COMBINING NUMERICAL AND EXPERIMENTAL METHODS FOR INTERFACIAL BONDING STRENGTH MEASUREMENT IN MICROSCALE FOR MULTISCALE MODELING

PIOTR JENCZYK *† , DARIUSZ M. JARZĄBEK † AND SZYMON NOSEWICZ †

† Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego St. 5B; 02-106 Warsaw, Poland

> *E-mail address: pjenczyk@ippt.pan.pl URL: https://www.ippt.pan.pl/en/staff/?osoba=pjenczyk

ABSTRACT

In materials engineering, enhancing material properties is a key area of focus. When combined with cost-effective strategies, such improvements can drive significant industrial advancements. One well-established method for achieving superior mechanical properties is the fabrication of metal matrix composites.

The aim of this study is to further advance metal matrix composites by understanding the underlying phenomena in matrix-reinforcement interface.

The initial phase of this research was published in [1] and [2], while the ongoing study explores a novel method for measuring interfacial bonding strength in Ni-SiC composites.

The proposed method combines experimental and numerical methods. First, micro-beams are prepared by Focus Ion Beam (FIB). Such beams consist of matrix and reinforcement parts as well as their interface within beam volume. Next, beams are bent until fracture. Fracture surface is scanned with Atomic Force Microscope (AFM). In the numerical part, Finite Element Method with cohesive elements is used to simulate beam bending based on experimental results (beam geometry, bending force-displacement curve, fracture surface). Finally, interfacial bonding strength is determined.

This procedure was applied for sintered as well as co-electrodeposited Ni-SiC composites. Results show that the mechanical behaviour in micro-scale is strongly influenced by fabrication route and its parameters.

The authors would like to acknowledge the financial support of the National Science Centre, Poland, under Grant Agreement No. 2020/37/ B/ST8/03907 for project "Multiscale investigation of deformation and damage behavior of novel hybrid metal matrix composites. Experimental studies and numerical modeling". Also, the authors would like to acknowledge the partial financial support of the National Science Centre, Poland, under Grant Agreement No. Preludium 2021/41/N/ST8/02521.

XVIII International Conference on Computational Plasticity, COMPLAS 2025 September 2-5, 2025, Barcelona, Spain

REFERENCES

- [1] P. Jenczyk et al. *Application of SiC particles coated with a protective Ni layer for production of Ni/SiC co-electrodeposited composite coatings with enhanced tribological properties*. Ceram. Int. 45, 23540–23547, 2019
- [2] S. Nosewicz et al. *The influence of spark plasma sintering on multiscale mechanical properties of nickel-based composite materials*, Materials Science and Engineering: A, 891, 146001, 2024