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Simple Summary

Breast cancer remains the most frequently diagnosed malignancy among women world-
wide, with rising incidence and significant biological heterogeneity influencing treatment
strategies. Neoadjuvant chemotherapy (NAC) has become a standard option, particularly
for aggressive molecular subtypes, underscoring the need for sensitive tools to monitor
early treatment response. Conventional imaging (MRI, CT, mammography, and B-mode
ultrasound) primarily captures morphological change, often lagging biological alterations.
Quantitative ultrasound (QUS) is an emerging modality that characterizes tumor mi-
crostructure and yields reproducible, operator-independent biomarkers. This narrative
review synthesizes current evidence, clarifies the conceptual framework (spectral, ampli-
tude, and attenuation metrics; parametric maps and texture), highlights clinical applications
and limitations, and outlines future directions for integrating QUS into NAC response
assessment in breast cancer.

Abstract

Breast cancer remains the most commonly diagnosed malignancy and a leading cause of
cancer-related mortality among women worldwide. Neoadjuvant chemotherapy (NAC) is
increasingly used, particularly in aggressive subtypes such as HER2-positive and triple-
negative breast cancer, where achieving a pathological complete response (pCR) is strongly
associated with improved outcomes. Early and accurate assessment of therapeutic re-
sponse is therefore essential to enable timely treatment adaptation. Conventional imaging
methods—including magnetic resonance imaging (MRI), computed tomography (CT),
mammography, and B-mode ultrasound—mainly detect macroscopic tumor shrinkage and
often lagging behind biological alterations, as they rely primarily on size-based assessment.
Quantitative ultrasound (QUS) is an emerging, non-invasive technique that analyzes raw
radiofrequency (RF) ultrasound data to extract spectral, scattering, and attenuation pa-
rameters, allowing detailed characterization of tumor microstructure. When combined
with parametric mapping, texture analysis, and advanced radiomic or deep learning ap-
proaches, QUS can capture subtle tissue alterations at an early stage of therapy and help
predict pathological response before conventional imaging detects morphologic change.
Integration with molecular and clinical data further enhances predictive performance, en-
abling adaptive and personalized treatment strategies. This narrative review summarizes
current evidence on the clinical utility of QUS in monitoring NAC response in breast cancer,
outlines the methodological foundations of this technology, and discusses key challenges
to its broader implementation—particularly the need for standardized acquisition and
processing protocols, robust interpretive algorithms and large, prospective, multicenter
validations to confirm its impact on clinical decision-making and patient outcomes, and to
accelerate its translation into precision oncology practice.
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1. Introduction

Breast cancer remains one of the most significant oncologic challenges worldwide and
is the most frequently diagnosed malignancy among women. In 2020, over 2.3 million
new cases and nearly 685,000 deaths were recorded, accounting for 11.7% of all cancer
diagnoses and 6.9% of cancer-related mortality [1]. Despite advances in screening and
treatment, survival disparities persist, particularly in regions with limited access to modern
diagnostics and therapies [2]. In the United States, breast cancer is the most commonly
diagnosed cancer in women and the second leading cause of cancer-related death [3,4],
with similar trends observed across Europe and North America [2,5,6].

Rising incidence among younger women and pronounced biological heterogeneity
pose ongoing challenges for diagnosis and treatment [7-9]. Molecular diversity influences
prognosis and therapeutic response, underscoring the need for individualized approaches
and tools capable of detecting early biological changes during therapy [1,2,4,5,7,9-11]. Four
principal molecular subtypes—luminal A, luminal B, HER2-enriched, and triple-negative
breast cancer (TNBC)—differ in receptor expression and proliferation markers, which
directly influence prognosis and treatment strategies [12-17].

These subtype-specific characteristics guide eligibility for neoadjuvant chemother-
apy (NAC). In aggressive tumors such as HER2-positive and TNBC, NAC frequently
induces pathological complete response (pCR), strongly associated with improved sur-
vival [15,17-21]. NAC also reduces tumor volume, increases breast-conserving surgery
rates, optimizes axillary management, and enables real-time assessment of tumor chemosen-
sitivity [22-26]. As NAC use expands to biologically aggressive early-stage tumors, the
need for reliable early-response assessment becomes increasingly important [27-31]. Cur-
rent response evaluation relies largely on morphologic measurements such as RECIST [32],
which do not capture microstructural changes that precede reduction in tumor size [27,28].

Multiple imaging modalities—MRI, CT, B-mode ultrasound, and mammography—are
currently used for NAC monitoring. MRI offers the highest diagnostic accuracy but remains
limited by cost, accessibility, and reliance on morphology. CT is widely available but less
sensitive, while B-mode ultrasound is inexpensive yet operator-dependent. Mammography
has limited utility in dense breasts. A concise comparison of these modalities is presented
in Table 1 [27,28,33-35].

Taken together, currently available imaging approaches lack sufficient sensitivity to
detect early biological alterations during therapy—changes that often precede measur-
able tumor shrinkage. This gap is particularly critical for aggressive subtypes such as
HER2-positive and TNBC, where timely identification of non-responders may enable rapid
treatment modification.

Against this background, quantitative ultrasound (QUS) has emerged as a promis-
ing noninvasive technique for early response assessment. Unlike conventional B-mode
imaging, which relies on qualitative echogenicity, QUS analyzes raw radiofrequency (RF)
data to extract spectral and scattering parameters reflecting tissue microstructure [36-40].
This enables detection of therapy-induced changes before morphological effects become
apparent [36-38]. Integrating QUS with texture analysis, radiomics, and molecular infor-
mation further enhances predictive performance, with studies demonstrating the ability
of QUS-based models to localize resistant tumor regions and predict NAC response early
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during treatment [39-46]. Such approaches may enable more personalized and adaptive
therapeutic strategies.

Table 1. Comparative overview of imaging modalities for monitoring response to neoadjuvant
chemotherapy (NAC) in breast cancer.

Sensitivity to Early

Imaging Modality = Primary Assessment Biological Changes Accessibility Key Limitations
Morphologic, Limited (size, . Expenswe.,
MRI vascular enhancement) Moderate time-consuming,
(contrast-based) limited access
. Ionizing radiation,
CT Morphol.oglcal Limited High poor soft-tissue
(density)
contrast
B-mode Morphplp glcial Qualitative only Excellent Operator.—de}-)endent,
(echogenicity, size) subjective
Morphological Low accuracy in
Mammography (density, None High dense breasts,
calcifications) radiation
Microstructural Quantitative Lower spatial
Quantitative (spectral, scattering, (RE-derived Excellent resolution than MRI;
ultrasound (QUS) attenuation biomarkers) limited
parameters) standardization

This narrative review summarizes peer-reviewed literature (2010-2025) identified
through PubMed, Web of Science, and Google Scholar on quantitative ultrasound (QUS)
applications in monitoring breast cancer response to neoadjuvant chemotherapy.

2. Quantitative Ultrasound: Physical Principles and Biological Basis for
Cancer Therapy Monitoring

Quantitative ultrasound relies on the analysis of raw, uncompressed radiofrequency
(RF) echoes backscattered from internal tissue structures and recorded by the ultrasound
transducer before beamforming and log-compression. RF data preserve both the ampli-
tude and phase of the ultrasonic wave over time, enabling advanced quantitative analy-
ses [47-49]. Although RF signals are produced by most ultrasound systems, clinical access
is not routine, which limits widespread adoption and often requires research modes or
systems that allow raw RF export [47,48]. For reproducible biomarkers, QUS pipelines
should include reference-phantom calibration and attenuation compensation, reported
alongside acquisition settings [47-49].

The fundamental principle of quantitative ultrasound (QUS) is that the microstructure
of biological tissue—defined by the spatial distribution and acoustic properties of cells,
nuclei, collagen fibers, and microvasculature—directly affects the scattering and attenuation
of ultrasonic waves. Quantitative analysis of these effects can be performed in the frequency
domain, through spectral analysis yielding parameters such as the midband fit (MBEF),
spectral slope (SS), and 0 MHz intercept (SI), as well as scatterer-based metrics including the
effective scatterer diameter (ESD) and effective acoustic concentration (EAC). Alternatively,
it can be conducted in the amplitude domain using statistical models such as the Rayleigh,
Nakagami, or homodyned-K distributions [50-54].

In oncology, QUS provides a particularly valuable framework for monitoring therapy-
induced microstructural alterations. Within tumor tissue, the earliest changes following
neoadjuvant chemotherapy (NAC) include cellular reorganization and modifications in
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the architecture and density of the extracellular matrix, which may occur within the first
few days of treatment and reflect an initial cytotoxic response [55]. As therapy progresses,
nuclear fragmentation and the formation of apoptotic bodies emerge as morphological hall-
marks of active cell death, while continued treatment leads to the development of necrotic
regions that signify cumulative structural degradation [56]. In parallel, NAC remodels the
tumor microenvironment by altering fibroblast populations, lymphocytic infiltration, and
epithelial-to-mesenchymal transition (EMT)-related gene expression, processes that can
influence subsequent treatment sensitivity and overall prognosis [55,56]. These biological
events typically precede measurable tumor shrinkage on conventional imaging, empha-
sizing the unique value of quantitative and reproducible QUS biomarkers for the early
assessment of therapeutic efficacy [55-57].

QUS is therefore uniquely suited to capture these subtle microarchitectural transfor-
mations. Spectral parameters such as MBF, SS, and S, together with scatterer metrics
like ESD and EAC, demonstrate stage-specific correlations with biological response to
therapy. For example, early increases in MBF and SS have been associated with nuclear
fragmentation and apoptosis, while changes in ESD and EAC are linked to necrosis and
extracellular-matrix reorganization [40,50,58-61]. Clinically, significant alterations in these
QUS parameters are often detectable within the first weeks of NAC in patients who re-
spond favorably to treatment, whereas in non-responders such changes are minimal or
absent [58-61].

These properties make QUS a powerful tool for early therapy monitoring, espe-
cially in biologically aggressive subtypes-characterized by rapid progression and a high
risk of recurrence-early identification of non-responders is critical for timely treatment
modification. Achieving a pathological complete response (pCR) substantially improves
prognosis, whereas the absence of pCR is associated with increased recurrence and poorer
survival [62,63]. Early, quantitative assessment using QUS may therefore guide personal-
ized decisions, allowing clinicians to adapt or intensify therapy and ultimately improve
outcomes. The following section details key QUS parameters and their biophysical relation-
ships with tissue microstructure, which form the basis of their diagnostic and prognostic
value in breast cancer therapy monitoring.

3. QUS Parameters and Their Significance in Assessing
Tissue Microstructure

3.1. Spectral QUS Parameters

Spectral analysis of the ultrasound signal is a key component of quantitative ultra-
sound (QUS), enabling assessment of tissue microstructure from the frequency content
of the backscattered radiofrequency (RF) signal. Unlike conventional amplitude analy-
sis, which primarily reflects backscatter intensity, spectral analysis conveys information
about the size, shape, and spatial organization of acoustic scatterers such as cells, nuclei,
and collagen fibers [64-66]. This stems from the relation between frequency and scatterer
scale—higher frequencies interact preferentially with smaller structures, whereas lower fre-
quencies are more sensitive to larger ones. Consequently, the spectrum serves as an indirect
descriptor of dominant structural dimensions, allowing sub-microscopic characterization
that is relevant both for lesion differentiation and therapy monitoring [65-67].

A major advantage of spectral parameters is their repeatability and limited depen-
dence on scanner presets or operator technique, as they are computed from raw RF data.
Among primary features, the spectral slope (SS) estimates predominant scatterer size
by the slope of a linear regression fitted to the log-power spectrum within a defined
band (steeper, more negative slopes — finer structures) [64—66]. The 0 MHz intercept
(SI) is the extrapolated spectrum value near zero frequency, reflecting overall backscatter
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strength [64,65]. The midband fit (MBF) is the mean value of the fitted regression line
within the mid-band of the analyzed spectrum and captures information related to scatterer
density/organization [65-67].

In practice, spectral features are derived through standardized QUS pipelines involv-
ing reference-phantom calibration and attenuation correction, ensuring reproducibility
across systems and acquisition settings. Growing interest also targets model-based spectral
parameters, which provide deeper biophysical insight. Particularly important are the
backscatter coefficient (BSC) and quantities derived from scattering models, including
the effective scatterer diameter (ESD) and effective acoustic concentration (EAC)—log-
scaled density of scatterers; their estimation typically adopts Rayleigh, Gaussian, or related
form-factor models [64,66]. These descriptors are valuable in translational and experi-
mental studies, where precise microstructural characterization underpins diagnostic and
prognostic evaluation.

The clinical value of spectral parameters has been confirmed in numerous studies
demonstrating their ability to detect early microstructural changes in response to neoadju-
vant chemotherapy [32,65-68]. Furthermore, spectral parameters constitute the foundation
for radiomics and Al pipelines. Multiparametric QUS features integrated with molecular
and clinical data can improve response prediction and enable personalized treatment plan-
ning. Through these properties, spectral analysis forms a central pillar of strategies for
early, non-invasive monitoring of cancer therapy efficacy.

A concise summary of key spectral parameters is provided in Table 2.

Table 2. Quantitative ultrasound (QUS) spectral parameters: technical characteristics, sensitivity to
microstructural changes, and clinical relevance.

Parameter

Sensitivity to

Unit Microstructural Changes

Interpretation/Clinical Significance References

spectral slope (SS)

Steeper (more negative) slopes imply
finer dominant structures; useful for
lesion characterization and early
therapy monitoring.

dB/MHz High (dominant scatterer size) [64-67]

0 MHz intercept (SI)

Higher SI indicates stronger
Moderate-high impedance fluctuations/overall scatter;
(backscatter amplitude) sensitive to early treatment-induced
cell death (after proper calibration).

dB [64-66,69]

midband fit (MBF)

Mean of the fitted log-spectrum within
the mid band; increases may reflect
apoptosis/early microstructural [50,64-67]
disorganization; useful for
early response.

Moderate-high

dB (backscatter level)

backscatter coefficient

(BSC)

System-independent physical measure
after reference-phantom normalization
and attenuation compensation; [49,64,66,69]
supports longitudinal,
quantitative comparisons.

High (total

1/(em-sr) backscatter intensity)

effective scatterer
diameter (ESD)

Larger ESD — coarser dominant
microstructure (e.g., edema/necrosis);
mm High (structure size) smaller ESD — finer subcellular [50,64,66]
features (e.g., nuclear condensation).
Trends are context-dependent.

effective acoustic
concentration (EAC)

Higher EAC reflects more or
higher-contrast scatterers; may
1/mm3 High (number of scatterers) decrease with necrosis or increase with [50,64,66]
inflammatory/fibrotic changes;
interpret with SI/MBF/ESD jointly.




Cancers 2025, 17, 3676

6 of 27

Spectral QUS parameters provide quantitative insight into the microstructural orga-
nization of tumor tissue. The spectral slope (SS) primarily reflects the dominant scatterer
size, the 0 MHz intercept (SI) corresponds to the overall backscatter strength, and the
midband fit (MBF) represents the mean backscatter level within the analyzed frequency
range. Model-based parameters such as the effective scatterer diameter (ESD) and effec-
tive acoustic concentration (EAC) further quantify scatterer size and density. Clinically,
early increases in MBF or SS have been associated with apoptosis and microstructural
disorganization during effective therapy, whereas stable or decreasing values may indicate
therapeutic resistance. Together, these parameters form the foundation for reproducible,
biologically interpretable biomarkers of treatment response and provide the quantitative
basis for radiomic and machine-learning models in oncologic imaging.

3.2. Amplitude-Based QUS Parameters

Amplitude-based quantitative ultrasound (QUS) complements spectral analysis by
modeling the statistical distribution of RF-envelope amplitudes within a region of interest,
which enables quantitative characterization of tissue heterogeneity, organization, and mi-
croarchitectural complexity [48,69,70]. The most widely used probability laws are Rayleigh,
Nakagami, and homodyned-K, which link the shape of the amplitude histogram to the
density and spatial arrangement of scatterers [48,69-73]. The Nakagami parameter (m) is
informative for homogeneity: m ~ 1 corresponds to Rayleigh (fully developed speckle),
m < 1 to more heterogeneous/sparse scattering, and m > 1 to increasingly coherent/ordered
microstructure [48,69,70]. The homodyned-K distribution flexibly spans conditions from
Rayleigh-like speckle to signals dominated by strong, discrete scatterers, as may occur
when proliferating tumor cells coexist with fibrous or calcified components [48,71-73].

In practice, these amplitude-based features are derived from envelope statistics af-
ter demodulation of raw RF data and are corrected for acquisition settings and depth-
dependent attenuation to ensure comparability across systems. In addition, to classical
probabilistic models, several complementary parameters enhance the ability of QUS to
quantify complex tissue structure. Entropy of the envelope quantifies disorder in the
backscatter pattern, while Kullback-Leibler (KL) divergence measures deviation of the
tumor’s amplitude distribution from that of a reference tissue (e.g., contralateral or peritu-
moral) [48,70,74,75]. Elevated entropy or KL divergence indicate chaotic, heterogeneous
architecture; their progressive decline during therapy can reflect homogenization or acous-
tic normalization [48,70,74,75].

The effective number of scatterers (ENS) estimates the effective scatterer population
and typically decreases with necrosis or structural homogenization, whereas generalized-
gamma shape parameters («, 3) adapt to real histograms and sensitively capture microstruc-
tural reorganization [48,69,70,72]. Homodyned-K moments further characterize composite
signals generated when small cellular scatterers coexist with larger fibrous or calcified
inclusions—features common in solid tumors under treatment [48,71,73].

Clinically, amplitude-based parameters complement spectral QUS by adding infor-
mation on heterogeneity and organization of the tumor microenvironment [48,69,70,74].
Multiple studies report early on-treatment changes—within the first weeks of neoadju-
vant chemotherapy-in Nakagami—m, entropy/ENS, and homodyned-K-based descriptors
that separate responders from non-responders before measurable size reductions occur
(Table 3) [48,70,74,75].
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Table 3. Quantitative ultrasound (QUS) amplitude-based parameters: technical characteristics,
sensitivity to microstructural changes, and clinical relevance.

Parameter

. Sensitivity to . .. s
Unit Microstructural Changes Interpretation/Clinical Significance References

Nakagami parameter (m)

m = 1: Rayleigh (fully developed
speckle, random scattering); m < 1:
pre-Rayleigh (sparse/heterogeneous);
m > 1: post-Rayleigh (more
coherent/ordered microstructure).
Useful for tracking
organization/fibrosis and
malignancy-related heterogeneity.

Moderate-high

(homogeneity / clustering) [48,76,77]

homodyned K distribution

Flexibly models mixtures from
Rayleigh-like speckle to signals
B High (mixed dominated by strong, discrete [48,71,72,78]
scatterer populations) scatterers (e.g., fibrous or calcified o
inclusions coexisting with

cellular tissue).

envelope entropy

Higher entropy — greater
disorder/heterogeneity; decline during
NAC may indicate homogeniza-
tion/acoustic normalization.

bit High (tissue heterogeneity) [72,79,80]

Kullback-Leibler (KL)
divergence

Statistical distance between tumor
amplitude histogram and reference
tissue (e.g., contralateral /peritumoral);
sensitive to subtle
microstructural alterations.

Moderate-high
- (distributional shift
vs. reference)

[48,74,75]

skewness

Positive skewness suggests presence of
_ Moderate strong scatterers (e.g., calcifications); [75]
(asymmetry /strong scatterers) negative skewness indicates

predominance of finer structures.

kurtosis

Higher kurtosis — more
peaked/“uniform” scattering;
lower — broader tails/marked
variability and heterogeneity.

- Moderate (tail/ peakedness) [75]

effective number of
scatterers (ENS)

High (effective Estimates effective scatterer count;
- scat te%er opulation) decreases with necrosis or structural [81]
pop homogenization during effective NAC.

generalized gamma
distribution parameters («, 3)

Shape parameters capture changes in
microstructural organization; more
flexible than Rayleigh/Nakagami for
real amplitude histograms.

High (flexible fit to real

histograms) 78]

Amplitude-based QUS parameters extend spectral analysis by quantifying tumor
heterogeneity, organization, and tissue remodeling during therapy. The Nakagami param-
eter (m) and homodyned-K statistics describe scatterer clustering and coherence, while
entropy and KL divergence reflect structural disorder relative to normal tissue. Measures
such as ENS or generalized-gamma coefficients capture reductions in effective scatterer
number and evolving microstructural uniformity associated with apoptosis, necrosis, and
fibrosis. Clinically, decreases in heterogeneity metrics and normalization of amplitude
distributions have been linked with favorable therapeutic response, whereas persistent
disorder may indicate treatment resistance. In combination with spectral and attenuation
parameters, amplitude-based QUS offers a robust and biologically interpretable framework
for monitoring neoadjuvant chemotherapy response.

3.3. Attenuation Coefficient (AC)

Among the quantitative ultrasound (QUS) parameters, the attenuation coefficient
(AC) plays a particularly important role, as it reflects the decrease in the amplitude of the
ultrasonic signal as it propagates through tissue. This phenomenon results from the com-
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bined effects of energy absorption and scattering by internal tissue structures. AC values
depend on the physical and microstructural properties of the examined tissue, including
cell density, extracellular matrix composition, collagen content, and vascularization [82-86].
Consequently, the attenuation coefficient can serve as an indirect biomarker of biological
changes occurring within tumors during systemic therapy.

Measurement of AC is based on analyzing the relationship between the amplitude (or
energy) of the radiofrequency (RF) signal and depth of penetration. Techniques include
spectral comparison with reference media, energy-ratio algorithms across frequency bands,
and more advanced methods such as wavelet-domain and model-based estimation [84,85].
Because soft tissues naturally attenuate ultrasound waves, accurate estimation of AC
requires correction for propagation losses and careful control of acquisition parameters.
A major limitation in clinical research remains the lack of standardized acquisition and
processing protocols, which hampers direct comparison of results across institutions [85,86].

To address this challenge, international standardization efforts, such as those led
by the Quantitative Imaging Biomarkers Alliance (QIBA) of the Radiological Society of
North America (RSNA), and by the International Electrotechnical Commission (IEC),
are developing consensus guidelines and reference phantoms to harmonize acquisition
parameters and analysis pipelines for attenuation imaging. These initiatives aim to improve
reproducibility and facilitate the clinical translation of AC-based QUS techniques [85,86].

In the context of monitoring the response to neoadjuvant chemotherapy (NAC) in
breast cancer, AC provides valuable insight into microstructural remodeling of tumor
tissue. Effective treatment triggers a cascade of biological processes—including cellular
reorganization, nuclear fragmentation, formation of apoptotic bodies, and subsequent
necrosis and fibrosis—that significantly alter tissue acoustic properties. Clinical studies
have shown that, in well-responding patients, AC exhibits measurable and reproducible
changes after only a few treatment cycles. Several studies have reported an increase in
AC, attributed to the development of fibrosis and necrosis, which enhance absorption and
scattering of ultrasound waves. Others have described a decrease in AC, interpreted as a
result of cell disintegration and tissue homogenization. Conversely, a lack of significant AC
variation has been consistently observed in non-responding tumors and may serve as an
early indicator for treatment adaptation or intensification [87-89].

From a clinical standpoint, interpreting AC requires caution because the direction and
magnitude of its change can depend on multiple factors, including ultrasound frequency,
treatment regimen, analyzed tissue region (e.g., tumor core vs. peritumoral margin), and
vascular status. Nevertheless, dynamic AC monitoring during NAC remains a promising,
non-invasive adjunct to conventional morphological imaging, providing early insight into
treatment efficacy and complementing other QUS biomarkers.

3.4. Parametric Mapping and Texture-Based Assessment of Tumor Heterogeneity

The mean values of QUS parameters provide information on the global acoustic
properties of the tumor; however, their spatial analysis in the form of parametric maps
allows for capturing the internal heterogeneity of its microstructure [90,91]. Parametric
maps depict the spatial distribution of locally calculated parameter values across the
entire tumor, enabling visualization of regions exhibiting varying degrees of biological
response. The process of generating such maps involves the acquisition of raw RF data,
segmentation of the region of interest, computation of parameters within a sliding analysis
window, and interpolation of the results to a spatial grid. The spatial resolution of the
maps depends on the size of the analysis window: smaller windows allow for the detection
of fine microarchitectural details but increase noise levels, whereas larger windows yield
more stable estimates at the cost of losing information about small-scale structures.
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A natural extension of the parametric mapping approach is texture analysis, which
describes the spatial organization of signals within QUS maps [92]. Classical texture
analysis utilizes parameters derived from the gray-level co-occurrence matrix (GLCM),
such as entropy, contrast, homogeneity, and correlation [93]. These parameters reflect
subtle differences in tissue architecture—for example, an increase in entropy indicates
higher tumor heterogeneity, a decrease in contrast and correlation reflects loss of structural
organization, and variations in homogeneity may suggest remodeling of the extracellular
matrix fibers [94,95].

In recent years, higher-order matrices have been increasingly applied to capture more
complex spatial patterns. Examples include the gray-level run-length matrix (GLRLM)
and the gray-level difference matrix (GLDM), which describe the length and intensity
of sequences of similar pixel values. The gray-level amplitude matrix (GLAM) enables
quantitative assessment of amplitude variations relative to gray-level intensity, providing
additional information on the spatial dynamics of ultrasonic energy distribution [90,96,97].
Parameters such as short-run emphasis, long-run emphasis, and high gray-level emphasis
have proven particularly useful in describing the degree of tissue organization and its
remodeling in response to therapy. Even more advanced methods include higher-order
statistical analyses, such as third- and fourth-order moments (skewness and kurtosis of
texture distributions), and wavelet-based radiomics, which decompose parametric maps
into frequency components and analyze spatial patterns at multiple scales. Such “texture
derivatives,” as described by Dasgupta et al. extend the classical QUS radiomic framework
and enable the development of more complex predictive indices [97]. In their study on QUS
radiomics for evaluating response to neoadjuvant chemotherapy (NAC) in patients with
locally advanced breast cancer, the inclusion of higher-order texture features significantly
improved predictive accuracy compared to first-order metrics.

From a clinical perspective, the relevance of QUS texture analysis is twofold. First,
it enables the detection of subtle, regional variations in tumor response that may reflect
intratumoral heterogeneity, including the presence of subpopulations of cells with vary-
ing sensitivity to treatment. Second, aggregation of information from texture maps—for
instance, the proportion of high-entropy or low-homogeneity regions within the entire
tumor—may serve as a predictive biomarker at the individual patient level. Thus, texture
analysis of QUS parametric maps not only complements traditional morphological assess-
ments but also substantially enhances the potential for therapy personalization and clinical
decision support during neoadjuvant treatment.

A schematic overview of the quantitative ultrasound (QUS) workflow, illustrating the
analytical pipeline from raw RF data to clinical interpretation and histologic correlation, is
presented in Figure 1.

3.5. Integration of QUS with Other Data Sources

Integration of quantitative ultrasound (QUS) with clinical, molecular, and multimodal
imaging data represents one of the key directions in advancing methods for monitor-
ing response to neoadjuvant chemotherapy (NAC) in breast cancer. Incorporating QUS
biomarkers—based on parameters such as scattering, attenuation, and amplitude-based
signal statistics—together with clinical factors (e.g., age, tumor stage, lymph node sta-
tus, Ki-67 expression), molecular characteristics (e.g., ER, PR, HER2 status, molecular
subtypes, transcriptomic signatures), and additional imaging modalities (MRL, mammogra-
phy, elastography), as well as radiomic features and artificial intelligence (Al) algorithms,
enables the construction of multimodal predictive models with high translational poten-
tial [38—42,47,48,53,98-102].
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Figure 1. Workflow of quantitative ultrasound (QUS) for monitoring neoadjuvant chemother-
apy (NAC) response in breast cancer. The diagram summarizes the analytical and translational
pipeline: acquisition of radiofrequency (RF) data, preprocessing and calibration, extraction of spectral,
amplitude-based, and attenuation parameters, generation of parametric and texture maps, correlation
with histopathologic findings (H&E, IHC), and integration into clinical decision-support systems
(PACS/HIS). QUS biomarkers capture microstructural remodeling such as apoptosis, necrosis, and
fibrosis, enabling early response assessment and adaptive treatment planning.

This integrative approach reflects a broader trend in modern oncologic imaging,
where combining multiple complementary modalities and data sources allows for a more
comprehensive understanding of tumor biology and treatment response. By linking clinical,
molecular, and imaging information, such models provide a multidimensional framework
that enhances both predictive accuracy and biological interpretability.
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A particularly valuable aspect of this integration is the ability to capture and visualize
tumor heterogeneity. QUS parametric maps can be transformed into regional probabil-
ity maps of treatment response, enabling identification of subregions with differential
chemosensitivity and supporting biopsy targeting or surgical margin planning [7,99,102].
These spatially resolved biomarkers bridge the gap between quantitative imaging and ther-
apeutic decision-making, offering a unique opportunity for precision-guided interventions.

Current modeling strategies employ both conventional machine learning algorithms—
such as support vector machines (SVM), k-nearest neighbors (KNN), and linear discrimi-
nant analysis (LDA)—and advanced deep learning architectures, including convolutional
neural networks (CNN), 3D-CNNs, and vision transformers (ViT). These models are capa-
ble of analyzing complex spatiotemporal heterogeneity patterns within volumetric QUS
data [42,46,90,98-102]. Successful implementation of such approaches requires harmoniza-
tion of imaging data across centers, control of confounding variables, and the incorporation
of explainable artificial intelligence (XAI) methods to ensure transparency, reproducibility,
and clinical interpretability of predictions.

Together, these developments highlight the growing role of QUS as a core component
of multimodal imaging and integrative oncology, providing quantitative, biologically
grounded biomarkers that can guide individualized therapy and support the transition
toward adaptive, data-driven cancer care.

4. Translational and Clinical Applications of Quantitative Ultrasound in
Breast Cancer

Over the past two decades, quantitative ultrasound (QUS) has evolved from a research-
oriented imaging technique into a promising biomarker-driven clinical tool for charac-
terizing breast tumor microstructure, monitoring therapeutic response, and supporting
personalized treatment strategies. The translational pathway of QUS—from biophysical
validation in phantoms and animal models, through single-center clinical studies, to ongo-
ing multi-institutional Al-integrated trials—illustrates its growing maturity and readiness
for clinical translation.

This section provides a narrative synthesis of key evidence across preclinical and
clinical contexts, highlighting how QUS-derived biomarkers contribute to early therapy-
response prediction, biological interpretation of tissue remodeling, and adaptive refinement
of neoadjuvant chemotherapy regimens

4.1. Preclinical Studies (Mice, Phantoms, In Vitro Models)

The foundations of quantitative ultrasound (QUS) as a reliable diagnostic and prognos-
tic imaging modality were established through preclinical research. Experimental studies
using animal models, acoustic phantoms, and in vitro systems provided essential insights
into how ultrasonic backscatter relates to tissue microstructure and therapy-induced bi-
ological alterations. These controlled environments allowed for systematic evaluation of
QUS parameters, analysis algorithms, and acquisition protocols before their translation
into clinical practice.

Among these approaches, murine xenograft models play a central role, enabling lon-
gitudinal and non-invasive monitoring of microstructural changes during chemotherapy,
radiotherapy, or targeted therapy. In pioneering work, Czarnota and colleagues demon-
strated that high-frequency ultrasound can detect apoptosis in vitro, in situ, and in vivo,
with characteristic spectral and backscatter changes corresponding to chromatin conden-
sation and nuclear fragmentation [103]. Subsequent studies confirmed that QUS-derived
parameters—such as midband fit (MBF), spectral slope (SS), 0 MHz intercept (SI), and
scattering metrics including the effective scatterer diameter (ESD) and effective acoustic



Cancers 2025, 17, 3676

12 of 27

concentration (EAC)—correlate strongly with biological processes such as apoptosis, extra-
cellular matrix remodeling, and changes in cellular density [36,40,58,104]. These biomarkers
have been consistently validated through histopathology and immunohistochemical assays
of cell death, reinforcing their translational significance.

Acoustic phantoms, designed to mimic the scattering and attenuation properties of
soft tissues, constitute an essential calibration tool in preclinical QUS research. They enable
precise control of scatterer number, size, and spatial distribution, facilitating systematic as-
sessment of how these factors influence QUS spectral and statistical parameters [47,48]. By
providing standardized reference media, phantom-based calibration enhances reproducibil-
ity and ensures cross-platform comparability of QUS measurements across experimental
setups and institutions.

In vitro models complement these approaches by offering full control over the mi-
croarchitecture of the studied material. Engineered tissue constructs and cultured cell
systems allow isolation of specific structural features—such as cell size, packing density,
and extracellular composition—and quantitative correlation of these characteristics with
radiofrequency (RF) signal statistics. Such experiments have been instrumental in identify-
ing QUS parameters most sensitive to distinct biological processes, including apoptosis,
necrosis, and fibrosis [47,48,58,103].

Collectively, preclinical investigations have established the biophysical foundations
and translational relevance of QUS biomarkers, demonstrating their sensitivity to cell death,
extracellular matrix reorganization, and therapy-induced microstructural remodeling. This
evidence provides the mechanistic rationale for subsequent clinical investigations in breast
cancer and other solid tumors.

A summary of the principal preclinical QUS applications across animal, phantom, and
in vitro models is presented in Table 4.

Table 4. Summary of preclinical QUS applications across experimental models.

Model

Analyzed QUS

QUS Application Parameters

Key Findings References

Murine tumor models

Monitoring response to

radiotherapy, and targeted
therapies; detection of

Early detection of
microstructural alterations
associated with apoptosis

and cell death; strong
correlation with
histopathology

chemotherapy,

MBE, SS, SI, ESD, EAC [36,40,58,98,103-105]
apoptosis and
microstructural
remodeling

In vitro cellular models

QUS detects
morphological changes

Assessment of apoptosis
and necrosis effects on
ultrasonic backscatter

MBE, SS, SI, ESD, EAC

such as chromatin
condensation and nuclear
fragmentation during
programmed cell death

[47,48,58,103,104]

Acoustic phantoms

Calibration and validation
of QUS systems;
repeatability and
cross-platform testing

BSC, AC, ESD, EAC

Provide standardized
reference media for
system calibration; enable
evaluation of
scatterer-related effects on
spectral and
statistical parameters

[47,48]

Ex vivo tissue models

Validation of QUS
parameters in excised
tumor specimens

MBE, SS, SI, ESD, EAC

Confirmed correlation
between QUS-derived
parameters and tissue
microstructural
organization in
resected samples

[47,48,103,104]

MBF—Midband Fit; SS—Spectral Slope; SI—0 Mhz Intercept; ESD—Effective Scatterer Diameter; EAC—Effective

Acoustic Concentration; BSC—Backscatter Coefficient.
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4.2. Single-Center Clinical Studies of QUS

Following the promising results obtained in preclinical tumor models, quantitative
ultrasound (QUS) was introduced into clinical studies involving patients with breast cancer
undergoing neoadjuvant chemotherapy (NAC). Early observations demonstrated that
spectral parameters such as midband fit (MBF), spectral slope (SS), and 0 Mhz intercept (SI)
increased within the first 1-2 weeks of therapy in patients who responded favorably to treat-
ment. These changes were interpreted as signatures of apoptosis and microarchitectural
remodeling of tumor tissue [106]. Subsequent analyses confirmed that early alterations in
these parameters correlated with both NAC response and long-term outcomes [40,58,107].

Expanded single-center studies investigated tumor heterogeneity and texture within
QUS parametric maps. Combining conventional QUS parameters with textural and molec-
ular features enabled early prediction of treatment response with accuracies of 78-86%
during the initial therapy phase [41]. Another study assessed the repeatability of QUS
biomarkers, confirming high inter-system consistency under clinical conditions [108].

A major advancement was the demonstration that baseline QUS parameters—obtained
before NAC initiation and measured in both tumor core and peritumoral regions—could
predict treatment efficacy and overall survival, highlighting the potential of QUS for early
patient stratification [36]. Building on this, radiomic analyses incorporating higher-order
texture derivatives further improved predictive performance, enabling earlier differentia-
tion between pathologic complete responders (pCR) and non-responders [97].

Further investigations confirmed the utility of statistical scattering parameters and
the integrated backscatter coefficient (IBSC) for early response assessment, yielding AUC
values up to 0.91 when combining multiple QUS biomarkers, and approximately 0.82 after
the second or third NAC cycle for IBSC alone [109]. Quantitative echogenicity analyses
also revealed significant associations with treatment outcomes, allowing early differen-
tiation between responders and non-responders [74]. Moreover, divergence metrics de-
rived from RF-envelope signal distributions—such as Kullback-Leibler and Kolmogorov—
Smirnov statistics—enabled detection of non-response as early as after the first NAC
dose (AUC = 0.83-0.84), with predictive accuracy improving to ~0.90-0.91 after the third
dose [110].

Significant progress has also resulted from the integration of machine-learning and
deep-learning techniques. Combining QUS biomarkers with radiomic features and em-
ploying transfer learning on parametric maps improved prediction accuracy even before
therapy initiation [42,46,100]. Furthermore, early QUS parameter changes—detectable as
early as week 4 of therapy—were associated not only with pathologic response but also
with recurrence risk, underscoring their prognostic value [90]. Most recently, prospective
validation studies have confirmed the clinical utility of QUS-based models, including textu-
ral biomarkers, and their potential role in guiding early treatment intensification during
NAC [111].

To provide a comprehensive overview of this evidence, Table 5 summarizes the princi-
pal single-center clinical studies employing QUS for monitoring breast cancer response to
neoadjuvant chemotherapy.

To complement the findings summarized in Table 5, Figure 2 presents representative
examples of quantitative ultrasound (QUS) parametric maps overlaid on B-mode images
of breast tumors obtained during neoadjuvant chemotherapy. The integrated backscat-
ter coefficient (IBSC) maps visualize spatial heterogeneity and temporal microstructural
changes associated with treatment response. Warmer color regions (yellow-red) corre-
spond to areas of increased backscatter intensity and structural organization, while cooler
regions (blue—cyan) indicate decreased scattering and tissue homogenization. These ex-
amples illustrate how QUS biomarkers such as IBSC enable non-invasive visualization of
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therapy-induced remodeling, supporting early differentiation between responding and
non-responding tumors.

Table 5. Summary of key single-center clinical studies employing quantitative ultrasound (QUS) for

monitoring breast cancer response to neoadjuvant chemotherapy.

Year (Journal) No. of Patients Assessment Time Arf,ilr};:igtggs Key Findings References
2005-2013 Early rise in QUS parameters among
(Cancer Res, Clin ~20-30 Weeks 1-2 MBE, S8, SI responders; no change in resistant [58,106]
Cancer Res) tumors; markers of apoptosis an
microstructural remodeling
QUS + texture Combined QUS, texture, and
2018 (PLoS One) 96 Weeks 1, 4, 8 + molecular molecular biomarkers yielded 78-86% [41]
accuracy for early response prediction
2020 (Ultrsound QUS + texture High repeatability and inter-system
Med Biol) 100100 Weeks 1, 4,8 (2 scanners) consistency in clinical measurements [108]
2017 (Sci Rep) 56 Pre-NAC baseline QUS (tumor core Baseline QUS predicts NAC response 136]
+ margin) and 5-year recurrence-free survival .
2022 (Cancers) 83 Week 4 QUS + higher- Early prediction of recurrence; [90]
order texture accuracy ~ 81%
After each NAC IBSC + envelope AUC 0'82_0'91‘ (2nd—3r§1 cycle);
2019 (PLoS One) 16/24 tumors cydle (1-5) statistics (H-K) response predicted earlier than [109]
Y size reduction
Non-response detected after 1st dose
2022 (Med Phys) 37 tumors Af;a hs(’;saend KI%IP e/rffli?ofr:n (AUC ~0.83-0.84); improved accuracy [110]
P after 3rd (AUC ~0.90-0.91)
Baseline + 7 days Quantitative Echogenicity changes correlate with
2021 (Cancers) 24 after 1-4 cycles echogenicity treatment outcome [74]
. .. In-treatment QUS features outperform
2020 (PLoS One) 59 During NAC QUS radiomics baseline in predicting pCR [100]
. . Pre-treatment QUS-based deep
2022 (Sci Rep) 181 Pre-NAC N‘[:’llltt}llp gzzmleetzlrcn%US learning enables accurate [46]
P & response prediction
. Transfer learning on Transfer learning improves )
2024 (Sci Rep) 174 Pre-NAC QUS maps pre-treatment response prediction [42]
2024 (IEEE Trans 56 Adaptive QUS-based Serial probabilistic mapping enables [99]
Biomed Eng) (serial NAC) probability maps adaptive response classification
Prospective validation of early
2025 (Cancers) 100 Weeks 1, 4, 8 m?)gesl :re:lei)élt;gfm prediction model; supports [111]
treatment intensification
Ongoing . . . .
(ClinicalTrials gov ~ >100 (planned) ~ Adaptive NAC Parametric QUS e D rote NG [12)
NCT04050228)

MBF—midband fit; SS—spectral slope; SI—0 Mhz intercept; IBSC—integrated backscatter coefficient; KLD—
Kullback-Leibler divergence; KSS—Kolmogorov-Smirnov statistic; NAC—neoadjuvant chemotherapy; pCR—
pathologic complete response.

The lower row presents images from a patient achieving a pathologic complete re-
sponse (0% RMC—Residual Malignant Cells), with marked increases in IBSC and pro-
nounced spatial heterogeneity reflecting therapy-induced microstructural remodeling.
Warmer colors (red-yellow) indicate regions of increased scattering and tissue organization,
whereas cooler tones (blue—cyan) correspond to homogenized or necrotic tissue areas.
Together, these examples illustrate the potential of QUS biomarkers to non-invasively
visualize treatment response dynamics during NAC.
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Figure 2. Representative quantitative ultrasound (QUS) parametric maps based on the integrated
backscatter coefficient (IBSC) overlaid on B-mode images of breast tumors during neoadjuvant
chemotherapy (NAC). The upper row shows IBSC parametric maps from a patient exhibiting no
response to NAC, characterized by persistently low and spatially homogeneous backscatter values.

4.3. Integration of Quantitative Ultrasound with Multimodal and Multisource Data

The expansion of quantitative ultrasound (QUS) beyond traditional single-parameter
analysis toward the integration of imaging, molecular, and clinical data marks a new stage
in the evolution of methods for monitoring response to neoadjuvant chemotherapy (NAC)
in breast cancer. Combining QUS biomarkers—based on parameters such as scattering,
attenuation, and amplitude-based signal statistics—with clinical factors (e.g., patient age,
tumor stage, lymph node status, Ki-67 expression), molecular characteristics (e.g., ER, PR,
HER?2 status, molecular subtypes, transcriptomic signatures), and other imaging modalities
(MRI, mammography, elastography), as well as radiomic features and artificial intelligence
(AI) algorithms, enables the construction of multimodal predictive models with high
translational potential [38—42,47,48,53,98-102].

A particularly valuable aspect of such integration is its ability to capture and visu-
alize intratumoral heterogeneity. QUS parametric maps can be transformed into spatial
probability maps of treatment response, allowing identification of subregions with dif-
ferential chemosensitivity and supporting targeted biopsy planning or surgical margin
assessment [7,99,102]. This visual representation of biological variability within the tu-
mor provides a powerful framework for personalizing therapy and adapting treatment
strategies in real time.

Modern modeling strategies employ both traditional machine-learning algorithms—
such as support vector machines (SVM), k-nearest neighbors (KNN), and linear discrimi-
nant analysis (LDA)—and advanced deep-learning architectures, including convolutional
neural networks (CNN), three-dimensional CNNs (3D-CNN), and vision transformers
(ViT). These models are capable of capturing complex spatiotemporal patterns in volu-
metric QUS data [42,46,90,98-102]. Successful implementation requires harmonization
of imaging data across centers and platforms, control of confounding factors, and the
incorporation of explainable artificial intelligence (XAI) frameworks to ensure transparency
and interpretability of predictions for clinical decision-making.

Integrated approaches that combine QUS data with clinical, molecular, and radiomic
information significantly enhance the accuracy and robustness of treatment-response
prediction. Such models enable early therapeutic adaptation and support precision-
oncology strategies. Preliminary validations have confirmed their reproducibility and
reliability, underscoring their translational potential and clinical relevance in modern
oncology [38,41,42,45,46,99-102,113-119].

The most representative studies illustrating these integrative approaches—combining
QUS with clinical, molecular, and radiomic data—are summarized in Table 6, which outlines
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the chronological evolution from early spectral-texture models to advanced deep-learning
and multimodal frameworks.

Table 6. Integrative QUS-based models predicting response to neoadjuvant chemotherapy (NAC)
in breast cancer. The table outlines multimodal and Al-enhanced approaches combining QUS with
texture, molecular, clinical, and radiomic data, showing progressive performance gains from early
spectral-texture models to recent deep-learning and longitudinal frameworks.

No. of

Year (Journal) Patients/Centers Assessment Time Model Type Key Findings References
2018 Pretreament, Weeks 1, QUS + texture Combined QUS, textur?, and molecu- ,
(PLos ONE) 96 4, 8, presurgery + molecular lar features predicted re- [41]
T sponse with up to 86% accuracy
QUS, texture 87% accuracy in predicting NAC
2023 derivatives, response before treatment; supports
(Sci Rep) 208 Pretreatment core-margin, risk stratification and [102]
molecular personalized therapy
2023 QUS (B-mode LDUR model (B-mode US + SWE):
(Academic 255 Pretreatment US, SWE), AUC 0.97, Sensitivity 95.5%, [45]
Radiology) molecular, CNN Specificity 91.1%
2023 112 Pre-, 2nd and 4th QUS (BUS), SWE, Model LDUR (BUS + SWE): AUC 0.97, [120]
(Acad Radiol) NAC cycles delta radiomics Sens 95.5%, Spec 91.1%
QUS parametric Transfer learning: balanced accuracy
. PretreatmentWeeks 1, p . 86%, F1-score 0.83; effective prediction ,
2024 (Sci Rep) 174100 maps (core + margin), [42]
4,8 deep learnin of non-responders (NR) vs.
P & responders (RR)
QUES, texture
2025 (J Imaging) 56 Pretreatment derivatives, Sensitivity 94%, Specificity 100% [38]

molecular subtype

Abbreviations: QUS—Quantitative Ultrasound; BUS—B-mode Ultrasound; SWE—Shear Wave Elastography;
NAC—Neoadjuvant Chemotherapy; Acc—Accuracy; Sens—Sensitivity; Spec—Specificity; AUC—Area Under the
Curve; NR—Non-Responder; RR—Responder.

4.4. Multi-Institutional Validation of QUS for Monitoring Neoadjuvant Chemotherapy Response

The development of multi-institutional studies marks a crucial step in translating
quantitative ultrasound (QUS) from experimental and single-center research into clinical
application. These collaborative efforts have enabled evaluation not only of acquisition
reproducibility and inter-system comparability of QUS parameters but also of the ro-
bustness of predictive models across diverse patient populations and real-world clinical
settings [100,101].

Large-scale international collaborations have contributed to the standardization of
QUS acquisition and analysis protocols, reducing operator- and equipment-dependent
variability. As a result, QUS has been demonstrated to be a reproducible and reliable imag-
ing biomarker for monitoring neoadjuvant chemotherapy (NAC) response across multiple
centers, with high predictive consistency and cross-platform generalizability [100,101].

Table 7 summarizes the key multi-institutional studies evaluating the clinical perfor-
mance of QUS in NAC response monitoring. One prospective investigation conducted
across four centers showed that radiomic features extracted from pre-treatment QUS data
predicted NAC response with an accuracy of 87%, supporting early patient stratification
and treatment personalization [100]. Another multi-center study involving three insti-
tutions found that in-treatment QUS features acquired at weeks 1 and 4 outperformed
baseline parameters in predicting therapeutic response, achieving an area under the curve
(AUC) of 0.87 using a support vector machine classifier [100]. Complementary findings
from a separate multi-institutional cohort demonstrated that combining QUS, texture, and
molecular features enabled early prediction of response with an accuracy of up to 86% at
week 4 [39].
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Table 7. Summary of multi-institutional studies using QUS to monitor response to neoadjuvant
chemotherapy in breast cancer.

Year (Journal)

No. of Analyzed QUS
Patients/Centers Parameters

Assessment Time Key Findings References

Combined QUS, texture, and

2018 96 patients, Pretreatment, QUS + texture + molecular features predicted
AN Weeks 1, 4, 8, . [41]
(PLoS One) multi-institutional ro-surver molecular response with up to
P sery 86% accuracy at week 4
Radiomic features predicted
NAC response with
2020 82 patients, 4 centers Pretreatment Pretreatm ent QUS 87% accuracy; supported [100]
(Cancer Med) radiomics . T o
early risk stratification and
personalized therapy
Siamese multi-task network
2022 393 patients, Pre-treatment, after Deep learning on US predicted pCR with [121]
(eClinicalMedicine) 3 hospitals 1st/2nd NAC cycles images AUC 0.90-0.99 in
external validation
QUS-based model
Randomized Pretreatment, QUS-guided prospectively validated; early
2024 (Front Oncol) multi-center trial100 Weeks 1, 4 adaptive NAC prediction enabled (101]

therapy adaptation

Abbreviations: QUS—Quantitative Ultrasound; NAC—Neoadjuvant Chemotherapy; AUC—Area Under the
Curve; pCR—Pathologic Complete Response; SVM—Support Vector Machine.

A major translational milestone was achieved through a randomized, multi-institutional
feasibility trial implementing QUS-guided adaptive NAC. In this study, early prediction
of therapeutic response enabled real-time treatment modification and was successfully
integrated into clinical workflows, demonstrating feasibility for precision oncology applica-
tions [101].

Building on these efforts, recent deep learning—based approaches have been applied
to longitudinal ultrasound datasets collected from multiple hospitals. A Siamese multi-task
neural network trained on such data achieved AUC values ranging from 0.90 to 0.99 in
external validation, confirming the potential of advanced QUS analytics for early and
accurate prediction of pathological response [121].

Together, these multi-institutional studies highlight the maturity of QUS as a trans-
lational imaging biomarker and underscore the importance of standardized, large-scale
validation to enable its eventual clinical adoption for adaptive therapy monitoring.

5. Limitations and Future Directions of Quantitative Ultrasound in
Neoadjuvant Therapy Monitoring

5.1. Clinical Outlook and Early Predictive Potential

The principal clinical advantage of quantitative ultrasound (QUS) in the neoadjuvant
setting lies in its exceptional sensitivity to early microstructural changes within the tumor.
During the first three chemotherapy cycles—precisely the period with the highest decision-
making value—repeated QUS measurements of spectral and scattering parameters (MBF,
SS, SI, ESD, EAC), complemented by texture analysis, can reveal early trends in therapeutic
response long before they become morphologically apparent in conventional size-based as-
sessments [37,41,97,102,119,122]. In clinical practice, the most efficient approach involves a
standardized two-visit protocol: the first examination serves as an early-response screening
after the initial treatment cycle, while the second, performed after the third cycle, confirms
the response trajectory. This strategy enables rapid identification of non-responders and
supports timely adaptation of therapy, reducing the risk of ineffective or unnecessarily
prolonged treatment [37,41,119].
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Beyond early detection, QUS allows detailed differentiation between complete, partial,
and non-response. Parametric and probability maps enable visualization of spatially
heterogeneous response patterns, revealing resistant subregions within the tumor. This
information has direct therapeutic implications—ranging from early regimen modification
or intensification, through targeted rescue biopsies, to optimized surgical planning with
more precise margin assessment [97,99,123]. Clinically useful implementations include
integrated QUS reports that combine global quantitative metrics with regional response
visualization and interpretive commentary addressing discrepancies between ultrasound,
MRI, and molecular findings [38,41,100,102].

The clinical potential of adaptive, QUS-guided monitoring is particularly evident in
triple-negative breast cancer (TNBC), where rapid tumor kinetics and a narrow therapeutic
window necessitate early response evaluation. In HER2-positive disease, QUS can inform
treatment de-escalation in patients demonstrating strong early response signatures and
conversely support continuation of full-intensity regimens in those with unfavorable early
indicators [101,121,124,125]. In luminal subtypes, QUS may aid in adjusting the duration
and intensity of NAC, where response dynamics are typically slower and less predictable.

In breast-conserving surgery, QUS provides valuable spatial information on the distri-
bution of residual viable tissue following NAC, facilitating precise resection planning and
minimizing the risk of inadequate margins [98,99]. A logical extension of this concept is
axillary assessment: serial QUS evaluation of lymph nodes before and during NAC can
identify nodal regression or persistence, supporting the choice of sentinel node biopsy over
full dissection and guiding targeted axillary dissection (TAD) procedures [126,127]. Further-
more, in metastatic settings, QUS serves as a rapid, repeatable biomarker for monitoring
response in ultrasound-accessible lesions (e.g., liver or soft tissue), where early assessment
of subsequent treatment lines is clinically valuable [53,100,122].

To transition from research to routine clinical application, three foundational elements
must be established. First, standardized protocols for data acquisition and processing—
covering fixed presets, transducer selection, calibration procedures, phantom-based nor-
malization, and comprehensive metadata documentation—are required. Second, explicit
interpretive frameworks should define quantitative thresholds and composite indices,
alongside decision-support algorithms enabling adaptive therapy guidance. Third, robust
multicenter validation is essential, ideally through prospective, interventional trials in
which treatment adjustments are explicitly informed by QUS findings.

In parallel, the integration of QUS reporting into Picture Archiving and Communica-
tion System (PACS) and Hospital Information System (HIS) platforms, structured clinician
training, and cost-effectiveness analyses will be crucial. The ultimate value of QUS lies
not only in improving predictive precision but also in minimizing unnecessary toxicity,
preventing treatment delays, and enabling personalized therapy from the earliest stages of
management. Establishing these frameworks is essential for transitioning QUS from an
emerging research tool to a clinically actionable instrument in precision oncology.

A more widespread clinical deployment of QUS will depend not only on technical val-
idation but also on its integration into everyday oncology workflows. Key considerations
include operator training and competency assessment—particularly in interpreting quanti-
tative pparametric maps rather than conventional B-mode images—together with seamless
interoperability between QUS software, PACS, and HISs to enable automated data archiv-
ing and reporting. Time efficiency also plays a critical role: whil current analyses are often
performed offline, the development of near real-time QUS pipelines could significantly
shorten interpretation time and facilitate clinical adoption. From an economic perspective,
QUS represents a low-cost, accessible, and repeatable imaging option compared with mag-
netic resonance imaging (MRI) or contrast-enhanced ultrasound, providing an opportunity
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to monitor treatment response more frequently without increasing healthcare costs. Im-
portantly, recent oncologic evidence indicates that different patterns of residual disease
after neoadjuvant chemotherapy are independently associated with long-term outcomes
in breast cancer [128]. By enabling early visualization of microstructural heterogeneity
and residual viable tissue, QUS may support prognostic stratification and guide person-
alized surgical or systemic treatment decisions, thereby enhancing its translational and
clinical impact.

5.2. Technical Challenges and Standardization Issues

Despite strong clinical evidence supporting the utility of quantitative ultrasound
(QUS), several critical challenges must be addressed before this technology can be fully inte-
grated into routine oncological workflows. One of the most significant limitations remains
the lack of comprehensive standardization in both data acquisition and signal processing.
QUS parameters are inherently sensitive to scanner presets, transducer characteristics,
beamforming configurations, and post-processing algorithms, all of which contribute to
variability across institutions and ultrasound systems. Although calibration phantoms
and harmonization initiatives—such as the Quantitative Imaging Biomarkers Alliance
(QIBA) and the Partnership for the Advancement of Quantitative Ultrasound in Medicine
(PAQUS)—represent meaningful steps toward consistency, universally accepted clinical
protocols have yet to be established.

In recent years, these international initiatives have begun to define reproducibility
frameworks for QUS biomarkers. The QIBA Ultrasound Committee has issued consensus
profiles specifying acquisition parameters, calibration procedures, and performance metrics
for backscatter and attenuation imaging. In parallel, PAQUS promotes benchmarking
of inter-system variability through standardized tissue-mimicking phantom studies and
encourages the creation of open-access reference datasets. Adoption of such frameworks
could substantially reduce variability arising from differences in scanner hardware, trans-
ducer design, or post-processing algorithms. To move toward full harmonization, several
practical steps are recommended: (1) implementation of cross-platform calibration using
phantoms with traceable acoustic properties; (2) establishment of shared repositories of
raw RF data enabling reproducibility testing, algorithm benchmarking, and Al training;
(3) publication of vendor-neutral analysis pipelines with transparent metadata documen-
tation; and (4) incorporation of standardization protocols in multicenter clinical trials to
derive normative QUS reference ranges. Collectively, these actions would enhance the
reliability, comparability, and translational readiness of QUS biomarkers across platforms
and clinical environments.

Equally important is the interpretation of QUS data, which still lacks validated quanti-
tative thresholds or decision rules for clinical application. Clinicians require standardized
indices and structured reporting systems capable of categorizing tumors as “responding”
or “non-responding,” rather than providing relative parameter changes without actionable
context. Tumor heterogeneity further complicates interpretation, as global mean metrics
may obscure spatially localized resistant subregions. Addressing these limitations will
require advanced regional analysis tools—such as parametric probability maps and ex-
plainable Al algorithms—capable of integrating QUS findings with MRI, pathology, and
molecular data in a transparent and interpretable manner suitable for multidisciplinary
tumor board discussions.

From a hardware perspective, inter-system variability remains a major translational
barrier. Differences in transducer bandwidth, reconstruction filters, dynamic range, and
vendor-specific image-formation pipelines may limit cross-platform generalizability. Tech-
niques such as digital phantom calibration, transfer learning, and harmonized data nor-



Cancers 2025, 17, 3676

20 of 27

malization can mitigate these discrepancies, yet robust multicenter validation remains
essential to confirm reproducibility. Furthermore, regulatory approval pathways for Al-
based QUS applications must align with international Software as a Medical Device (SaMD)
standards, ensuring traceability, explain ability, and clinical safety throughout development
and implementation.

Another crucial challenge involves the integration of QUS into everyday clinical
practice. At present, most analyses are performed offline, outside standard ultrasound
workflows, prolonging interpretation time and requiring specialized expertise. Real-time
deployment will depend on the development of automated analysis pipelines, validated Al
models, and seamless interoperability with Picture Archiving and Communication Systems
(PACS) and Hospital Information Systems (HIS). Without such integration, widespread
clinical adoption will remain limited. Achieving this transition will require close collabora-
tion among engineers, radiologists, oncologists, and IT specialists to develop user-friendly
QUS interfaces and standardized, structured reports aligned with oncologic decision-
making pathways.

5.3. Organizational and Ethical Challenges

Despite the growing body of supportive evidence, large-scale, prospective, and particu-
larly interventional multicenter trials remain logistically demanding and resource-intensive.
Such studies are, however, indispensable for demonstrating that QUS-guided adaptive
therapeutic strategies can not only improve patient outcomes but also provide cost-effective
benefits in real-world oncology practice. Ethical considerations must likewise be carefully
addressed. Modifying or discontinuing systemic therapy based solely on experimental
QUS biomarkers carries inherent risks, underscoring the need for transparent validation
frameworks, strict patient safety protocols, and ongoing regulatory oversight. Building clin-
ician confidence in QUS-based decision-making will ultimately depend on demonstrating
clinical benefit, interpretability, and safety within rigorously controlled multicenter trials.

6. Summary and Future Vision

Quantitative ultrasound (QUS) currently stands at the interface between translational
imaging research and clinical oncology. Its unique ability to detect early microstructural
changes, quantify intratumoral heterogeneity, and integrate multiparametric biomarkers
positions it as a promising and biologically meaningful tool for precision medicine. How-
ever, to fully realize this potential, further progress requires a coordinated roadmap that
addresses both immediate research needs and long-term clinical implementation.

In the near term (short-term), efforts should focus on improving reproducibility, stan-
dardization, and interpretability of QUS biomarkers. Establishing harmonized acquisition
and processing protocols, validated calibration procedures, and open-access repositories
of raw radiofrequency data will be essential for ensuring cross-platform comparability.
In parallel, the development of explainable artificial intelligence (XAI) and interpretable
radiomic frameworks will enhance transparency and clinical confidence. Prospective re-
producibility and repeatability studies across different ultrasound systems should define
acceptable variability thresholds and technical benchmarks for clinical reporting, providing
the methodological foundation for future validation.

In the longer perspective (long-term), research should advance toward large-scale,
multicenter, and interventional clinical trials demonstrating that QUS-guided adaptive
therapy can improve oncologic outcomes. These studies should integrate QUS-derived
biomarkers into clinical decision-making workflows and evaluate their impact on survival,
recurrence, and quality of life. Future directions also encompass health-economic and
cost-effectiveness analyses, practical feasibility assessments in diverse clinical settings,
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and integration of QUS into national cancer registries and reimbursement frameworks.
Ultimately, the development of fully automated, real-time QUS systems embedded within
PACS and HIS infrastructures will enable broad clinical deployment and support data-
driven precision oncology on a population scale.

Only through such coordinated, multidisciplinary efforts—bridging physics, oncology,
radiology, and data science—can QUS evolve from an innovative research methodology
into a clinically established and widely implemented modality for real-time, adaptive
cancer therapy monitoring. Importantly, ongoing trials such as the “Adaptive Neoadjuvant
Chemotherapy Based on Quantitative Ultrasound Biomarkers in Locally Advanced Breast
Cancer” (ClinicalTrials.gov Identifier: NCT04050228) represent the first crucial step toward
this vision, testing whether early QUS-based treatment adaptation can improve therapeutic
outcomes and reduce unnecessary toxicity in breast cancer patients.
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