified.
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Shannon information theory16 provides a framework for the quantitative assessment of the rate at which 
information can be transferred through a communication channel, such as a signaling pathway. While mutual 
information measures the information about the input signal that can be inferred from the observed response, 
the information transmission rate (or bitrate) reflects the amount of information transferred through the 
channel per unit time. The maximum rate at which information can be transmitted through a channel using 
the best encoding is called the channel capacity. Early studies used mutual information in population-level 
measurements to find that the response amplitude in several important signaling pathways, including the RTK/
ERK pathway, transmits only approximately 1 bit of information about the strength of a stimulus, indicating an 
all-or-nothing response17,18. Subsequent works showed that slightly more information can be transmitted when 
accounting for the temporal pattern of the response19. A recent study examined repetitiveness of ERK activation 
in single cells and found that cells can transmit more than 2 bits of information20, which could not be detected 
at the population level due to phenotypic diversity between individual cells21–25. The information transmission 
rate is an appropriate measure in systems where repeated use of a channel rather than a one-time decision is 
important because it accounts for both the fidelity of signal transmission and its temporal resolution. In such 
systems, information may be encoded in the intervals between signaling pulses. Recently, we showed that such 
encoding allows transmission of at least 6–8 bit/h through the RTK/ERK pathway25, exceeding earlier theoretical 
estimates26.

In this study, we apply Shannon information theory together with optogenetics and live-cell imaging to 
quantify changes in signal transmission resulting from the expression of the EML4-ALK fusion oncoprotein 
in the patient-derived STE-1 cancer cell line. We show that in this cell line, information transmission through 
the RTK/ERK pathway is almost entirely blocked. Treatment with the ALK inhibitor (ALKi) crizotinib restored 
information transmission, although to a rate still twice as low as that observed in noncancerous BEAS-2B cells 
(Fig. 1C). In these cells, RTK-triggered calcium/calcineurin signaling transmitted even more information than 
the RTK/ERK pathway, although activation of the calcineurin pathway was not observed in STE-1 cells. Our 
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work demonstrates how information theory can provide a quantitative, functional metric to understand the 
oncogenic state and assess potential therapies.

Results
Pulsatile OptoFGFR stimulation enables estimation of information flow in the RTK/ERK 
pathway
To monitor and induce the activity of the RTK/ERK pathway, we engineered cells to express a fluorescent 
reporter of ERK activity (ERK-KTR) and an optogenetic FGF receptor (optoFGFR)27, which allowed us 
to stimulate the pathway with light at precisely selected time points (Fig. 1D). OptoFGFR is a fusion of the 
intracellular fragment of FGFR1 fused to the light-induced clustering module Cry228. Cry2 clustering triggers 
activity of FGFR1 and evokes ERK pulses similar in shape and duration to those obtained by transient FGF 
stimulation in a microfluidic system29. We investigated an EML4-ALK-expressing human non-small-cell lung 
carcinoma cell line, STE-1, and a noncancerous cell line, BEAS-2B, as a reference. In normal cells, such as BEAS-
2B cells, optoFGFR activation triggers RTK/ERK pathway signaling, culminating in ERK phosphorylation/
activation and subsequent phosphorylation of its downstream targets. In STE-1 cells, EML4-ALK hijacks GRB2-
SOS, leading to constitutive ERK activation and also to active suppression of transmembrane RTKs, including 
optoFGFR12. ALK inhibition relieves this suppression and restores the cells’ ability to transmit RTK signals (Fig. 
1E). We monitored ERK activity using ERK-KTR, which, when phosphorylated by active ERK, translocates to 
the cytoplasm (Fig. 1F,G). In some cell types, including BEAS-2B cells, FGFR (and optoFGFR) also triggers 
calcium signaling27, which leads to the activation of the phosphatase calcineurin (Fig. 1A). Because ERK-KTR 
is engineered from a natural substrate for calcineurin (ELK-1), calcineurin can dephosphorylate and inactivate 
ERK-KTR, driving its nuclear localization30. To disambiguate signaling via the RTK/ERK and RTK/calcineurin 
pathways, we performed experiments in the presence or absence of inhibitors of MEK (trametinib, MEKi) and/
or calcineurin (cyclosporine A, CALCi; Fig. 1F). In a typical experiment, 100 ms light pulses were administered 
at prespecified intervals (see below), and ERK-KTR fluorescence (Fig. 1G) was recorded every minute, 
resulting in single-cell trajectories of ERK-KTR nuclear intensity. In BEAS-2B cells, the preprocessed ERK-
KTR trajectories (see Methods for preprocessing details) typically feature a small ‘dip’ 2 min after stimulation, 
resulting from calcineurin-mediated ERK-KTR dephosphorylation. This was followed by a cytoplasmic ERK-
KTR translocation peak 7 min after the light pulse, which was mediated by the RTK/ERK pathway (Fig. 1H).

To measure the rate of information transmission, we stimulated STE-1 and BEAS-2B cells with a pseudorandom 
series of light pulses (Fig. 1I). The intervals between subsequent light pulses followed a fixed distribution (Fig. 1J), 
carefully chosen on the basis of preliminary experiments to ensure both a near-optimal bitrate and sampling of 
a broad range of intervals. Single-cell ERK-KTR trajectories enabled a probabilistic, machine learning-based 
reconstruction of the input signal (Fig.  1K). We used this reconstruction to compute the entropy H(X | Y) 
of the input conditioned on the observed response (i.e., information lost owing to the uncertainty of signal 
reconstruction). The amount of transmitted information is then given by I(X; Y) = H(X) − H(X | Y), where H(X) 
is the input entropy (sent information). Therefore, we computed the transmitted information rate as the input 
information rate minus the reconstruction entropy rate (Fig. 1L). Preliminary experiments on BEAS-2B and 

Fig. 1.  Experimental setup. (A) After binding to a growth factor (GF), receptor tyrosine kinases (RTKs) 
multimerize and signal to ERK via RAS, RAF, and MEK (the RTK/ERK pathway). Simultaneously, RTKs 
trigger the calcium-calcineurin pathway (RTK/calcineurin pathway). (B) The EML4-ALK oncogene suppresses 
a cell’s ability to respond to environmental cues such as growth factors. The ALK inhibitor (ALKi) restores 
responsiveness. (C) In normal cells, activity pulses are accurately transmitted by the RTK/ERK pathway 
from receptors to the nucleus. EML4-ALK-positive cancer cells transmit environmental information with 
low fidelity, which can (to some extent) be restored by ALKi. (D) Pulsatile optogenetic FGFR (optoFGFR) 
stimulation and fluorescent biosensors of signaling allow the quantification of information transmission 
through the RTK/ERK signaling axis. The ERK-KTR biosensor translocates between the nucleus and 
the cytoplasm upon ERK activation/inactivation. (E) OptoFGFR, in response to blue light, recapitulates 
endogenous RTK activation. Cell responsiveness to RTK signals may be suppressed by EML4-ALK, which 
associates with and sequesters GRB2-SOS. Signal transmission can be restored by ALKi, which liberates 
GRB2-SOS from EML4-ALK. (F) ERK-KTR migrates to the cytoplasm upon phosphorylation by ERK, and 
in the reverse direction after dephosphorylation by calcineurin. Inhibitors of calcineurin (cyclosporine A) 
or MEK (trametinib) were used to study the two pathways in isolation. (G) ERK-KTR cytoplasmic–nuclear 
shuttling after stimulation with a light pulse in BEAS-2B cells. Fluorescence was recorded with a one-minute 
resolution. Scale bar = 20 μm. (H) Light stimulus leads to ERK-KTR phosphorylation, resulting in cytoplasmic 
translocation (a peak is observed approximately 7 min after the light pulse), preceded by a calcineurin-
mediated ‘dip’ observed 2 min after the light pulse in BEAS-2B cells. The thin gray lines represent single-cell 
preprocessed ERK-KTR trajectories, and the thick gray line represents their average. The green line shows 
a selected single-cell trajectory for which the (posterior) probability of a light pulse is given in panel K. See 
Methods for details of ERK-KTR trajectory preprocessing. (I) The cells were stimulated with a pseudorandom 
series of light pulses. Information is encoded in intervals between subsequent pulses. (J) The distribution of 
intervals between stimulation pulses was chosen on the basis of preliminary experiments to maximize the 
bitrate. (K) Single-cell ERK-KTR trajectories were used for probabilistic reconstruction of the input signal, 
i.e., to predict the probability of a light pulse occurrence at each time point throughout the experiment at a 
one-minute temporal resolution. (L) The numerically estimated entropy of the probabilistic reconstruction was 
used to compute the rate of information transmission through the pathway.
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STE-1 cells, along with an earlier study on MCF-10A cells25, indicated that the effective refractory time of the 
RTK/ERK pathway, i.e., the interval at which the second pulse is detected with 50% probability, is approximately 
8–9 min. The chosen interval distribution for our stimulus pulse trains included intervals from 5 to 35 min and 
had an input entropy rate of 16.4 bit/h. In principle, the input information rate could be higher for more frequent 
pulses, reaching 60 bit/h for pulses occurring every minute with a probability of 1/2. However, if light pulses 
were sent at intervals shorter than the refractory time, the cell responsiveness would deteriorate, increasing the 
reconstruction entropy.

EML4-ALK blocks information transmission, which can be restored by ALK Inhibition
To estimate the reconstruction entropy (and thus the amount of information transmitted by the sequence of 
light pulses), we trained a multilayer perceptron (MLP with 3 layers) using all single-cell tracks longer than 
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3 h from both cell lines, all experimental conditions and all experimental replicates (see Methods for details). 
To predict the probability of a light pulse at a given time (Fig.  1K), the MLP used the following features: a 
7-min fragment of the ERK-KTR trajectory, the time elapsed since the previous light pulse, a measure of track 
variability, and information about the cell line and an optional inhibitor. The last two inputs allowed a single 
MLP to generalize across experiments in which cells follow qualitatively different trajectories. During training, 
we directly minimized the cross-entropy, which constitutes an upper bound of the conditional entropy H(X 
| Y). By subtracting the result from the input entropy H(X), we obtained a lower bound on the transmitted 
information H(X; Y). We noticed that cells with low (or very high) expression of optoFGFR had markedly lower 
bitrate, and therefore we excluded them from further analysis (see Methods and Supplementary Fig. S1). We 
used the remaining cells (without retraining the MLP) to estimate the population-averaged bitrate at which the 
STE-1 and BEAS-2B cells transmit information when stimulated according to the selected protocol (Fig. 1J).

STE-1 cancer cells were minimally responsive to light stimulation (Fig. 2A, B row 1) and thus transmitted 
nearly no information from the activated receptor to ERK-KTR (Fig. 2C row 1), consistent with our earlier 
results12. In contrast, when treated with ALKi, a significant fraction of cells evoked an ERK-KTR trajectory peak 
(Fig. 2A, B rows 2–4), which allowed for an average information transmission rate of ~3 bit/h (Fig. 2C, rows 
2–4). The effect did not depend on the ALKi concentration in the tested range (0.3–3 µM), which indicates that 
a concentration of 0.3 µM is sufficient to maximally restore information transmission. The increase in response 
magnitude was due in part to a drug-induced decrease in basal signaling, which increased the dynamic range of 
stimulation (Fig. 2D).

We performed the same analysis for BEAS-2B cells, obtaining a 4–6 fold stronger average response and 
a more than twofold higher bitrate for the RTK/ERK pathway (7.2 bit/h; Fig. 2B, C, row 6), matching results 
obtained for MCF-10 A cells25. As expected, ALKi minimally affected the bitrate of BEAS-2B cells, which is 
consistent with their lack of ALK kinase expression (Fig. 2C, row 8 vs. row 5).

In BEAS-2B cells, the RTK/ERK and RTK/calcineurin pathways transmit information 
independently
As mentioned previously, optoFGFR signals to ERK-KTR not only through ERK but also through calcineurin. 
The latter pathway is faster and evokes a dip (nuclear ERK-KTR translocation) in the ERK-KTR trajectory 
(Fig. 1H), preceding the peak (cytoplasmic ERK-KTR translocation) induced by ERK. To verify whether the 
high bitrate observed in BEAS-2B cells results from the MLP classifier using this dip to detect light pulses, we 
inhibited the RTK/calcineurin pathway with a CALCi. While CALCi eliminated the dip and slightly increased 
the response amplitude (Fig. 2B, row 6), it only marginally reduced the bitrate, indicating that the RTK/ERK 
pathway alone can transmit approximately 7.2 bit/h (Fig. 2C row 6). Similarly, after the RTK/ERK (RTK-RAS-
RAF-MEK-ERK) pathway was blocked with MEKi, the RTK/calcineurin pathway was capable of transmitting 
approximately 6.4 bit/h. When operating simultaneously (without any inhibitors), the two pathways transmit 7.8 
bit/h. As a control, we confirmed that the joint application of CALCi and MEKi prevents effective information 
transmission, reducing the average response amplitude tenfold and the bitrate to 2.1 bit/h.

Overall, these results show that in the noncancerous cell line, both the RTK/ERK and RTK/calcineurin 
pathways, separately or jointly, transmit approximately 7 bit/h when stimulated according to the chosen encoding 
protocol. Information transmission is fully suppressed in STE-1 cells expressing EML4-ALK but can be restored 
to 3 bit/h by ALKi treatment.

In information-transmitting cells, the bitrate of ALKi-treated STE-1 cells remains half that 
observed in BEAS-2B cells
To explore the differences between STE-1 and BEAS-2B cells in more detail, we assessed the heterogeneity 
of single-cell bitrate estimates within each cell line. The distributions (Fig.  3A) covered a wide range, from 
approximately −2.5 bit/h to 16.4 bit/h, the latter corresponding to the input protocol entropy rate.

Although a single cell cannot have a truly negative bitrate, our estimator can yield negative values because 
it is based on the cross-entropy between the input sequence and a neural network’s predictions (see Methods). 
Negative estimates arise when a cell responds atypically, so that the neural network (trained on all cells) 
systematically misinterprets its responses. In effect, the network’s predictions for such cells are worse than the 
prior, resulting in a net negative contribution to the overall bitrate estimate, or, equivalently, a negative single-cell 
bitrate estimate. For simplicity, we refer to these estimates simply as (single-cell) bitrates.

Fig. 2.  Response amplitude and bitrate in the STE-1 (cancerous) vs. BEAS-2B (noncancerous) cell lines, with 
or without inhibitors. (A) 2.5-hour fragments of ERK-KTR trajectories obtained in experiments with STE-1 
and BEAS-2B cells with or without inhibitors, as indicated. The gray lines represent single-cell trajectories, 
whereas the colored lines represent the population average. The dashed vertical lines indicate light pulses. (B) 
Population-averaged response amplitude measured 7 min after the light pulse (the average was taken over all 
the cells and light pulses; see Supplementary Fig. S2 for the response amplitude definition). (C) Population-
averaged bitrate. The dotted line shows the input information rate of the input pulse sequence. (D) ERK-KTR 
trajectory in STE-1 cells treated with various ALKi concentrations. Each line represents an average of all cells 
in a single technical replicate. Note that in this panel (and only here), the ERK-KTR trajectory was computed 
as the log-ratio of cytoplasmic and nuclear fluorescence, which allows for visualization of higher basal ERK-
KTR activity in the absence of ALKi. In panels B and C, dots correspond to experimental/technical replicates; 
dots of the same color denote results from the same experimental replicate; bars correspond to the mean and 
standard error of the mean. The cell lines and stimulation protocols correspond to those in panel A.
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Fig. 3.  Bitrate of individual cells. (A) Histograms of the bitrates of individual cells; for each condition, all the 
biological and technical replicates are pooled. The cells are divided into transmitting and non-transmitting 
subpopulations so that the average bitrate in the non-transmitting subpopulation is zero. The dotted lines show 
the bitrate averaged over non-transmitting (red), transmitting (green), and all cells (yellow). (B) Fractions of 
transmitting cells computed for each replicate separately; average and standard error of the mean are shown. 
(C) Average bitrate in the transmitting cell subpopulation computed for each replicate separately; average 
and standard error of the mean are shown; the dotted line indicates the input information rate. (D) Bitrate 
vs. average response amplitude in individual cells; the dot intensity is proportional to the time for which each 
cell was tracked. In panels B and C, dots correspond to experimental replicates; dots of the same color denote 
results from the same experiment. The threshold shown in panel A (blue line) was computed for all replicates 
pooled, whereas in panels B and C, the threshold was chosen for each replicate separately.
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In BEAS-2B cells, the histograms of single-cell bitrate exhibit a distinct bimodal pattern: one group of cells 
clusters near zero, whereas the other centers at approximately 12–13 bit/h. In STE-1 cells with ALKi, the two 
modes overlap, with only a tiny fraction of cells transmitting more than 10 bit/h. This finding shows that even 
with ALKi treatment, STE-1 cells rarely transmit information at rates characteristic of transmitting BEAS-2B 
cells.

Formally, we split the cells into ‘non-transmitting’ and ‘transmitting’ subpopulations by setting a threshold 
on the histogram such that cells to the left of this threshold (‘non-transmitting’) transmit on average 0 bit/h. The 
average fraction of transmitting cells ranged between 60 and 70% for the BEAS-2B cells, regardless of the applied 
inhibitor, and between 50 and 60% for the ALKi-treated STE-1 cells (Fig. 3B). Untreated STE-1 cells consistently 
contained approximately 15% transmitting cells.

We noticed that both the average bitrate for the entire cell population (Fig. 2B) and the fraction of transmitting 
cells (Fig.  3B) were sensitive to experimental replicate-dependent factors. However, their ratio—the average 
bitrate within the transmitting subpopulation (Fig. 3C)—was much more stable. The transmitting subpopulation 
of STE-1 cells subjected to ALKi treatment consistently achieved a bitrate of approximately 5.5 bit/h, while the 
transmitting subpopulation of BEAS-2B cells reached 10–11 bit/h via either the RTK/ERK or RTK/calcineurin 
channel, and reached nearly 12 bit/h when neither channel was blocked by inhibitor.

We observed a clear correlation between the response amplitude and the bitrate in individual cells (Fig. 3D), 
indicating that the ‘non-transmitting’ cells are primarily non-responding. While mathematically bitrate does 
not depend on the response amplitude, it depends on pulse detectability, and thus the signal-to-noise ratio. 
Figure 3D suggests that the higher bitrate observed in BEAS-2B cells than in ALKi-treated STE-1 cells is due 
mainly to the higher average response amplitude, which allows for better separation of the ERK-KTR peak from 
background noise.

Importantly, while the difference in response amplitude between BEAS-2B cells and treated STE-1 cells 
is evident, its origin is not obvious. It may be associated with cancer- or drug-induced changes in RTK/ERK 
dynamics, but also with the cell type or reporter. It may as well result from richer (2% FBS) serum used for STE-1 
to prevent cell death over the 17-hour experimental period.

Information-transmitting cells are spatially correlated
We observe that cells distinguished as information-transmitting tend to cluster. As shown in Fig. 4, the probability 
that the kth nearest neighbor of a transmitting cell transmits information is elevated with respect to neighbors of 
non-transmitting cells. The effect is the most visible for k ≲ 6. This may indicate that sister cells have a tendency 
to be either both transmitting or non-transmitting, although a dedicated experiment would be necessary to 
confirm the statement.

Fig. 4.  Transmitting cells are spatially correlated. Graphs show the probability that the kth nearest neighbor of 
an information-transmitting (solid) or non-transmitting (dotted) cell transmits information.
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Information-transmitting BEAS-2B cells tend to have both pathways functional
The fraction of transmitting BEAS-2B cells equals 65 ± 5% regardless of the application of MEKi or CALCi 
(Fig. 3C). This equality suggests that the transmitting subpopulation is common and in the ‘transmitting’ cells, 
both the RTK/calcineurin and the RTK/ERK channels are functional. To further investigate this conjecture, we 
trained separate neural classifiers to recognize stimulation pulses using either the calcineurin-mediated dip or 
the ERK-mediated peak. This was done by altering the ERK KTR trajectory slice provided to the network: for 
dip-based detection, the classifier had to decide on whether a pulse occurred at time t based on timepoints [t, 
…, t + 2 min], while for peak-based detection, timepoints [t + 6 min, …, t + 12 min] were provided. As expected, 
in ALKi-treated STE-1 almost no information could be retrieved by the dip-based detector (Fig. 5A), which 
implies that STE-1 cells did not transmit information via the calcineurin pathway. In contrast, BEAS-2B were 
able to respond with both pathways. As shown in Fig. 5B, there is a high correlation in information transmission 
between both pathways. A vast majority of cells transmit information through either both or none of the 
pathways with a small fraction of cells using a single channel only.

RTK/calcineurin pathway has shorter refractory time than RTK/ERK pathway
The average ERK-KTR trajectory after a light pulse depends on the cell line and the applied inhibitor (Fig. 6A). 
In addition, the ERK-dependent response amplitude depends on the pulse interval, increasing with the time that 
has passed since the previous light pulse (Fig. 6B). We observed the highest response amplitude in BEAS-2B 
cells without inhibitors or with CALCi. In STE-1 cells without ALKi the response was close to zero (Fig. 6A). 
With ALKi treatment, STE-1 cells began responding to light pulses, but the response amplitude remained 
consistently about 5 times smaller than in BEAS-2B cells treated with CALCi or left untreated (Fig. 6B). The 
response amplitude in BEAS-2B cells with MEKi was negative, as the RTK/calcineurin pathway leads to ERK-
KTR dephosphorylation and translocation to, rather than from, the nucleus. Moreover, the amplitude was only 
weakly dependent on the time since the previous light pulse, suggesting that the RTK/calcineurin pathway has 
a very short refractory time. When the response amplitude was measured 2 min after the light pulse (Fig. 6C), 
the point at which the calcineurin-induced ERK-KTR dip was the strongest, we observed that both untreated 
BEAS-2B and BEAS-2B with MEKi responded to intervals as short as 5 min.

Consistent with earlier observations, the certainty of pulse detection by the MLP classifier (Fig. 6D) strongly 
depends on the response amplitude (Fig. 6B). The certainty can be measured as the mean logit Bayesian update 
to the predicted light pulse probability. The logit update is zero when the classifier cannot infer any additional 
information from the ERK-KTR trajectory, and thus predicts the probability of a light pulse equal to the prior 
probability. In contrast, the logit update approaches positive or negative infinity when the pulse is predicted or 
excluded with 100% certainty, respectively.

We found that in untreated BEAS-2B, pulses following a 5 min interval were typically undetectable. While 
the response amplitude (Fig. 6B) continued to increase with longer preceding intervals, detection credibility 
(Fig. 6D) plateaued at intervals of ~15 min, in agreement with previous work25. Credibility reached half of its 
asymptotic value at an interval of 7–8 min, which we refer to as the effective refractory time. When calcineurin 
signaling was blocked with CALCi, detection of light pulses following intervals shorter than 20 min was worse 
than in untreated cells. This indicates that, in untreated cells, for short intervals, the network relies on both 
the ERK-mediated peak and the calcineurin-mediated dip to identify light pulses. The effective refractory time 
was increased to ~10 min. With only the RTK/calcineurin pathway active (BEAS-2B with MEKi), light pulse 

Fig. 5.  Information transmission in the RTK/calcineurin and the RTK/ERK channels. Single cell bitrates 
determined based on calcineurin-mediated ‘dip’ or ERK-mediated ‘peak’ only. Color indicates transmitting 
(green) and non-transmitting (red) cells, determined as in Fig. 3. Dashed lines separate the transmitting 
and non-transmitting subpopulations determined based on the ‘dip’-only or ‘peak’-only detection. Numbers 
indicate fraction of cells in each quarter.
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detection no longer depended on the interval within the tested range. This observation, consistent with Fig. 4C, 
indicates that the refractory time of the RTK/calcineurin pathway is shorter than 5 min. This means that the 
measured refractory time of the RTK/ERK channel is intrinsic to the pathway and does not result from slow 
reporter dynamics.

In STE-1 cells with ALKi treatment, certainty reached saturation at ~20 min intervals, as in BEAS-2B with 
CALCi. However, even at saturation, the neural network’s certainty remained markedly lower in STE-1 cells 
compared to BEAS-2B. Detection of light pulses became possible after intervals longer than 9 min, and crossed 
the half-asymptotic threshold at ~13 min, implying an effective refractory time ~3 min longer than in BEAS-2B 
with CALCi. The longer refractory time in STE-1 might suggest a discrepancy in a negative feedback mechanism 
between the two cell lines. However, because the response in STE-1 was weaker yet rose with similar timing as 
in BEAS-2B with CALCi (Fig. 6B), we suspect that the primary cause of the longer effective refractory time is an 
insufficient signal-to-noise ratio for short intervals in treated STE-1.

Fig. 6.  In silico protocol optimization and channel capacity estimation. In panels A–E, colors correspond to 
different cell lines and conditions, as indicated in the common legend. All 0.3 – 3 µM ALKi concentrations 
were pooled. (A) Population-average ERK-KTR response to a light pulse preceded by a long interval (25 min). 
(B) Average response amplitude measured 7 min after pulse, as a function of the interval preceding the light 
pulse. (C) Same as B but measured 2 min after the pulse. (D) The MLP classifier’s logit Bayesian update to the 
prior pulse probability, as a function of the interval preceding the light pulse. (E) Optimized input interval 
distribution. The black line shows the interval distribution used in the experimental protocol. (F) Channel 
capacity (i.e., bitrate achievable with the optimized input interval distribution) in transmitting cells, compared 
to the experimentally determined bitrates reported in Fig. 3C. Data from all experimental replicates for a given 
cell line and condition were pooled and analyzed jointly. Panels D–F plotted based on transmitting cells only.
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In silico protocol optimization indicates that the RTK/ERK channel capacity is 5–15% higher 
than the experimentally estimated bitrate
Throughout our work, we assume that the length of intervals between subsequent pulses constitutes the ‘alphabet’ 
for information encoding; particular interval lengths (‘letters’) are independent, and thus, the bitrate depends 
only on the frequency of particular intervals. Thus far, we have estimated the bitrate assuming a fixed distribution 
of intervals shown in Fig. 1J. Although the interval distribution was chosen on the basis of preliminary data to 
yield a high bitrate for the RTK/ERK channel, it does not have to be optimal for both cell lines and, more 
importantly, for the RTK/calcineurin pathway. In contrast to our previous work25, the bitrate estimation 
algorithm employed in this study allowed us to use existing experimental data to make bitrate predictions for 
protocols that have not been experimentally tested (see Methods). Since the channel capacity is the maximum 
bitrate that can be achieved by optimizing the encoding protocol, this allowed us to estimate the channel capacity 
of the investigated pathways in silico without the need to conduct multiple experimental trials. Specifically, for 
each cell line and inhibitor (all STE-1 experiments with ALKi were pooled), we searched for the optimal input 
protocol by numerical optimization of the input interval distribution using gradient descent.

We optimized over protocols with interval lengths from 5 min to 90 min. To allow for intervals longer than 
35 min (the longest interval in our dataset), we extrapolated cell responses based on the 35-min interval, which 
was justified by the detection certainty reaching saturation after approximately 20 min (Fig. 6D; see Methods 
for details). In most conditions, the cells did not respond to pulses following a 5-min interval; thus, we assumed 
that shorter intervals, unavailable in our experimental dataset, might be safely excluded from the optimized 
protocols. The only exception was BEAS-2B with MEKi, for which the data presented in Fig. 6B-D suggest that 
pulses following intervals shorter than 5 min may be detectable; consequently, the true channel capacity of the 
RTK/calcineurin pathway is likely higher than estimated here.

Most of the optimal interval distributions (Fig. 6E) follow a qualitatively similar pattern. Intervals below 
the detectability threshold are not sent; the interval probability rises steeply following the increase in pulse 
amplitude and detection certainty (Fig. 6B-D). Once the detection certainty has reached a plateau, the interval 
probability starts to decrease because the usage of long intervals requires more time to relay the same amount of 
information. The optimal trade-off between the sent information content and time budget per pulse is granted 
by the exponentially decreasing distribution, which we observe in all optimal protocols. In most conditions, 
the change in interval distribution due to optimization increased the bitrate by 5–15% (Fig.  6F). The only 
exception was BEAS-2B with MEKi, which experienced nearly 40% gain in the bitrate. In this case, the optimal 
distribution was significantly shifted toward shorter intervals, which did not affect pulse detection certainty 
(roughly independent of interval length; Fig. 6D) but increased the input information rate.

Overall, we found that ALKi treatment of STE-1 cells restored the RTK/ERK channel capacity to approximately 
6.0–6.5 bit/h in the transmitting subpopulation. However, this value remains below the RTK/ERK channel 
capacity of approximately 11 bit/h estimated for BEAS-2B. The RTK/calcineurin channel in BEAS-2B cells was 
found to have an even higher capacity of nearly 15 bit/h (which, as mentioned before, is likely underestimated). 
Surprisingly, this capacity exceeds the capacity of BEAS-2B cells when both the RTK/calcineurin and the RTK/
ERK pathways are unblocked (13 bit/h). This effect is probably caused by signal interference: the rise of the ERK-
mediated peak counteracts the calcineurin-mediated dip (Fig. 6A) and thus hampers the dip-based detection.

Discussion
The rate at which information is transmitted by signaling channels constrains the complexity of processes 
that can be regulated within a given time. High bitrates are expected for signaling pathways that regulate 
cellular responses to rapidly varying extracellular cues. The RTK/ERK pathway, which governs proliferation, 
differentiation, apoptosis, and motility, is one such pathway, and due to the nature of these processes, its 
malfunction is frequently associated with cancer. We note that higher bitrates are not necessarily optimal. For 
example, an overly-responsive cell could proliferate in response to otherwise subthreshold stimuli, leading 
to pathological cell growth. Rather we expect that cellular information transmission is tuned to respond to 
the signals—and filter the noise—of the particular tissue environment, and that disease states or molecular 
interventions can meaningfully alter this perceptive landscape.

In this study, using pulsatile optoFGFR stimulation, we showed that the presence of the EML4-ALK oncogene 
in STE-1 cells suppressed RTK/ERK signaling, reducing the pathway’s bitrate to nearly zero. However, treatment 
with an ALK inhibitor restored information transmission. With the inhibitor, the transmitting subpopulation 
of cells—comprising approximately 50–60% of all STE-1 cells—achieved an average bitrate of ~5.5 bit/h. This 
rate was lower than that of the RTK/ERK pathway in noncancerous BEAS-2B cells, where the transmitting 
subpopulation of approximately 70% reached an average bitrate of ~10.4 bit/h. The fraction of transmitting 
cells varied substantially across experimental replicates, which affected the average bitrate calculated across 
the entire population. By contrast, the average bitrate within the transmitting subpopulation (reported above) 
showed much lower variability and therefore can be considered a reliable metric. The reasons why the remaining 
cells failed to transmit information remain unclear. The immediate cause was typically a lack of response to 
stimulation, but we failed to attribute it to optoFGFR expression (cells with low optoFGFR expression were 
excluded), ERK-KTR level, nucleus size, or other factors like position within the colony or local cell density.

The lower bitrate in ALKi-treated STE-1 cells (with respect to BEAS-2B) results primarily from a lower 
response amplitude (higher noise to signal ratio) and a longer refractory period, leading to reduced accuracy of 
reconstruction. The strong correlation between the average ERK-KTR response amplitude and bitrate measured 
in single cells suggests that the ~5-fold weaker response strength in treated STE-1 cells may be the underlying 
cause of the longer measured refractory period.

In BEAS-2B cells (as in MCF-10 A cells25), two pathways activated by optoFGFR transmit opposing 
signals to ERK-KTR: the RTK/ERK pathway and the RTK/calcineurin pathway. The reporter is sensitive to 
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calcineurin signaling because it contains an ERK docking site from the transcription factor ELK-1, which is also 
a substrate for dephosphorylation by calcineurin30,31. The RTK/calcineurin pathway thus induces rapid ERK-
KTR dephosphorylation and nuclear translocation, starting 2 min after light pulse stimulation (of note, this 
rapid nuclear ERK-KTR translocation was not observed in STE-1). In contrast, the RTK/ERK pathway leads to 
ERK-KTR phosphorylation and cytoplasmic translocation, peaking approximately 7 min after the light pulse. 
Consequently, in BEAS-2B cells without inhibitors, ERK-KTR trajectories after a light pulse display a small ‘dip’ 
followed by a more pronounced ‘peak.’ By applying either a calcineurin or a MEK inhibitor, we investigated 
these pathways in isolation and estimated that each transmits information at a similar rate of 10–11 bit/h (again, 
restricting the estimation to the transmitting subpopulations). These rates are only slightly lower than the bitrate 
achieved without inhibitors. Our data additionally indicate that, in response to RTK stimulation, ELK-1 might 
undergo rapid dephosphorylation followed by phosphorylation; the biological meaning of such regulation 
remains to be further studied.

While bitrate is a quantity dependent on the stimulation protocol, channel capacity, i.e. bitrate in an optimal 
protocol, is a universal measure. The pulsatile stimulation protocol used in the study was designed to maximize 
the bitrate of the RTK/ERK pathway on the basis of preliminary experiments and our previous study on MCF-
10  A cells25. It balances high information input, achieved with short intervals between stimulation pulses, 
against signal transmission accuracy, which deteriorates when intervals become as short as the refractory time. 
However, since the refractory time varies between cell lines and signaling pathways, the protocol could not be 
optimal simultaneously for all conditions. To address this, we developed an approach for optimizing stimulation 
protocols and estimating channel capacities from a single suboptimal experiment. This method works best when 
all intervals expected in the optimal protocol are present in the experimental protocol. Otherwise, responses 
to the missing intervals must be extrapolated. While the limited experiment time forced us to extrapolate 
data for intervals above 35 min, our data suggest that this extrapolation is generally justified. However, lack 
of intervals shorter than 5 min in the experimental protocol and inability to extrapolate them probably lead to 
an underestimation of the channel capacity of the RTK/calcineurin pathway in BEAS-2B cells. Although the 
optimized protocol differs from the experimental one, the estimated RTK/ERK channel capacities in BEAS-2B 
cells and STE-1 cells (with an ALK inhibitor) are only 5–15% higher than the experimentally measured bitrates, 
and equal 13 bit/h and ~6.5 bit/h, respectively. This shows that the near-optimal bitrate can be achieved by a 
relatively broad family of protocols. For the RTK/calcineurin pathway, the bitrate increase is much greater – 
approximately 40%. The high RTK/calcineurin channel capacity (~ 15 bit/h) results from its short refractory 
time, allowing transmission of sequences with short intervals. As mentioned, this estimate should be considered 
a lower bound, as even higher bitrates might be achieved with stimulation intervals shorter than 5 min. Indeed, 
calcium signaling plays a role in regulating rapid cellular processes, such as actin remodeling during cell 
movement or fertilization32–34.

We emphasize that all bitrates and channel capacities reported in this paper quantify information 
transmission from optoFGFR to ERK-KTR and thus represent lower bounds for the information reaching the 
upstream proteins (ERK and calcineurin). Direct measurements of ERK or calcineurin activity could yield 
higher values, though such measurements are currently not possible for time-resolved measurements in single 
cells. The measured refractory time for the RTK/ERK pathway is much longer than that of the RTK/calcineurin 
pathway, and therefore cannot be limited by slow ERK-KTR dynamics. Because ERK-KTR was designed based 
on an ERK-dependent transcription factor (ELK-1), the reported values can also be interpreted as an estimate 
of information available to ERK-dependent transcription factors. Some information may have been lost during 
processing by the neural classifier; however, the effect is likely negligible, as altering the network architecture did 
not improve prediction accuracy. Bitrates may also be underestimated due to the finite temporal resolution of 
stimulation and measurement. Nevertheless, as shown in Supplementary Fig. S5, even with the current 1-minute 
resolution, the network could not reliably distinguish the absence of a pulse at the time point immediately 
preceding stimulation. Therefore, encoding protocols with higher than 1-min temporal resolution is unlikely to 
increase the bitrate substantially.

In summary, we developed a machine learning-based method to analyze information flow in signaling 
channels and its changes as a function of an oncogenic state. We found high information capacities that confirm 
that ERK and calcineurin pathways can efficiently transmit signals from receptors to effector proteins. Low 
bitrate in EML4-ALK-positive cells highlights the impaired transmission in cancer cells, which can be at least 
partially restored by drug treatment. Further studies will address whether such high bitrates are fully utilized 
in physiological responses, whether their suppression plays a role in cancer development, and whether drug-
induced relief of suppression plays an important role during therapy, for example, in drug resistance.

Methods
Materials
Cell lines
BEAS-2B cells were purchased from ATCC. STE-1 cells were a gift from Trever Bivona lab, UCSF.

Inhibitors
Crizotinib (Sigma-Aldrich, PZ0191) was used as an ALK inhibitor (ALKi).

Trametinib (Selleckchem, GSK1120212) was used as a MEK inhibitor (MEKi).
Cyclosporin A (Thermo Fisher Scientific, AAJ6319103) was used as a calcineurin inhibitor (CALCi).

Plasmid expression
The optoFGFR-encoding plasmid CLPIT Myr-mEGFP-FGFR(ICD)-Cry2 was cloned by substitution of mCherry 
with mEGFP in CLPIT Myr-mCherry-FGFR(ICD)-Cry212.
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The cells were infected sequentially with pLentiPGK DEST-H2B-iRFP670 (Addgene #90237) for nuclear 
imaging, pHR ErkKTR-mRuby2 or pHR ErkKTR-mCherry (STE-1 or BEAS-2B, respectively) for ERK activity 
measurement and CLPIT Myr-mEGFP-FGFR(ICD)-Cry2 for stimulation.

Infected cells were sorted twice to enrich for high expression of all 3 markers.

Experimental procedure
Cell culture
The cells were cultured at 37 °C and 5% CO2 in RPMI-1640 growth medium supplemented with 10% fetal bovine 
serum (FBS) and 1% penicillin/streptomycin (P/S). For the experiments, cells (STE-1, 1.5 × 104; BEAS-2B, 5 × 103) 
were seeded 48  h before the experiment in 96-well plates (Cellvis) coated with fibronectin (MilliporeSigma, 
FC01010MG) diluted to 10 µg/mL in PBS. The media were replaced 16 h before the experiment with RPMI-
1640 w/o phenol red, either serum-free or containing 4% FBS (for BEAS-2B or STE-1, respectively). Upon the 
initiation of the experiment, an equal volume of serum-free medium with supplements or DMSO was added to 
reach the indicated concentrations.

Imaging
Live-cell imaging was performed using a Nikon Ti2-E microscope equipped with a Yokagawa CSU-W1 spinning 
disk, 405/488/561/640 nm laser lines, an sCMOS camera (Photometrics), and a motorized stage. The cells were 
maintained at 37 °C and 5% CO2 in an environmental chamber (Okolabs). The cells were imaged every 60 s for 
90 min without optoFGFR stimulation, followed by the stimulation protocol described in the next subsection. 
The 561 nm line was used for ERK-KTR-mRuby2 and ERK-KTR-mCherry imaging (80% laser power; 150 ms), 
and the 640 nm line was used for H2B-iRFP imaging (80% laser power; 200 ms). OptoFGFR was stimulated and 
imaged with 488 nm (100% laser power, i.e., 1.15 W/cm2; 100 ms) at the indicated time points.

Stimulation sequence
In all the experiments, the cells were stimulated with an identical sequence of light pulses (Supplementary Table 
S1). The sequence was constructed as follows. First, on the basis of preliminary data and earlier results25, we 
decided that the intervals between subsequent light pulses should approximately follow a Gamma distribution 
with shape α = 4 and scale θ = 5 min. This choice was expected to be near-optimal in terms of bitrate and broad 
enough to probe various interval lengths. The actual number of intervals of a particular length in the sequence 
(Fig. 1I) was chosen to best reflect this distribution given the time budget (~ 17 h). Minor adjustments were 
made to ensure that each short interval length occurred at least twice. The intervals were ordered in such a 
way that the occurrences of a particular interval length were preceded by intervals maximally representative of 
the assumed distribution. For example, there were three intervals of length 13 min in the sequence; they were 
preceded by intervals of lengths 7, 17, and 28 min, which were close to the 1 st, 2nd, and 3rd quartiles of the 
assumed distribution, respectively. This was important for a fair comparison between interval lengths (Fig. 6) 
because a pulse following a short interval evokes a stronger response if the interval before it was also short; 
consequently, if all intervals of a particular length were preceded by short intervals, the detectability of this 
interval length would be overestimated.

Image processing
Cell tracking
The cell nuclei were detected based on H2B-iRFP fluorescence and tracked using our in-house software 
ShuttleTracker. Tracks shorter than 3 h were removed from further analysis.

Track standardization
We estimated the background intensity in each channel as the mode of the pixel intensity (a common value 
was chosen across all frames and replicates with equal microscope settings) and subtracted it from the image. 
For each cell in a frame, we measured the average nuclear intensity in the ERK-KTR channel and normalized it 
with the average intensity over the whole frame. These two steps were necessary to eliminate global changes in 
mRuby2 fluorescence arising in response to the 488 nm light used for optoFGFR stimulation and to compensate 
for illumination differences across frames and replicates. The time course of the negative logarithm of the 
obtained value is referred to as a normalized ERK-KTR trajectory. We used this value instead of the typically 
used cytoplasmic-to-nuclear ratio to avoid noise associated with inaccurate cytoplasm detection. For a clearer 
graphical presentation in Fig.  2A, the single-cell ERK-KTR trajectories were normalized by subtracting the 
average value in each track.

Preselection of optoFGFR-expressing cells
We sorted the tracked nuclei in each replicate based on the mean optoFGFR fluorescence intensity at the time 
points at which the optoFGFR was stimulated and discarded tracks outside the range [µ, µ + 3σ] (BEAS-2B) or [µ 
− 0.5σ, µ + 2σ] (STE-1), where µ and σ denote the track-length-weighted average and standard deviation across 
all tracks in the particular replicate (see Supplementary Fig. S1).

Response amplitude and responsiveness
For each track and light pulse, we computed the response amplitude as the log-ratio of the ERK-KTR trajectory 
7 min after the pulse and at the pulse. To account for the influence of the previous pulse, we normalized it by 
subtracting the average log-ratio of the ERK-KTR trajectory (L + 7 min) and L after the pulse, where L is the 
interval between this pulse and the previous pulse. The average was taken across all tracks and all pulses followed 
by at least (L + 7 min)-long intervals (Supplementary Fig. S2).
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We also computed the cell’s responsiveness as the standard deviation across all time points (not just time 
points with pulses) of the log fold change in translocation over 7 min. This measure was independent of pulse 
timing and, as such, could be used as a hint in automated pulse detection, as described below.

Bitrate computation
Derivation of the bitrate lower bound
We consider random sequences of light pulses that may occur in whole minutes. These sequences are encoded 
as X = X1, …, XN, where Xk = 1 if there was a pulse sent at the kth minute and Xk = 0 otherwise. We note that Xk 
need not be independent. For each cell, we denote the sequence of responses (ERK-KTR trajectories) as Y = Y1, 
…, YN. The mutual information between these two sequences can be computed as:

	

I (X; Y ) = H (X) − H (X | Y )

=
∑

k

[H (Xk | X1...k−1) − H (Xk | X1...k−1, Y )]

= −
∑

k

[E log p (Xk | X1...k−1) − E log p (Xk | X1...k−1, Y )]

= −
∑

k

E [log p (Xk | X1...k−1) − log p (Xk | X1...k−1, Y )]

� (1)

For independent Xk, (Xk | X1…k−1) = H(Xk). In this case, the intervals between pulses follow a geometric 
distribution. However, we consider arbitrary interval distributions, and thus (Xk | X1…k −1) ≤ H(Xk).

For a sufficiently large number of time points, N, the bitrate (or transmitted information per time point), b(X; 
Y), can be estimated as:

	

b (X; Y ) = I (X; Y ) / N

= − 1
N

∑
k

E [log p (Xk | X1...k−1) − log p (Xk | X1...k−1, Y )]

= − E [log p (Xk | X1...k−1) − log p (Xk | X1...k−1, Y )]

� (2)

where in the last equation, the expected value is also calculated over all time points k = 1, …, N. Thus, b(X; Y) 
is equal to the expected difference between the surprisal of Xk conditioned on all previous pulses, −log p(Xk | 
X1…k−1), and the surprisal of Xk conditioned on all previous pulses and additionally the full response Y, −log p(Xk 
| X1…k−1, Y). This can be thought of as the expected reduction in surprisal from learning Y.

To estimate b(X; Y), we first note that the probability p(Xk | X1…k−1) depends only on the assumed encoding 
protocol. We restrict our analysis to protocols for which the probability of a pulse at time point k depends only 
on the time that elapsed since the previous pulse, Lastk (Lastk = l if and only if Xk−l = 1 and Xk' = 0 for all k' in 
{k − l + 1, …, k − 1}). Thus:

	 p (Xk | X1...k−1) = p (Xk | Lastk)� (3)

The posterior probability p(Xk | X1…k−1, Y) cannot be directly computed. Instead, we estimate it by training 
a neural network pθ (with weights θ) to predict Xk. In principle, the neural network could use the complete 
stimulation history X1…k−1 and the full response Y to predict Xk. However, we simplify this by reducing 
X1…k−1 to Lastk, and Y to a slice Yk…k+r (of length r + 1 = 7, starting at time point k) and a scalar measure of 
cell responsiveness S = Std(Yk − Yk+7). This reduction is necessary, as the network is trained and tested on the 
same sequence of pulses; thus, the stimulation history X1…k−1, as well as the full response trajectory Y, can be 
used to infer the timepoint in the experiment (k) and consequently reveal Xk. By providing the network with 
Lastk instead of X1…k−1 and the slice Yk…k+r instead of Y, we prevent this leak. In summary, we approximate the 
posterior probability as:

	

p (Xk | X1...k−1, Y )
≈ p (Xk | Lastk, Yk...k+r, S)
≈ pθ (Xk | Lastk, Yk... k+r, S)

� (4)

This approximation results in an upper bound on the conditional entropy:

	

H (Xk|X1...k−1, Y ) ≤ H (Xk | Lastk, Yk...k+r, S)
≤ −E [log pθ (Xk | Lastk, Yk...k+r, S)]

� (5)

where the expectation is still computed over the true distribution of X, Y, and time points k. The first inequality 
follows from the data processing inequality, and the second reflects the fact that the cross-entropy between p 
and pθ is an upper bound on the entropy of p. Thus, by substituting (5) back into formula (2), we obtain a lower 
bound on the bitrate:

	 b (X; Y ) ≥ −E [log p (Xk | Lastk) − log pθ (Xk | Lastk, Yk...k+r, S)]� (6)
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The bound is tight, assuming that the network correctly predicts the true posterior probability (both 
approximations in Eq. (4) are equalities). We estimate the bitrate by averaging over all cells j and timepoints k 
available in our dataset:

	
b = − 1

D

∑
j,k

[
log p (xk | lastk) − log pθ

(
xk

∣∣ lastk, yj
k...k+r, sj

)]
� (7)

where D is the number of data points (j, k), and small letter symbols xk and lastk denote values from distributions 
Xk and Lastk.

Single-cell bitrates
We define the bitrate of a given cell track j as:

	

bj = −Ek [log pθ (Xk | Lastk) − log pθ (Xk | Lastk, Yk...k+r, S)]

= − 1
wj

∑
k

[
log p (xk | lastk) − log pθ

(
xk

∣∣ lastk, yj
k...k+r, sj

)]� (8)

where wj is the number of timepoints available for cell track j. Note that since we use a model trained on all 
tracks, if a cell responds aberrantly, it can cause the model to make worse predictions than the prior, resulting in 
a negative bitrate of that track. The overall bitrate can be expressed as an average over the individual cell track 
bitrates (weighted by cell track length):

	

b = − 1
D

∑
j,k

[
log p (xk | lastk) − log pθ

(
xk

∣∣ lastk, yj
k...k+r, sj

)]

= − 1
D

∑
j

wj

(
1

wj

∑
k

[
log p (xk | lastk) − log pθ

(
xk

∣∣ lastk, yj
k...k+r, sj

)]
)

= 1
D

∑
j

wjbj =
∑

j
wjbj∑
j

wj

� (9)

Since wj is the number of timepoints available for cell j, D = Σj wj.

Fraction of transmitting cells
The fraction of transmitting cells is determined by sorting the single-cell bitrates in ascending order and taking 
the longest prefix that averages (weighted by cell track length) to a negative value. The cells in the prefix are called 
non-transmitting, whereas the rest constitute the transmitting subpopulation.

Network training procedure
Data sampling
The network is trained to minimize the cross-entropy loss function using stochastic gradient descent:

	 L = −E log pθ (Xk | Lastk, Yk...k+r, S)� (10)

At each step, the expected value is computed by averaging over a mini-batch of 104 data points (xk, lastk, 
yj

k…k+r, s
j) randomly drawn from the dataset. In general, the network predictions pθ depend on the assumed 

input protocol (interval distribution). Although throughout the paper, we use a network trained according to 
the experimentally tested interval distribution, we designed the sampling procedure to allow for training and 
evaluation using an arbitrary protocol. We group all the data points by intervalk (the length of the interval 
containing the data point) and lastk (the time elapsed since the previous pulse). We first sample pairs (intervalk, 
lastk) according to their distribution in the assumed protocol, and then randomly retrieve data points from the 
corresponding groups in the experimental dataset to form mini-batches.

Procedure:

1. Group dataset by (intervalk, lastk).
2. Sample pairs of (intervalk, lastk) from the joint distribution of the assumed protocol.
3. Select random samples from the dataset for each (intervalk, lastk) pair.

 

Multiple experiments
Throughout the paper, we use a single network trained on all the experiments. We allow the network to adapt to 
different experimental settings by supplying additional inputs:

	 L = −E log pθ (Xk | Lastk, Yk...k+r, S, CellLine, Inhibitor)� (11)
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where CellLine is 0 for STE1 and 1 for BEAS-2B, and Inhibitor is a triplet of real numbers providing concentrations 
of 3 inhibitors {ALKi, MEKi, CALCi}. We then performed leave-one-out cross-validation on the experimental 
replicates (see Supplementary Fig. S3). Since the change in bitrate estimate after exclusion of any single replicate 
is negligible, we concluded that the network does not overfit to individual replicates and that we may use a single 
network trained on all available data.

Network architecture
The network inputs are log(lastk), yj

k…k+r, s
j, cellLine, and inhibitor (3-dim). The trajectory slice yj

k…k+r is replaced 
with discrete differences Δyj

k+1…k+r, where Δyj
k' = yj

k' − yj
k'−1, to abstract from the base level of ERK-KTR 

expression in individual cells. We chose to use the slice of r = 6 discrete differences, as its further extension 
provides no substantial increase in bitrate (see Supplementary Fig. S4). To detect pulses based on the ‘dip’ or 
’peak’-only (Fig. 5), we use, respectively, slices yj

k…k+2 and yj
k+6…k+12. All the inputs are concatenated, resulting 

in a feature vector of length (r + 6). The features are standardized across the dataset to have zero mean and a 
standard deviation of σ = 1, and passed to a three-layer perceptron (MLP) with hidden layer sizes of (40, 20) 
and leaky ReLU activations. The MLP computes a logit (Bayesian) update uBayes to the prior probability p(Xk = 
1 | Lastk):

	 uBayes = MLP
(
log lastk, ∆ yj

k+1...k+r, sj , cellLine, inhibitor
)

� (12)

This update is then used to compute the posterior (logit) probability of Xk = 1:

	 logit pθ

(
Xk = 1

∣∣ lastk, yj
k...k+r, sj , cellLine, inhibitor

)
= uBayes + logit p (Xk = 1 | lastk)� (13)

This approach allows the network to generalize more effectively across protocols with different priors p(Xk = 1 | 
Lastk), simplifying protocol optimization.

Supplementary Fig. S5 illustrates the mean updates uBayes generated by the MLP, grouped by (intervalk, lastk) 
for STE-1 with ALKi. A positive value indicates that the network consistently predicts a higher pulse probability 
than the prior probability—this is the case along the diagonal (intervalk = lastk), corresponding to timepoints 
with actual pulses (Xk = 1). A value below zero indicates that the network predicts a lower pulse probability than 
the prior. A value close to zero implies that the network cannot improve upon the prior probability. As a result, 
no information is gained. This behavior is observed for lastk ≤ 10, where cells have not yet recovered from a 
previous pulse and cannot respond to a new pulse (see also Fig. 6B). Consequently, their ERK-KTR trajectory 
carries no information about a potential new pulse. For lastk > 10, off-diagonal terms (where Xk = 0) are generally 
negative. For such lastk, a pulse would evoke a noticeable ERK-KTR trajectory change; thus, the absence of such 
a change leads the network to infer that no pulse has occurred and predict a probability lower than the prior 
probability. Importantly, these negative predictions also contribute to the total information transmitted and thus 
the bitrate. Finally, we note that entries immediately next to the diagonal are also close to zero. This suggests that 
the network sees a response to the pulse but is not perfectly sure of the exact timing of the pulse.

Protocol optimization
To optimize the protocol, we want to directly maximize the bitrate estimate:

	 L = −E [log p (Xk | Lastk) − log pθ (Xk | Lastk, Yk...k+r, S)]� (14)

This introduces several challenges. First, during training, the protocol’s interval probabilities are optimized via 
gradient descent. However, the expected value is computed by sampling according to the protocol; thus, we 
need to compute a derivative of the form  ∇ϕEz~Z(ϕ) f(z)  for some distribution Z parameterized by ϕ. This is 
accomplished by rewriting the expected value using a frozen distribution with importance weights:

	
Ez∼Z(φ)f (z) =

[
Ez∼Z(φ′)f (z) pφ (z)

pφ′ (z)

]∣∣∣∣
φ′= φ

� (15)

Since the sampled distribution no longer depends on ϕ, the gradient ∇ϕ may be calculated as follows:

	

∇φ

[
Ez∼Z(φ′)f (z) pφ (z)

pφ′ (z)

]∣∣∣∣
φ′=φ

=
[
Ez∼Z(φ′)∇φ

(
f (z) pφ (z)

pφ′ (z)

)]∣∣∣∣
φ′=φ

� (16)

Although the importance weights pϕ(z)/pϕ'(z) are equal to 1, their derivatives with respect to ϕ in general differ 
from zero and allow us to compute the gradient. In our case, we sample from a frozen protocol and update the 
protocol after each gradient step is calculated.

Secondly, the optimal protocol should assign nonzero probabilities to intervals longer than 35  min, the 
longest interval used in our experiments. Since we observe that responses for intervals longer than 30 min are 
similar (and strongest), we handle longer intervals by imputing them using the available 35-minute interval 
from our experiments. Specifically, when a trajectory slice for a pair (intervalk, lastk) with intervalk > 35 min is 
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requested, we return a slice for an imputed pair (intervalk*, lastk*) instead, where intervalk* = 35 min and lastk* 
is determined as follows:

•	 If lastk < 10 min: lastk* = lastk
•	 If intervalk − lastk < 10 min: lastk* = 35 min − (intervalk − lastk).
•	 Otherwise:

	
last∗

k = 10 min + (lastk − 10 min) × 35 min − 20 min
intervalk − 20 min � (17)

In this way, we keep the time since the last pulse and the time to the next pulse fixed if this time is shorter than 
10 min. A graphical illustration of imputation for intervalk = 60 min is shown in Supplementary Fig. S6. Note 
that while yk…k+r is imputed, the network is provided with true lastk.

Furthermore, selection of the transmitting subpopulation technically depends on single-cell bitrates, and thus 
also depends on the protocol. We perform protocol optimization on the transmitting subpopulation determined 
using the experimental protocol.

Finally, the optimized protocol can exhibit large jumps in probabilities of specific intervals owing to 
experimental noise and the order in which intervals were tested in the experiment. To address this, we introduce 
a regularization term in the loss function to promote smoother protocols:

	 Lreg = L − α ∥∆∆ P rotocolLogP robabilities∥2
2� (18)

where ΔΔProtocolLogProbabilities represents the second-order differences in the interval log-probabilities, and 
‖·‖2

2 is the mean of squares. We found that setting = 0.003 yields noticeably smoother protocols with minimal 
impact on the bitrate (see Fig. 6E and Supplementary Fig. S7).

Data availability
Data used in the paper (time-lapse microscopy quantifications) are deposited on Zenodo ​(​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​5​2​
8​1​/​z​e​n​o​d​o​.​1​5​2​8​2​8​7​6​)​. Raw images can be obtained from Tomasz Lipniacki (tlipnia@ippt.pan.pl). Source code 
is available on GitHub (https://github.com/pawelnalecz/pathway-bitrate). Cell lines and plasmids generated for 
this study are available from Lukasz J. Bugaj (bugaj@seas.upenn.edu).
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