

CONFERENCE ON FAST/SPS

From Research to Industry

BOOK OF ABSTRACTS

BOOK OF ABSTRACTS

KRAKOW, 20-22.10.2025

PUBLISHER

Łukasiewicz Research Network - Poznań Institute of Technology

6 Ewarysta Estkowskiego St., 61-755 Poznan, Poland Tel. +48 61 850 49 00 E-mail: office@pit.lukasiewicz.gov.pl https://pit.lukasiewicz.gov.pl/

Content editing

Dariusz Garbiec

Technical editing

Alicja Januszkiewicz, Marcin Tomkowiak

Proofreading

Dariusz Garbiec

Copyright © 2025 Łukasiewicz Research Network – Poznań Institute of Technology All rights reserved.

ISBN 978-83-977895-0-0

Edition: 100 copies

Printing
Wieland Drukarnia Cyfrowa
17 Ziębicka St., 60-164 Poznan, Poland
Tel. +48 61 639 50 60
E-mail: wieland@wieland.com.pl
https://wieland.com.pl/

Agata Strojny-Nędza¹⁾, Rafał Zybała¹⁾, Krystian Kowiorski¹⁾, Szymon Nosewicz²⁾, Piotr Jenczyk²⁾, Barbara Romelczyk-Baishya³⁾, Piotr Bazarnik³⁾, Marcin Chmielewski^{1,4)}

¹⁾Lukasiewicz Research Network – Institute of Microelectronics and Photonics, Warsaw, Poland
²⁾Institute of Fundamental Technological Research Polish Academy of Sciences, Warsaw, Poland
³⁾Warsaw University of Technology, Warsaw, Poland
⁴⁾National Centre for Nuclear Research, Otwock, Poland

Multiscale Investigation of Nickel – Silicon Carbide Composites Sintered by SPS Method

Abstract

Silicon carbide (SiC) is characterised by good thermal and electrical conductivity, and high hardness and mechanical strength. Due to its unique properties SiC is applied as the reinforcement in metal matrix composites to improve their thermal, mechanical and wear properties. Ni-SiC composites are widely used in the automotive industry (pistons, brake discs), aviation and aerospace industries (engine components), as structural materials for the molten salt reactors, as well as in electronics (as the layered materials).

Comprehensive investigation of the influence of the main process parameters of spark plasma sintering on the mechanical and microstructural properties of nickel-silicon carbide composites at various scales. Microstructure analysis performed by scanning and transmission electron microscopy revealed a significant interfacial reaction between nickel and silicon carbide due to the decomposition of silicon carbide. The chemical interaction of the matrix and reinforcement results in the formation of a multicomponent interphase zone formed by silicides (Ni₃₁Si₁₂ or/and Ni₃Si) and graphite precipitates [1]. The influence of SPS on Ni-SiC composites was revealed by implementing a multiscale experimental tests at three different scales (macroscopic, microscopic, and nanoscale) [2]. The nanomechanical properties of composite components: metal matrix, ceramic reinforcement, and the interface have been evaluated by nanoindentation testing. Next, the deformation, strength, and fracture behaviour of the bonding zone of composite components was determined by a microcantilever bending test on the microscale. Finally, a uniaxial tensile test has been carried out to designate the effective mechanical performance of nickel-silicon carbide composites at a macroscopic level.

References:

[1] M. Chmielewski, R. Zybała, A. Strojny-Nędza, A. Piątkowska, A. Dobrowolski, J. Jagiełło, R. Diduszko, P. Bazarnik, S. Nosewicz, Microstructural evolution of Ni-SiC composites manufactured by spark plasma sintering, Materials and Metallurgical Transactions A, 54 (2023) 2191–2207

[2] S. Nosewicz, P. Jenczyk, B. Romelczyk-Baishya, P. Bazarnik, D. Jarząbek, K. Majchrowicz, K. Kowiorski, M. Chmielewski, The impact of spark plasma sintering conditions on multiscale mechanical properties of Ni-SiC composite, Materials Science and Engineering A, 891 (2024) 146001

Acknowledgement

The authors would like to acknowledge the financial support of the National Science Centre, Poland, under Grant Agreement No. 2020/37/B/ST8/03907 for project "Multiscale investigation of deformation and damage behaviour of novel hybrid metal matrix composites. Experimental studies and numerical modelling".