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Introduction

Neural communication is a highly complicated and dynamic 
process through which neurons convey information within 
biological systems. The fundamental mechanism of this 
communication involves the propagation of electrical sig-
nals, known as action potentials (Gerstner et  al., 2014). 
Artificial Neural Networks (ANNs) are designed to emulate 
aspects of this biological communication process through a 
system of interconnected computational nodes, or neurons. 
These nodes process information via mathematical opera-
tions, and their interconnections are modifiable based on 
learning algorithms, mirroring the adaptive mechanisms 
observed in biological neural networks. The connections in 
neural networks are adjusted based on feedback, allowing 
them to “learn” from data and optimize their performance, 
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Abstract
This study addresses the important question of how neuron model choice and learning rules shape the classification perfor-
mance of Spiking Neural Networks (SNNs) in bio-signal processing. By systematically contrasting Leaky Integrate-and-
Fire, metaneurons, and probabilistic Levy-Baxter (LB) neurons across spike-timing dependent plasticity, tempotron, and 
reward-modulated learning, we identify model-rule combinations best suited for capturing the temporal richness of neural 
data. A novel contribution is the integration of a complexity-driven evaluation into the SNN pipeline. Using Lempel-Ziv 
Complexity (LZC), an entropy-related measure of spike-train regularity, we provide a consistent and interpretable bench-
mark of classification outcomes across architectures. To probe neural dynamics under controlled conditions, we employed 
synthetic datasets with varying temporal dependencies and stochasticity, including Markov and Poisson processes estab-
lished models of neuronal spike-trains. Moreover, we validated the observed trends on real data by testing the same archi-
tectures on an MNIST dataset. Performance trends reveal strong dependence on the interaction between neuron model, 
learning rule, and network size. The LZC based evaluation highlights configurations resilient to weak or noisy signals. The 
LB-tempotron combination proved most effective for tasks with complex temporal patterns, leveraging adaptive neuronal 
dynamics and precise spike-timing exploitation. LIF-based architectures with Bio-inspired Active Learning delivered solid 
accuracy at lower computational cost, while hybrid models offered a versatile middle ground when paired with appropri-
ate learning algorithms. This work delivers the first systematic mapping of neuron model learning rule synergies in SNNs 
and introduces complexity-based evaluation framework that sets a robust benchmark for biosignal classification. Beyond 
benchmarking, our results provide actionable guidelines for building next-generation SNNs capable of handling the vari-
ability and complexity of real neural data.
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similar to the synaptic modifications in the brain. ANNs 
utilize simplified mathematical models that simulate the 
underlying processes of neural communication. These mod-
els operate within a hidden layer, where they are connected 
to the output layer of the network. The computations within 
these nodes are based on mathematical operations, and their 
output is combined with the weights of the connections 
between nodes, which are adjusted during training, mainly 
with algorithms such as backpropagation (Wu et al., 2018). 
In this framework, the training process involves iteratively 
adjusting the weights of connections based on the discrep-
ancy between the predicted outputs and the actual outputs. 
This adjustment allows the network to “learn” and improve 
its performance over time. Although artificial neurons are 
designed to mimic certain aspects of biological neurons, 
they do so in a much more abstract and simplified man-
ner. The complexity of biological neurons, influenced by a 
wide range of internal and external factors, is reduced to 
a basic computational model that focuses on input-output 
relationships.

While both biological and artificial neurons process infor-
mation, the mechanisms and complexity differ significantly 
(Seguin et al., 2023). Biological neurons operate in highly 
dynamic environments, with their activity influenced by a 
multitude of biochemical processes and external stimuli. In 
contrast, artificial neurons, governed by specific architec-
tures and learning algorithms, are simplified representations 
of this complexity. This difference highlights the inherent 
contrast between the adaptive, biochemical complexity of 
biological systems and the structured, algorithmic frame-
work of computational models. Thus, the limitations of clas-
sical Artificial Intelligence, particularly in models based on 
perceptrons and traditional ANNs naturally forced the explo-
ration of alternative neural network architectures that can 
improve computational efficiency. One of the most promis-
ing candidates for overcoming these limitations seems to be 
Spiking Neural Networks (SNNs), which are considered to 
be a more energy-efficient option for complex calculations 
(Datta et al., 2022). The key distinction between SNNs and 
conventional ANNs lies in their output dynamics. Unlike 
ANNs, SNNs utilize a spiking mechanism, where informa-
tion is transmitted as discrete temporal spikes rather than 
as continuous signals. This dynamic spike-based signaling 
more closely emulates the way information flows through 
biological synapses, allowing SNNs to represent features in 
spatiotemporal data more effectively. Consequently, SNNs 
exhibit a promising ability to perform computations in a 
manner that approaches the temporal processing capabili-
ties of the human brain, enabling richer and more efficient 
representations of time-dependent data (Sun et al., 2025).

When studying the efficiency of information transmis-
sion in SNN, the selection of both neuron and network 

architecture models is crucial. A model that accurately rep-
licates the spike response of a neuron to any input current 
is fundamental for both constructing brain simulators and 
understanding the computational mechanisms of neural 
activity (Izhikevich, 2003; Shirsavar et al., 2023). Several 
approaches to neuron modeling are being developed (Ger-
stner et al., 2014), with two primary lines of development 
being most prominent. The first approach involves detailed 
biophysical modeling, such as Hodgkin and Huxley-like 
models, which describe the dynamics of ion channels within 
the spatially structured tree-like morphology of neurons. 
The second approach includes the integrate-and-fire (LIF) 
models (Dutta et al., 2017), which treat neuronal electrical 
activity as a threshold-based process. As network building 
blocks (single-neuron models), first, we will assume percep-
torns, than recently used in SNNs, Leaky Integrate-and-Fire 
neuron model, metaneurons (Weng et al., 2020) and proba-
bilistic Levy-Baxter neuron model (Levy & Baxter, 2002; 
Paprocki et  al., 2020), which provide results consistent 
with physiological observed values. In this paper, we ana-
lyze how the performance of the SNN is influenced by the 
neuron model used to build it. We introduce a novel hybrid 
framework that integrates the temporal precision and bio-
logical plausibility of SNNs with the Lempel-Ziv complex-
ity (LZC) measure (Ziv & Lempel, 1976) to improve the 
classification of spatiotemporal neural data. By quantifying 
the structural complexity of spike patterns, the proposed 
method offers interpretable and noise-robust classification, 
particularly effective for data exhibiting variable temporal 
dynamics, such as Poisson-distributed signals.

Main Contribution

The main contributions of the paper include a comprehensive 
analysis of how different neuron models: LIF, metaneurons, 
and probabilistic Levy-Baxter, affect SNN classification 
performance across varying network sizes and tasks, as 
well as a systematic evaluation of multiple learning algo-
rithms, including unsupervised (STDP, SDSP), supervised 
(tempotron, backpropagation), and hybrid reward-modu-
lated approaches, to quantify their interaction with neuron 
model choice. The study further demonstrates the effective-
ness of bio-inspired neuron models in bio-signal classifica-
tion, achieving high accuracy, sensitivity, and specificity on 
synthetic datasets modeled with Poisson and Markov pro-
cesses. In addition, it introduces a complexity-based evalua-
tion by integrating Shannon’s information theory with SNN 
output, using LZC to capture subtle temporal structures in 
spike trains and improve the detection of weak or noisy sig-
nals. The results identify performance trends showing how 
optimal neuron model-learning rule combinations depend 
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on signal characteristics and network size, with tempotron 
and reward-based learning showing notable advantages in 
specific regimes. Finally, the paper highlights the potential 
of SNNs as a biologically plausible and computationally 
efficient framework for processing complex spatio-temporal 
data, particularly biosignals.

Basics Notation

In Table 1 the notation used is presented.

Models of Neurons

The perceptron operates in an n-dimensional real vector 
space Rn. The input vector is x = [x1, x2, . . . , xn], and the 
weight vector is w = [w1, w2, . . . , wn] ∈ Rn. The percep-
tron computes a weighted sum of inputs with an added bias 
b, as given by:

z =
n∑

i=1
wixi + b� (1)

where b ∈ R is the bias term, and the output is determined 
by a threshold function f(z):

f(z) =
{

1 if z ≥ θ
0 otherwise � (2)

where θ is the activation threshold (Parlos et al., 1994).
The Leaky Integrate-and-Fire model describes the mem-

brane potential dynamics of a neuron (Dutta et al., 2017). 
The membrane potential U(t) evolves over time according 
to the equation:

τm
dU

dt
= −U(t) + RmI(t)� (3)

where τm is the membrane time constant, Rm is the mem-
brane resistance, and I(t) is the input current at time t. When 
the membrane potential exceeds a threshold Uth, a spike 

occurs, and the potential is reset to a lower value Ur. This 
process models the gradual accumulation and leakage of 
membrane potential.

The metaneuron is a higher-level computational unit that 
abstracts the activity of multiple neurons or neural processes 
(Cheng et  al., 2023). It introduces a modular approach to 
neural network design, facilitating large-scale modeling by 
representing groups of neurons or collective behaviors. Like 
the perceptron, it computes a weighted sum of inputs, but 
with greater flexibility in activation functions, supporting 
binary step, sigmoid, or ReLU. Unlike the perceptron, the 
metaneuron can model dynamic neuron behaviors, includ-
ing spiking dynamics, by processing time-varying inputs 
and evolving internal states, akin to LIF model. This gen-
eralization allows it to capture complex neural phenomena 
such as oscillations and synchrony, making it highly adapt-
able for large-scale networks.

The Levy-Baxter (LB) model incorporates probabilistic 
dynamics to capture synaptic transmission variability (Levy 
& Baxter, 2002; Paprocki et  al., 2020). The inputs to the 
neuron are represented by the vector x = [x1, x2, . . . , xn], 
with each xi modeled as a binary stochastic process. The 
transformation of each input is governed by a Bernoulli ran-
dom variable ϕi with success probability s, and the ampli-
tude is scaled by a random variable Qi uniformly distributed 
over [0, 1]. The transformed input is given by:

y = [ϕ1Q1x1, ϕ2Q2x2, . . . , ϕnQnxn]� (4)

The total excitation σ is the sum of the transformed inputs:

σ =
n∑

i=1
ϕiQixi� (5)

The output of the neuron is determined by a threshold func-
tion f(σ):

z =
{

1 if σ ≥ 0
0 if σ < 0 � (6)

where z = 1 indicates the neuron has fired, and z = 0 indi-
cates no spike. This probabilistic approach models a syn-
aptic variability, with xi as inputs, ϕi as quantal release 
probabilities, and Qi as the scaling factor representing 
amplitude fluctuations.

Each neuron model described here represents a different 
abstraction of neural behavior. The perceptron is a simple 
threshold-based model used for binary classification tasks, 
operating deterministically. The spiking phenomenon is not 
included. The LIF model incorporates temporal dynam-
ics, modeling the gradual integration of inputs and natural 

Table 1  Basic notation used in the study
Description Notation
input vector x = (x1, . . . , xn) ∈ Rn

weight vector w = (w1, . . . , wn) ∈ Rn

bias b
threshold θ

weighted sum z = w⊤x + b ∈ R
activation function f(z), f : R → R or f : R → {0, 1}
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architectures. In contrast, metaneurons aggregate multiple 
neural responses into higher-level computational units, 
effectively smoothing out micro-level noise. This suggests 
a potential mechanism for emergent stability and energy 
efficiency in large-scale networks. Incorporating stochastic 
or hierarchical features into neuron models not only affects 
computational performance but also aligns with physi-
ologically relevant principles of efficiency, variability, and 
adaptive coding.

Spiking Neural Network Architecture

Spiking Neural Networks process information by consider-
ing spike signals, making them particularly promising for 
handling complex tasks (Naderi et  al., 2025). These net-
works excel at encoding intricate spatiotemporal informa-
tion through spike patterns. The design of SNNs is often 
based on models like LIF neuron model, which is a sim-
plified representation of how biological neurons process 
information. In these models, the arrival of a spike at a pre-
synaptic neuron triggers an input current I(t) that influences 
the membrane potential of the postsynaptic neuron. For sim-
plicity, we can express the input current as a convolution 
of the spike signal Sj(t) rom a presynaptic neuron with an 
exponential decay function, representing the temporal filter-
ing of the spike signal

I(t) =
ˆ ∞

0
Sj(s − t)exp(−s

τs
)ds,� (7)

where Sj(s − t) represents the spike train from the j-th pre-
synaptic neuron, and τs is a synaptic time constant, dictat-
ing the decay of the signal over time. This equation models 
the temporal dynamics of the input signal, which integrates 
over time, decaying with rate τs.

The neural network consists of three layers of neurons: 
input, hidden, and output, each containing n neurons, as 
shown in Fig. 1. We considered neural networks comprising 

leakage of membrane potential. It introduces time-depen-
dent behavior and spiking. The metaneuron abstracts the 
collective activity of multiple neurons into a higher-level 
computational unit, enabling modular and hierarchical net-
work design. The spiking phenomenon is optional. The LB 
model introduces stochastic and quantal variability in syn-
aptic transmission, providing a probabilistic framework for 
understanding neural responses. While stochastic provides 
more realistic noise modeling.

The LB neuron introduces probabilistic variability 
into synaptic transmission, modeling the inherently noisy 
and quantal nature of biological synapses. This stochastic 
mechanism allows the neuron to represent uncertainty and 
adapt its response to fluctuating input conditions, thereby 
capturing a key physiological property of biological neu-
ral systems often overlooked in deterministic models. The 
probabilistic firing behavior enhances the diversity and rich-
ness of temporal activity patterns, increasing the model’s 
coding capacity through variability in spike timing and 
amplitude. Such variability supports distributed and redun-
dant representations, improving robustness to input pertur-
bations and synaptic noise.

Moreover, stochasticity contributes to energy-efficient 
signaling: rather than maintaining continuous high-fre-
quency activity, the LB neuron exhibits adaptive firing 
rates governed by probabilistic thresholds, reducing met-
abolic load while preserving informational throughput. 
Relative to the LIF model, which integrates inputs in a 
fixed, deterministic manner, the LB neuron offers a more 
flexible and biologically plausible framework that links 
noise to computation rather than treating it as an unwanted 
artifact. When compared to metaneurons, the LB model 
emphasizes fine-grained, probabilistic mechanisms at the 
single-neuron level, whereas metaneurons abstract this 
variability into ensemble-level stability and modular com-
putation. Together, these perspectives highlight the role of 
stochastic dynamics as both a source of biological realism 
and a functional advantage, enabling adaptive coding, effi-
cient energy utilization, and resilience in complex neural 

Fig. 1  The basics scheme of the conducted classification task
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deterministic sequences. For random sequences, the normal-
ized complexity tends to 1, and for deterministic sequences, 
it approaches 0. The LZ complexity serves as an effective 
estimator of entropy for ergodic stochastic processes (Ziv 
& Lempel, 1976; Arnold et  al., 2013; Pregowska et  al., 
2016, 2019). In neural networks, Lempel-Ziv complexity is 
applied to classify output sequences based on their infor-
mational content and unpredictability. The output sequences 
are classified using the Lempel-Ziv 1976 complexity-based 
classifier. Various neuron models were used to construct the 
SNN, including the perceptron, LIF, metaneuron, and LB 
neuron models. Moreover, different types of learning algo-
rithms, including unsupervised methods (e.g., spike-timing 
dependent plasticity STDP Zhao et al., 2025), spike-driven 
synaptic plasticity SDSP He et al., 2025), supervised meth-
ods (e.g., tempotron Gutig & Sompolinsky, 2006; Yu et al., 
2014, backpropagation Wuet al., 2018), and hybrid methods 
(e.g., reward-based learning with active learning Zhan et al., 
2023), have been widely investigated to optimize network 
performance.

To ensure the reproducibility and transparency of our 
results, simulations were carried out within a controlled 
environment, where all parameters and procedures were 
explicitly defined. The architecture of the networks, the 
choice of neuron models (perceptron, LIF, metaneuron, LB 
neuron) and the learning rules were consistently specified 
across experiments. In order to minimize variability, fixed 
random seeds were used during initialization, ensuring that 
repeated runs yielded comparable results (Beyeler et  al., 
2014; Richmond et al., 2014). The input data consisted of 
binary sequences of length 1024, processed by networks 
of different sizes ranging from 16 to 1024 neurons per 

16, 32, 64, 128, 256, 512, and 1024 neurons per layer. The 
best of the results obtained are presented in Tables 1, 2, 3, 
4 and 5. Sequences of binary values (strings of zeros and 
ones), each 1024 bits long, are fed into the network. Then, 
n-bit-long sequences of action potentials (spike trains) are 
generated by the network and subsequently converted back 
into sequences of zeros and ones. To store and manipulate 
spike times efficiently at scale, we adopt a bit-encoding data 
structure specialized for event-based signals, which sub-
stantially reduces memory footprint and improves runtime 
for large spike matrices (Ljungquist et al., 2018).

Shannon’s Information Theory establishes a mathemati-
cal framework for quantifying and analyzing the trans-
mission of information within communication systems 
(Shannon, 1948). Thus, entropy rate estimators provide a 
rigorous mathematical approach to approximating informa-
tion transmission rates, offering an alternative to traditional 
firing rate analysis. Notably, Lempel-Ziv complexity, as 
defined by Ziv and Lempel (1976), has been successfully 
employed as an effective estimator. The Lempel-Ziv com-
plexity is a widely used metric for estimating entropy, and 
consequently the informational content of sequences. Given 
a sequence x1

n := [x1, x2, . . . , xn], where each xi belongs 
to a finite source alphabet (e.g., xi ∈ {0, 1}), the complexity 
Cα(x1

n) counts the number of distinct blocks (or patterns) in 
the sequence. A new block is defined when a substring start-
ing from the current position has not appeared before. The 
normalized complexity, cα(x1

n), which measures the rate at 
which new patterns are generated, is defined as:

cα(x1
n) = Cα(x1

n)
n

logα n,� (8)

where α = 2 for binary sequences. Asymptotically, 
c2(x1

n) → 1 for random sequences and c2(x1
n) → 0 for 

Table 2  Representative configurations: best accuracy and best time-
accuracy trade-off per input process
Input Model + 

Learining 
Rule

Neurons/layer Epochs Accu-
racy 
(%)

Time

Poisson 
(best 
trade-off)

Percep-
tron + 
Tempotron

64 10 100.00 8.5 s

Bernoulli 
(fast, high 
acc.)

Meta + 
BAL

32 10 99.50 6.7 s

Bernoulli 
(max 
acc.)

LB + BAL 32 10 100.00 22.2 
s

Markov 
(max 
acc.)

Percep-
tron + 
Tempotron

128 10 100.00 53.6 
s

Full grids in Tables 5-9 in Appendix

Table 3  Per-run accuracy, normalized LZC c2 (bin=4), and spike-rate 
(Conv only)
arch dataset acc c2 (bin=4)
Conv-SNN Poisson 0.917 1.254
Conv-SNN Markov 1.000 1.082
Conv-SNN Bernoulli 1.000 0.936
Reservoir-SNN Poisson 0.667 0.208
Reservoir-SNN Markov 0.938 1.010
Reservoir-SNN Bernoulli 1.000 0.431

Table 4  Accuracy and fractional LZC (bin=4) aggregated over seeds 
(mean ± std)
arch dataset acc c2 (mean ± std)
Conv-SNN Bernoulli 1.000 ± 0.000 0.156 ± 0.000
Conv-SNN Markov 1.000 ± 0.000 0.168 ± 0.000
Conv-SNN Poisson 0.950 ± 0.000 0.200 ± 0.000
Reservoir-SNN Bernoulli 1.000 ± 0.000 0.076 ± 0.000
Reservoir-SNN Markov 0.938 ± 0.000 0.173 ± 0.000
Reservoir-SNN Poisson 0.750 ± 0.000 0.036 ± 0.000
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Poisson sequences are generated from a Poisson process, 
where events occur independently at a constant average 
rate λ. For each Poisson process, spike trains are generated 
with rate parameters λx and λy . These sequences are tested 
under various rate configurations to observe the effect of 
spike timing variability on system behavior and classifica-
tion performance.

To explore neural dynamics, we use Poisson and Markov 
processes to model neuronal spike trains, a well-established 
method for simulating the stochastic firing behavior of bio-
logical neurons.

The rationale for using synthetic sequences with con-
trolled stochastic properties is to enable a rigorous evalu-
ation of how SNNs and biologically inspired learning 
algorithms respond to different temporal structures and sta-
tistical dependencies. Unlike real-world benchmarks, these 
synthetic inputs allow for precise manipulation of noise, 
memory, and event distributions, i.e. factors that are cru-
cial for understanding the encoding capabilities of SNNs. 
Moreover, the use of interpretable, parameterized inputs 
facilitates a clearer attribution of classification outcomes to 
underlying neural dynamics and complexity-based decision 
mechanisms.

Our use of Bernoulli/Markov/Poisson generators is delib-
erate: these canonical regimes approximate real dynamics 
while providing controllable ground truth for neuron-level 
analyses. In particular, inhomogeneous Poisson point pro-
cesses are standard for event-based neural/biomedical 
data (e.g., spike trains), and Poisson-intensity GLMs are a 
workhorse in neural decoding (Truccolo et  al., 2004).The 
time-rescaling theorem maps any simple point process to a 
unit-rate Poisson via its conditional intensity, and Ogata’s 
thinning supplies unbiased simulation/diagnostics-hence 
Poisson-family baselines. Although EEG/EMG are con-
tinuous, many derived features are event-like (spindles, 
microstate transitions, thresholded band-power), so Poisson 
naturally models event times/counts for multi-class tempo-
ral classification with clear probabilistic semantics.

Biologically, cortical firing often approximates inho-
mogeneous Poisson processes over mesoscale windows, 
capturing ISI variability and trial-to-trial jitter. The result-
ing controlled stochasticity meaningfully stress-tests SNN 
encoding and decision mechanisms.

In addition to synthetic spike-train inputs, we evaluate 
the networks on an event-based MNIST benchmark derived 
from the standard handwritten digit classification task. Pixel 
intensities are converted into spike trains using a rate-based 
encoding, providing a structured but non-random input 
with spatially meaningful correlations. This dataset serves 
as an intermediate step between fully controlled synthetic 
inputs and real biosignals, allowing us to assess whether the 

layer. Identical pre-processing and spike-encoding proce-
dures were applied to all datasets, making the experimental 
pipeline uniform and comparable. For every network con-
figuration, training and evaluation followed standardized 
protocols, including the number of epochs, the selection of 
learning algorithms (e.g., STDP, SDSP, backpropagation), 
and the relevant hyperparameters. Furthermore, simulation 
scripts, together with parameter settings, were designed in 
a portable manner, so that the experiments can be repro-
duced on different computational platforms without loss of 
generality.

Input Datasets

Neuronal action potentials and spike sequences are often 
modeled as point processes, providing a statistical frame-
work for analyzing discrete events over time (Daley et al., 
2003; Wojcik et al., 2009). Poisson point processes are par-
ticularly useful for representing spike trains with minimal 
temporal dependencies, effectively capturing the stochastic 
nature of neuronal firing (Rieke et  al., 1997). Their Mar-
kov properties make them suitable for modeling short-term 
memoryless behavior in neural dynamics (Papoulis et  al., 
2002).

These insights emphasize the need for probabilistic and 
temporally structured input data to evaluate the capacity of 
computational models to represent neural signals accurately. 
To this study uses three types of synthetic binary sequences 
as input datasets: Bernoulli sequences, first-order Markov 
sequences, and Poisson-based spike trains. Each of these 
allows for controlled manipulation of randomness, temporal 
dependence, and rate-based variability, i.e. factors critical 
for evaluating the interplay between neural dynamics and 
classification mechanisms based on complexity.

Bernoulli sequences are generated from independent 
Bernoulli processes, where each binary element Bi is drawn 
independently with probability p. For our experiments, we 
generate two sets of binary sequences B1 and B2, each of 
length 1024, using different values of p. The independence 
of events allows us to assess the system’s performance 
under random binary outcomes with varying probabilities.

Markov sequences are generated from a first-order Markov 
process, where the probability of each element Mi depends 
on the previous state Mi−1. For our experiments, two sets 
of binary sequences M1 = {m1i}, i = 1, 2, . . . , 1000 and 
M2 = {m2i}, i = 1, 2, . . . , 1000 are generated with tran-
sition probabilities defining the dependency structure. We 
explore different transition probability configurations to 
evaluate the impact of state dependencies on classification 
accuracy.
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Despite these advances, none of the aforementioned 
studies considered the impact of neuron models on SNN 
performance, particularly the effects on accuracy and com-
putation time in relation to the number of neurons per layer 
and different neural network learning algorithms. All the 
reviewed works relied on the LIF neuron model or its varia-
tions, such as the meta neuron, and there is a clear trend 
toward implementing biologically inspired algorithms in 
SNNs based on LIF neurons. However, these studies did not 
investigate the influence of network size or the potential of 
alternative neuron models. Moreover, to our knowledge, no 
existing research has explored combining SNNs with con-
cepts derived from Information Theory to enhance network 
accuracy while reducing computation time. This gap in the 
literature underscores the novelty of our proposed approach.

Results

The considered datasets were divided into two subsets: 
90.00% for training and 10.00% for testing, ensuring that 
the models had sufficient data to learn while retaining a sep-
arate evaluation set. Accuracy was used the primary metric 
for evaluating classification performance. All computations 
were provided on Intel(R) Core(TM) i7-14700F, 2.10 GHz.

First, we consider four spiking neural networks made of 
LIF, perceptron, meta neurons, LB neuron model as well 
as the hybrid network, in which input layer was construed 
by LIF neurons, while the hidden and output layers were 
made of perceprtrons, respectively. In and Fig. 2 and Table 
5 in Appendix the influence of neuron model on commonly 
used learning algorithm, i.e. BP learning algorithm was pre-
sented. It turned out that all cases gave accuracies above 
90.00%, except for the use of a network composed of the 
LIF model to the Poisson source, however, the computation 
times differed significantly. The application of the compared 
to a neural network composed of LIF neurons, the use of the 
meta nueron model in the case of BP learning algortihms 
gives higher accuracy in comparable computation time. Sur-
prisingly, for input data in the form of the Bernoulli process 
(actually the simplest data set), a neural network consisting 
of 512 LIF neuron in input layer and 512 perceptrons in hid-
den and output layers was needed to achieve high accuracy. 
In comparison, architectures composed of the remaining 
neurons models required only 64 neurons per layer. More-
over, in the case of the Poisson process, the network based 
on LIF neurons also required four times more epochs to 
achieves lower accuracy than in other cases.

Figure 3 and Table 6 in Appendix show the influence of 
neuron model on bio-inspired learning algorithms like tem-
potron learning rule, Bio-inspired Active Learning (BAL), 

observed model-rule synergies generalize to a widely used 
classification task.

Related Works

In the paper by Dan et al. (2025), a Spiking Neural Network 
architecture based on LIF neuron model was proposed. 
The authors introduced a residual-based SNN architec-
ture with dynamic threshold adjustment, which combines 
direct encoding (frequency-based neuronal representation) 
with multineuronal population decoding. The MNIST data-
set was considered, and the architecture achieved notable 
performance in just 6 time-steps, with accuracy improve-
ments ranging between 1.00% and 7.50%, depending on 
the dataset. Similarly, Luo et al. (2025) proposed an SNN 
based on a current-based adaptive LIF (CuAdLIF) neuron 
model featuring delayed responses and membrane poten-
tial adaptation. This design improves temporal correlations 
and maintains long short-term memory. On the other hand, 
Zhao et  al. (2025) advanced neuromorphic computing by 
developing a high-performance neuromorphic processing 
unit (NPU) tailored for high data throughput and robust 
SNN processing. This NPU utilized LIF neurons with a 
backpropagation-based spike-timing-dependent plasticity 
learning algorithm, achieving an accuracy of 91.00% on 
the MNIST dataset. This approach set a new benchmark in 
neuromorphic computing, offering superior data throughput 
and neural processing precision compared to systems like 
SpiNNaker 2.

Study (Liu et al., 2025) applied the STDP learning algo-
rithm to an SNN based on LIF neurons for classification 
tasks on the MNIST dataset, showing promising results and 
highlighting the potential of this research direction. Another 
bio-inspired learning algorithm tested in SNNs is the tem-
potron, as reported by Yu et al. (2014), who achieved high 
classification accuracy on the MNIST dataset. Building on 
this, Patankar et al. (2025) employed a tempotron learning 
rate method for training and standard STDP for optimi-
zation in an SNN based on LIF neurons for medical data 
applications. This approach significantly improved process-
ing speed and reduced complexity compared to other SNN 
methods. Various cross-validation techniques were used to 
validate the robustness of the model, demonstrating its supe-
riority over existing state-of-the-art SNNs. Additionally, 
Luo et al. (2025) addressed the limitations of SNNs based 
on meta neuron models by improving the You-Only-Look-
Once (YOLO) algorithm. Their SpikeYOLO architecture, 
i.e. a simplified version of YOLO incorporating meta SNN 
blocks, which minimized spike degradation and improved 
detection accuracy.
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The analysis of neuron models under BAL, tempotron, and 
STDP learning algorithms for Markov sequences revealed 
distinct performance trends, emphasizing the trade-offs 
between accuracy and computational efficiency. The percep-
tron model consistently excelled, achieving perfect accuracy 
(i.e., 100.00%) in BP and STDP scenarios, demonstrating its 
effectiveness in capturing Markovian dependencies. Hybrid 
models integrating LIF neurons with perceptrons exhibited 
significant potential under BP and bio-inspired learning algo-
rithms, balancing low computational cost with high accu-
racy. However, these models showed inefficiencies under 
SDPD, where accuracy declined to 83.00%. The biologically 
inspired LB model demonstrated exceptional robustness, 
achieving near-perfect accuracy (93.75–100.00%) across 
tasks. However, its substantially longer runtimes make it 
more suitable for precision-critical applications rather than 
time-sensitive computations. Conversely, meta neurons pro-
vided a compelling balance between accuracy and efficiency, 
maintaining high accuracy while requiring only 32-64 neu-
rons per layer, significantly reducing computational over-
head compared to alternative neuron models.

For datasets containing Poisson processes, the percep-
tron-based neural network model consistently demonstrated 
the highest efficiency and effectiveness, achieving perfect 
accuracy (i.e. 100.00%) in minimal time under the tempo-
tron learning algorithm and SDPS. However, in the case 
of BAL, the computational time increased by an order of 
magnitude while maintaining the same accuracy. Hybrid 
models, such as those combining LIF neurons with percep-
trons, exhibited significantly lower accuracy, ranging from 
68.00% to 89.00%, but with relatively low computational 
costs. While this approach benefits from step dynamics 
and linear decision boundaries, it requires careful tuning to 

STDP, and SDSP. We consider the same architectures as in 
Table 5. The results obtained show that involving biologi-
cally inspired learning algorithms in the process of training 
a neural network allows for significantly shortened com-
putation time, especially when the neural network is built 
from LIF, meta, and LB neuron models. The meta and LB 
neurons models consistently demonstrated high efficiency 
in handling Bernoulli processes across different bio-inspired 
learning algorithms. It achieved a balance between accu-
racy and computational time, making it well-suited for 
time-sensitive applications requiring moderate accuracy. 
The first approach demonstrates high efficacy for Ber-
noulli sequences, where the independence between events 
reduces the necessity for complex temporal integration. The 
Levy-Baxter model, although slightly slower, consistently 
achieved perfect accuracy across all Bernoulli datasets. The 
introduction of perceptrons into neural networks presented 
trade-offs: while they occasionally improved processing 
speed, particularly in the BAL and tempotron algorithms, 
they generally led to reduced accuracy and significantly 
increased training times, as observed in the case of STDP-
based algorithms. The Levy-Baxter neural model exhibited 
superior accuracy, consistently reaching 99.00-100.00% in 
all scenarios tested. Despite requiring slightly longer train-
ing times compared to simpler neuron models, its adapt-
ability and robustness in BAL scenarios make it a strong 
candidate for accuracy-critical applications. The application 
of the tempotron learning algorithm enables high-accuracy 
computations within optimal time constraints. Furthermore, 
meta-neurons demonstrated an accuracy range of 90 to 
100% when implemented in SNNs with 32 to 64 neurons, 
while other neuron models typically required 128 neurons 
or more to achieve comparable performance.

Fig. 2  Comparison of commonly used learning algorithms across neuron models (rows: LIF, LIF input + perceptron hidden/output, Perceptron, 
Meta, LB) and input processes (columns: Bernoulli, Markov, Poisson). (a) Accuracy [%]; (b) computation time [min]
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Fig. 3  Bio-inspired algorithms across neuron models and input processes. Panels (a,c,e) show accuracy (%); panels (b,d,f) show computation time 
(min). Rows of each heatmap correspond to neuron models (LIF, LB), columns to algorithms (Tempotron, SDSP, STDP, BAL)
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cost of increased computational time. In turn, metaneuron 
networks consistently provided high accuracy with low 
computational costs for 64 neurons per layer across all bio-
inspired learning algorithms, except for tempotron. In the 
case of the tempotron learning algorithm, achieving com-
parable accuracy required 128 neurons per layer. Neverthe-
less, the computational cost remained an order of magnitude 
lower than in previous cases, reinforcing the efficiency of 
metaneuron networks.

The optimal neuron model and learning algorithm depend 
on the application’s accuracy and efficiency requirements. 
LB models excel in accuracy-critical tasks, while LIF-based 
architectures with BAL provide efficient solutions. Hybrid 
models offer a promising middle ground, performing well 
when paired with appropriate learning algorithms (Fig. 4).

prevent inefficiencies, particularly with increased learning 
periods or larger network sizes. Under the SDSP algorithm, 
a configuration with 16 neurons and 10 epochs achieved 
an accuracy of 68.00% with a runtime of 28.1 seconds. 
Similarly, under the STDP algorithm, the same configura-
tion yielded the same accuracy (i.e. 68.00%) but with a sig-
nificantly reduced runtime of 2.7 seconds, highlighting the 
computational efficiency of STDP. In contrast, applying the 
BAL algorithm to a larger network configuration (64 neu-
rons, 20 epochs) resulted in a significantly higher accuracy 
of 88.00%, with a runtime of 1 minute and 48.0 seconds. 
Biologically inspired models, such as the LB model, exhib-
ited robustness and representational richness, achieving 
accuracy levels between 91.00% and 99.00% with 64–128 
neurons under bio-inspired learning algorithms, albeit at the 

Fig. 4  Results for the LIF and LB neuron models across three input 
processes: Bernoulli, Markov, Poisson. Rows correspond to input pro-
cesses. The left column reports accuracy (%) versus the number of 
neurons per layer (log2 scale) for a commonly applied learning rule 

(e.g., BP). The right column shows time–accuracy trade-offs (log-
scaled time). Bubble area is proportional to neuron count (∝ N ), and 
color encodes the learning algorithm. Colors and size mapping are 
kept consistent across panels for direct comparison
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and temporton learning algorithm increasing the number of 
neurons in the range 16-64 does not result in a significant 
increase in accuracy. For 128 and 512 neurons in each layer, 
we obtain an accuracy of over 93.00%, while for 1024 we 
obtained only 42.50%. When we classify a two-state Mar-
kov process, we get such accuracy over 90.00% in the case 
of 128, 512 and 1024 neurons in layers. However, for the 
number of neurons in layers 64 it reaches 82.00%. In turn, 
this learning algorithm does not work for the Poisson pro-
cess. Only an accuracy greater than 80.00% is achieved for 
128 neurons in each layer. The SDSP algorithm allows to 
achieve high accuracy regardless of the number of neurons 
in the layers when classifying Bernoulli and Markov pro-
cesses, while in the case of the Poisson process only when 
each layer has 64 neurons, i.e. 88.00%. In the case of the 
BAL algorithm accuracy increases as the number of neu-
rons in layers increases. Surprisingly, the BAL and SDSP 
learning algorithms can achieve accuracy above 80.00% 
only for 64 neurons in layers when classifying Poisson pro-
cesses. The STPD algorithm gives high accuracy for net-
works composed of a larger number of neurons, however 
not exceed 128 neurons in each layer. In turn, the compu-
tation times for the tempotron, BAL and SDSP learning 
algorithms are similar for all data. However, in the case of 
the STDP algorithm, with a large number of neurons in the 
layers, the computation time is more than twice as high.

In turn, in Table 9 the results obtained for neural net-
work that consist of LB neuron was shown. Calculations 
were performed for 10 epochs. It turned out that the use 
of the tempotron learning algorithm gave high accuracy 
for all considered data, while the neural network architec-
ture had 128, and 512 neurons in each layer. When the 
number of neurons in the layers was higher, the accuracy 
dropped below 50.00%. A similar situation occurred when 
the number of neurons in the layers was smaller. For exam-
ple, in the case of tempotron learning rule, the small layer 
sizes (16, 32 neurons) may lack sufficient representational 
capacity to capture the temporal and probabilistic depen-
dencies in Bernoulli, Markov, and Poisson processes. This 
results in underfitting, where the model cannot adequately 
learn the patterns in the data. On the other hand, large layer 
sizes like 512, 1024 neurons may overfit the data, particu-
larly for simpler processes. Overfitting can occur when 
the model memorizes specific patterns instead of general-
izing, leading to poor performance on test data. A similar 
situation is with other learning algorithms, only BAL is 
exception.

To summarize, our representative results show clear, 
model-dependent trade-offs in both accuracy and runtime. It 
turned out that for Poisson-distributed inputs, the most opti-
mal configuration is a perceptron trained with the Tempo-
tron rule, achieving 100.00% accuracy in just 8.5 seconds. 

Also taking into account the results obtained in the 
Paprocki et  al. (2024) paper, namely that a large num-
ber of neurons in the network does not necessarily lead 
to significant improvements in transmission efficiency 
but can enhance the reliability of the system, we exam-
ined the influence of the number of neurons in individual 
layers on accuracy and computation time. Figures 5 and 
6 present time-accuracy trade-off for neuron model with 
input process. Each marker corresponds to one network 
configuration trained for 10 epochs. Color encodes the 
learning algorithm (BP, BAL, SDSP, STDP/STPD, Tem-
potron). The x-axis shows wall-clock training time in sec-
onds on a logarithmic scale (tick marks are powers of ten), 
and the y-axis reports classification accuracy (%). Bubble 
size encodes model scale: the area of each bubble is pro-
portional to the number of neurons per layer (area ∝ N ). 
Consequently, doubling N doubles the bubble area, while 
the bubble diameter grows only with 

√
N . This area-based 

encoding preserves perceptual proportionality and avoids 
over-emphasizing very large models. For orientation, the 
legends include three reference sizes (16 / 128 / 1024 
neurons), and all other sizes are interpolated proportion-
ally. The same color and size mappings are used consis-
tently across figures, enabling direct visual comparison. 
Points closer to the upper-left corner indicate more favor-
able configurations on the empirical Pareto front (higher 
accuracy at lower time). In Tables 7, 8, 9 in Appendix, the 
influence of numbers of neurons on learning algorithms, 
taking account BP algorithms and bio-inspired learning 
algorithms were presented. The neural architecture made 
by LIF and LB neuron model, respectively, were widely 
investigated. Variants of neural networks that had 16, 32, 
64, 128, 512 and 1024 nuerons in each layer were tested, 
respectively. In the case of BP learning algorithm (see, 
Table 7) all computation was provided in the 10 epochs. 
Both networks composed of LIF and LB neurons achieved 
high accuracy in the case of data from Bernoulli and Mar-
kov processes, however, in the case of the Poisson pro-
cess, the network model based on LIF neurons achieved 
a maximum accuracy of 73.50 percent with the number of 
neurons in the layer also 32. Then, as the number of neu-
rons in the layers increased, the accuracy dropped below 
50.00%. The network based on the Levy-Baxter neuron 
model achieved an accuracy of more than 97. 00% at 64, 
but the computation time was longer than when using the 
neural network based on the LIF model. In other cases, 
there is a visible trend towards an increase in precision as 
the number of neurons in the layers increases.

In Table 8 we consider the influence of numbers of neu-
rons in neural networks, which consists of LIF neurons 
on bio-inspired learning algorithms. Calculations were 
performed for 10 epochs. In the case of Bernoulli process 
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Fig. 5  Results for the LIF neuron model across three input processes: Bernoulli, Markov, Poisson. (a,c,e) Accuracy (%) against number of neurons 
(log2); (b,d,f) Time–accuracy trade-offs (log time). Bubble area ∝ N  and color encodes the algorithm
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Fig. 6  Results for the LB neuron model across three input processes: Bernoulli, Markov, Poisson. (a,c,e) Accuracy (%) against number of neurons 
(log2); (b,d,f) Time–accuracy trade-offs (log time). Bubble area ∝ N  and color encodes the algorithm
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rate and firing threshold must be tuned to network size; uni-
form settings often lead to underfitting in small networks 
or instability in large ones. In high-dimensional architec-
tures, the increased number of synaptic weights expands 
the parameter space, making optimization more sensitive to 
initialization and regularization.

The choice of neuron model shapes both computational 
capacity and task suitability. Simple models like percep-
trons are computationally efficient for basic tasks but cannot 
capture temporal dynamics or nonlinear boundaries without 
deeper architectures (Parlos et al., 1994). Their performance 
is especially limited for stochastic inputs such as Poisson 
processes, where spike variability does not align well with 
their linear decision structure (Dutta et al., 2017).

More biologically plausible spiking models, e.g., LIF 
neurons capture temporal coding through spiking dynamics 
and refractory periods, improving performance on tempo-
ral classification tasks. However, they simplify real neuron 
behavior by omitting channel and synapse dynamics. The 
Levy-Baxter model combines deterministic and stochastic 
dynamics, enabling it to represent irregular neural firing 
more realistically (Levy & Baxter, 2002; Paprocki et  al., 
2020), at the expense of computational complexity. Meta-
neurons (Cheng et al., 2023) aggregate neuron populations 
into efficient computational units, improving scalability for 
complex tasks but reducing biological interpretability.

Learning algorithm choice is equally critical: supervised 
approaches (backpropagation, tempotron) offer high accu-
racy and fast convergence for well-labeled datasets, while 
unsupervised rules (STDP, SDSP) are advantageous for 
limited labels or latent structure discovery. Optimal perfor-
mance often arises from tailoring the learning rule to both 
the neuron model and the input statistics.

The input process type Bernoulli, Poisson, or Markov 
has a measurable effect on model-algorithm combinations. 
Smaller networks struggle with the temporal complexity of 
Poisson and Markov sequences, whereas larger networks 
risk overfitting simpler Bernoulli data. LB neurons com-
bined with tempotron learning perform well for two-state 
Markov data, effectively capturing transition probabilities 
(p10, p01).

Moroever, LB neurons behave as renewal units driven 
by heavy-tailed fluctuations, yielding super-Poisson count 
variability and burst-quiescence regimes without explicit 
adaptors. This matches irregularity commonly observed in 
cortical recordings and explains why LB maintains high 
accuracy on Poisson/Markov inputs at moderate widths. 
LIF, by contrast, is near-Poisson unless augmented with 
history/adaptation, which we empirically observe as either 
lower accuracy or the need for wider layers. Meta neurons 
approximate LB-like benefits via learned internal dynam-
ics at lower compute, but with reduced physiological 

For Bernoulli data, meta networks trained with BAL or 
Tempotron offer the best speed-accuracy trade-off under 
tight computational budgets. If accuracy is prioritized over 
runtime for Bernoulli inputs, LB models trained with BAL 
or Tempotron are preferable. In the case of Markov data, LB 
networks trained with BAL or Tempotron yield the high-
est accuracy (up to 100.00%) but at a higher computational 
cost. When balancing speed and performance for Markov 
input, Tempotron perceptrons remain a strong choice. Over-
all, model selection should consider both data structure and 
resource constraints, as optimal configurations vary signifi-
cantly across input types.

Across datasets, a small set of model-rule pairs consis-
tently dominated, see Table 2. For Poisson inputs, a per-
ceptron trained with the Tempotron rule achieved 100.00% 
accuracy in 8.5 s with 64 neurons and 10 epochs, offering 
the best time-accuracy trade-off. For Bernoulli, meta neu-
rons with BAL reached 99.50% in 6.7 s using 32 neurons 
(fastest high-accuracy option), whereas LB + BAL achieved 
100.00% at a modestly higher cost (22.2 s, 32 neurons). 
For Markov sequences, perceptron  +  Tempotron attained 
100.00% accuracy in 53.6  s with 128 neurons. Increasing 
layer width beyond 128 neurons rarely helped and some-
times degraded performance (e.g., LIF on Poisson dropped 
to ≤ 49% for N ≥ 64). Overall, LB models favor accuracy 
at higher runtime, meta models strike an efficiency-accuracy 
balance, and hybrid LIF + perceptron can be competitive on 
Bernoulli/Markov but lags on Poisson.

On MNIST reference dataset, all architectures except 
the metaneuron exceed 99.00% accuracy, and the practical 
differentiator is training cost, see Table 1 in Appendix. A 
pure LIF network attains the top score (≈ 99.90%) but with 
the longest wall time, reflecting the expense of simulating 
membrane dynamics and resets. A hybrid LIF + perceptron 
(LIF input, perceptron hidden/output) delivers almost the 
same accuracy with a markedly shorter runtime, indicat-
ing that precise temporal encoding at the front end is suf-
ficient while a linear/readout layer can close the decision 
boundary. A plain perceptron provides a very strong, fast 
baseline (≈ 99.30%) on this static vision task. The LB 
model matches LIF-level accuracy but trains slower due to 
its stochastic synaptic mechanism. For Poisson inputs, the 
LB neuron reaches 97.00% already with 64 neurons and 
10 epochs, underscoring its robustness to stochastic spike 
trains.

Discussion

The results clearly show that classification performance in 
SNNs depends strongly on network scale and the statistical 
structure of input data. Hyperparameters such as learning 
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attention-weighted). Hence, the analysis is architecture-
agnostic and directly comparable across models. To illus-
trate, we include a brief study on a convolutional SNN 
(STDP layer + linear/ridge readout) and a reservoir SNN 
(recurrent dynamics + linear readout), where c2 increases 
with temporal richness and positively correlates with 
accuracy (see Tables 3 and 4).

Reproducibility Details

All computations were run on an Intel(R) Core(TM) 
i7–14700F (2.10 GHz, 20 threads), 32 GB RAM, Windows 10 
(10.0.26100, x86_64). Python  3.10.15 (conda– forge); 
packages: NumPy  2.2.6, SciPy  1.14.1, Matplotlib  3.9.2, 
Seaborn 0.13.2, scikit– learn 1.6.0, Optuna 4.1.0. NumPy 
was linked against OpenBLAS  0.3.29. Wall– clock time 
was measured with time.perf_counter() and aver-
aged over 5 seeds ({42,43,44,45,46}). Multiply– accumu-
late operations (MACs), floating-point operations (FLOPs) 
are reported as 2×MACs when used.

Conclusions

This study provides a systematic evaluation of how neu-
ron model selection, network size, and learning rule jointly 
affect SNN classification efficiency. A key contribution 
is the introduction of a complexity-based classification 
method that uses Lempel-Ziv Complexity to analyze the 
structural regularity of spike trains. This method serves as 
a lightweight, interpretable decision mechanism, replac-
ing conventional output layers and showing strong per-
formance for noisy or temporally irregular signals. Our 
results show that the interaction between neuron model, 
network size, and learning algorithm is critical to classifi-
cation accuracy. Moreover, data characteristics dictate the 
most effective combination of model-algorithm, with LB 
neurons and tempotron learning particularly effective for 
temporally complex data. Also, the LZC-based decision 
approach complements biologically inspired models by 
enabling robust, low-power classification, opening paths 
for neuromorphic applications in biosignal processing. 
Our results are obtained on synthetic inputs and further 
validated on the MNIST dataset. However, validating the 
LZC-based decision mechanism and model-rule trade-offs 
on real biosignal datasets is therefore an essential next 
step and a current limitation of this study. Future work 
will extend this framework to other real biosignal datasets, 
explore adaptive LZC thresholds, and investigate hard-
ware implementation for real-time SNN deployment.

interpretability. Together with the rate-controlled ∆c2 
results, these findings indicate that neuron-level temporal 
richness (not just network size) is a key driver of down-
stream performance and efficiency.

For accuracy-critical and temporally complex inputs 
(Poisson/Markov), LB is preferred. However, for tight com-
pute budgets on simpler inputs like Bernoulli, meta neurons 
deliver the best accuracy per Multiply–accumulate opera-
tions (MACs). In turn, hybrid architecture, which is built 
with LIF neurons and perceptron is competitive on Ber-
noulli/Markov but degrades on Poisson unless widened or 
tuned for refractoriness/history.

It is worth nothing that a key novel aspect of this study 
is the application of Lempel-Ziv Complexity as a classifica-
tion mechanism for SNN outputs. By quantifying the struc-
tural complexity of spike trains, the LZC approach provides 
a lightweight and interpretable decision tool that avoids 
additional classifier layers, aligning well with low-power, 
real-time neuromorphic applications.

Limitations

This study evaluates SNNs exclusively on synthetic 
inputs (Bernoulli, Markov, and Poisson spike trains) and 
on the MNIST benchmark. While such datasets enable 
controlled manipulation of randomness and temporal 
dependence, they do not capture several properties of 
real biosignals, including nonstationarity across sessions 
and subjects,sensor/physiology artifacts (e.g., motion, 
electrode drift, burst noise), class imbalance and label 
uncertainty, and device constraints (quantization, mem-
ory, power).

Scalability Across Architectures

We evaluate complexity using the normalized Lem-
pel-Ziv measure c2 (8), computed on binary spike ras-
ters from any layer or population. Given a spike tensor 
S ∈ {0, 1}T ×C  (time × channels), we form multi-scale 
temporal bins b ∈ {1, 2, 4, 8}, pool spikes within each bin 
(logical OR or spike counts), compute c2 = (C/n) log2 n 
per channel (with n = T/b), and average over channels. 
The computational cost is O(T · C) and does not depend 
on synapse count or layer type. In convolutional SNNs, 
we treat feature maps as channels and compute c2 on post-
spike tensors; in recurrent/reservoir models, we compute 
c2 on reservoir population spikes (optionally layer-
wise). In graph-based SNNs, we compute c2 per node 
or community and aggregate (mean, trimmed mean, or 
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Appendix A: Summary of Numerical Results

Table 5  Influence of neuron model on commonly used learning algorithm
Input data Neuron model Neurons / layer Epochs Time Accuracy 

[%]
Bernoulli LIF 128 10 12m36.8s 99.00
Bernoulli LIF in input layer + perceptron in hidden and output layers 512 20 2m26.7s 100.00
Bernoulli Perceptron 128 10 17.0s 100.00
Bernoulli Meta 32 10 7.8s 99.50
Bernoulli Levy-Baxter 128 20 11m58.6s 100.00
Markov LIF 128 10 12m36.8s 97.64
Markov LIF in input layer + perceptron in hidden and output layers 64 20 2m26.7s 100.00
Markov Perceptron 32 20 17.0s 93.94
Markov Meta 32 10 1m7.4s 98.75
Markov Levy-Baxter 64 20 11m58.6s 100.00
Poisson LIF 64 40 12m36.8s 87.00
Poisson LIF in input layer + perceptron in hidden and output layers 64 20 2m26.7s 99.50
Poisson Perceptron 64 10 17.0s 100.00
Poisson Meta 32 10 40.7s 96.00
Poisson Levy-Baxter 64 10 11m58.6s 97.00
MNIST LIF 128 10 27m3.3s 99.86
MNIST LIF in input layer + perceptron in hidden and output layers 784 20 4m34.5s 99.66
MNIST Perceptron 256 20 4m41.05s 99.36
MNIST Meta 32 20 62m55.0s 87.69
MNIST Levy-Baxter 784 20 16m59.4s 99.86
The BP learning algorithm was applied

Input Neuron model Algorithm Neurons / layer Epochs Time Acc. [%]
Bernoulli LIF Tempotron 128 10 7.02 96.00
Bernoulli LIF (in) + Perceptron (hid/out) Tempotron 128 10 19.9s 100.00
Bernoulli Perceptron Tempotron 128 10 19.6s 100.00
Bernoulli Meta Tempotron 64 40 1m24.4s 90.50
Bernoulli Levy-Baxter Tempotron 128 10 2m38.4s 99.50
Bernoulli LIF SDSP 128 45 3m2.3s 89.00
Bernoulli LIF (in) + Perceptron (hid/out) SDSP 128 10 12m1.7s 87.50
Bernoulli Perceptron SDSP 128 10 17s 100.00
Bernoulli Meta SDSP 32 10 3m56.0s 100.00
Bernoulli Levy-Baxter SDSP 128 10 6m48.0s 99.00
Bernoulli LIF STPD 128 10 3m44.4s 91.50
Bernoulli LIF (in) + Perceptron (hid/out) STPD 128 10 11m50.9s 87.50
Bernoulli Perceptron STPD 512 10 86m48.8s 100.00
Bernoulli Meta STPD 32 10 20.2s 92.50
Bernoulli Levy-Baxter STPD 128 10 3m49s 100.00
Bernoulli LIF BAL 128 30 3m28.9s 86.50

Table 6  Influence of neuron model on bio-inspired learning algorithms
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Input Neuron model Algorithm Neurons / layer Epochs Time Acc. [%]
Bernoulli LIF (in) + Perceptron (hid/out) BAL 128 10 4.7s 87.50
Bernoulli Perceptron BAL 128 10 5m38.5s 99.00
Bernoulli Meta BAL 32 10 6.7 99.50
Bernoulli Levy-Baxter BAL 32 10 22.2s 100.00
Markov LIF Tempotron 128 10 40.5s 90.59
Markov LIF (in) + Perceptron (hid/out) Tempotron 64 10 29.1s 96.75
Markov Perceptron Tempotron 128 10 53.6s 100.00
Markov Meta Tempotron 64 10 1m8.2s 92.00
Markov Levy-Baxter Tempotron 64 10 36.0s 93.75
Markov LIF SDSP 128 10 1m46.4s 92.25
Markov LIF (in) + Perceptron (hid/out) SDSP 256 10 93m2.4s 83.00
Markov Perceptron SDSP 128 20 3m44.7s 100.00
Markov Meta SDSP 64 10 53.1s 97.53
Markov Levy-Baxter SDSP 128 10 11m9.2s 95.50
Markov LIF STPD 128 10 3m45.1s 91.50
Markov LIF (in) + Perceptron (hid/out) STPD 64 10 1m17.3s 85.00
Markov Perceptron STPD 512 10 195m34.2s 100.00
Markov Meta STPD 64 10 51.3s 99.20
Markov Levy-Baxter STPD 128 10 1m47.9s 80.75
Markov LIF BAL 128 10 1m56.2s 96.25
Markov LIF (in) + Perceptron (hid/out) BAL 256 20 11m12.9s 95.00
Markov Perceptron BAL 512 10 266m55.1s 99.75
Markov Meta BAL 32 10 7.6s 99.50
Markov Levy-Baxter BAL 64 10 2m12.4s 96.25
Poisson LIF Tempotron 128 10 7.3s 89.50
Poisson LIF (in) + Perceptron (hid/out) Tempotron 128 20 3m23.9s 89.00
Poisson Perceptron Tempotron 64 10 8.5s 100.00
Poisson Meta Tempotron 128 10 7.8s 89.50
Poisson Levy-Baxter Tempotron 64 10 5.8s 91.00
Poisson LIF SDSP 64 10 32.2s 90.00
Poisson LIF (in) + Perceptron (hid/out) SDSP 16 10 28.1s 68.00
Poisson Perceptron SDSP 16 10 3.1s 100.00
Poisson Meta SDSP 64 10 26.1s 91.00
Poisson Levy-Baxter SDSP 128 10 20m57.7s 99.00
Poisson LIF STPD 128 20 10m44.7s 97.50
Poisson LIF (in) + Perceptron (hid/out) STPD 16 10 2.7s 68.00
Poisson Perceptron STPD 64 10 10.7s 91.00
Poisson Meta STPD 64 10 31.9s 88.00
Poisson Levy-Baxter STPD 128 10 8m7.9s 95.00
Poisson LIF BAL 128 30 10m6.9s 96.00
Poisson LIF (in) + Perceptron (hid/out) BAL 64 20 1m48.0s 88.00
Poisson Perceptron BAL 64 10 1m54.0s 100.00
Poisson Meta BAL 64 10 31.4s 91.00
Poisson Levy-Baxter BAL 64 10 18m19.0s 97.50

Table 6  (continued) 

1 3

Page 17 of 23      5 



Neuroinformatics            (2026) 24:5 

Table 7  Influence of numbers of neurons on commonly applied learning algorithms
Neuron model Input data Neurons / layer Epochs Time Accuracy [%]
LIF Bernoulli 16 10 14.2s 97.00
LIF Bernoulli 32 10 51.2s 100.00
LIF Bernoulli 64 10 3m19s 99.00
LIF Bernoulli 128 10 13m16.5s 99.00
LIF Bernoulli 512 10 223m53.5s 99.50
LIF Bernoulli 1024 10 729m36s 100.00
LIF Markov 16 10 28.7s 95.92
LIF Markov 32 10 32.4s 97.42
LIF Markov 64 10 49.9s 88.22
LIF Markov 128 10 1m51.0s 97.64
LIF Markov 512 10 26m9.0s 96.08
LIF Markov 1024 10 720m4.8s 100.00
LIF Poisson 16 10 2.9s 69.50
LIF Poisson 32 10 7.1s 73.50
LIF Poisson 64 10 22.3s 47.00
LIF Poisson 128 10 1m15.2s 49.00
LIF Poisson 512 10 24m48.0s 49.00
LIF Poisson 1024 10 84m10.5s 49.00
LB Bernoulli 16 10 20.0s 100.00
LB Bernoulli 32 10 1m7.1s 100.00
LB Bernoulli 64 10 4m12.9s 100.00
LB Bernoulli 128 10 17m34.1s 100.00
LB Bernoulli 512 10 326m32.5s 100.00
LB Bernoulli 1024 10 79m48.4s 49.00
LB Markov 16 10 40.6s 68.29
LB Markov 32 10 1m2.3s 98.05
LB Markov 64 10 2m24.2s 99.62
LB Markov 128 10 7m51.3s 99.88
LB Markov 512 10 143m9.1s 100.00
LB Markov 1024 10 470m1.1s 49.62
LB Poisson 16 10 14.6s 88.00
LB Poisson 32 10 51.0s 87.50
LB Poisson 64 10 3m0.1s 97.00
LB Poisson 128 10 11m51.5s 99.00
LB Poisson 512 10 19m45.6s 49.00
LB Poisson 1024 10 210m11.0s 49.00
The BP learning algorithm was applied
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Input data Algorithm Neurons / layer Epochs Time Acc. [%]
Bernoulli Tempotron 16 10 1.6s 69.50
Bernoulli Tempotron 32 10 2.5s 66.50
Bernoulli Tempotron 64 10 3.2s 59.00
Bernoulli Tempotron 128 10 7.02s 96.00
Bernoulli Tempotron 512 10 38.0s 93.00
Bernoulli Tempotron 1024 10 1m41.9s 42.50
Bernoulli BAL 16 10 2.7s 55.50
Bernoulli BAL 32 10 7.1s 85.50
Bernoulli BAL 64 10 22.2s 86.00
Bernoulli BAL 128 10 1m20.3s 87.50
Bernoulli BAL 512 10 21m21.6s 95.00
Bernoulli BAL 1024 10 82m27.9s 97.00
Bernoulli STDP 16 10 5.9s 49.00
Bernoulli STDP 32 10 16.9s 75.00
Bernoulli STDP 64 10 1m3.9s 87.00
Bernoulli STDP 128 10 4m5.3s 91.50
Bernoulli STDP 512 10 65m21.0s 49.00
Bernoulli STDP 1024 10 285m6.4s 49.00
Bernoulli SDSP 16 10 2.6s 97.00
Bernoulli SDSP 32 10 5.8s 93.00
Bernoulli SDSP 64 10 17.6s 89.50
Bernoulli SDSP 128 10 1m3.5s 98.00
Bernoulli SDSP 512 10 16m23.5s 100.00
Bernoulli SDSP 1024 10 58m36.4s 100.00
Markov Tempotron 16 10 30.6s 69.93
Markov Tempotron 32 10 30.9s 77.27
Markov Tempotron 64 10 33.7s 82.00
Markov Tempotron 128 10 40.5s 90.59
Markov Tempotron 512 10 2m1.7s 90.08
Markov Tempotron 1024 10 4m33.1s 90.08
Markov STDP 16 10 49s 49.00
Markov STDP 32 10 14.9s 75.00
Markov STDP 64 10 57.5s 87.00
Markov STDP 128 10 3m45.1s 91.50
Markov STDP 512 10 59m33.4s 53.00
Markov STDP 1024 10 247m21.1s 49.00
Markov BAL 16 10 30.0s 50.25
Markov BAL 32 10 35.1s 50.75
Markov BAL 64 10 52.5s 91.50
Markov BAL 128 10 1m56.2s 96.25
Markov BAL 512 10 23m57s 99.00

Table 8  Influence of numbers of neurons on bio-inspired learning algorithms
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Input data Algorithm Neurons / layer Epochs Time Acc. [%]
Bernoulli Tempotron 16 10 2.2s 49.00
Bernoulli Tempotron 32 10 4.5s 49.00
Bernoulli Tempotron 64 10 12.2s 49.00
Bernoulli Tempotron 128 10 49.0s 91.50
Bernoulli Tempotron 512 10 2m38.4s 99.50
Bernoulli Tempotron 1024 10 23m45.1s 53.00
Bernoulli SDSP 16 10 8.7s 49.00
Bernoulli SDSP 32 10 27.5s 100.00
Bernoulli SDSP 64 10 1m50.5s 95.00
Bernoulli SDSP 128 10 6m48.0s 99.00
Bernoulli SDSP 512 10 74m51.5s 100.00
Bernoulli SDSP 1024 10 585m52.5s 74.00
Bernoulli STPD 16 10 4.6s 49.00
Bernoulli STPD 32 10 15.6s 49.00
Bernoulli STPD 64 10 56.1s 59.10
Bernoulli STPD 128 10 18m27.7s 99.50
Bernoulli STPD 512 10 59m20.9s 100.00
Bernoulli STPD 1024 10 325m51.4s 49.00
Bernoulli BAL 16 10 6.6s 97.00

Table 9  Influence of numbers of neurons on bio-inspired learning algorithms

Input data Algorithm Neurons / layer Epochs Time Acc. [%]
Markov BAL 1024 10 93m53.3s 99.75
Markov SDSP 16 10 28.1s 91.75
Markov SDSP 32 10 31.4s 97.00
Markov SDSP 64 10 47.0s 94.50
Markov SDSP 128 10 1m46.4s 92.25
Markov SDSP 512 10 21m40.8s 78.00
Markov SDSP 1024 10 91m24.0s 99.00
Poisson Tempotron 16 10 1.2s 69.50
Poisson Tempotron 32 10 1.9s 68.00
Poisson Tempotron 64 10 3.5s 68.00
Poisson Tempotron 128 10 7.3s 89.50
Poisson Tempotron 512 10 44.6s 73.50
Poisson Tempotron 1024 10 2m6s 67.50
Poisson BAL 16 10 3.5s 79.00
Poisson BAL 32 10 7.6s 82.00
Poisson BAL 64 10 25.0s 48.50
Poisson BAL 128 10 1m36.3s 94.50
Poisson BAL 512 10 24m48.1s 49.00
Poisson BAL 1024 10 109m38.3s 48.50
Poisson STDP 16 10 3.2s 80.50
Poisson STDP 32 10 7.3s 83.50
Poisson STDP 64 10 24.1s 89.50
Poisson STDP 128 10 1m27.5s 49.00
Poisson STDP 512 10 22m8.5s 49.00
Poisson STDP 1024 10 95m35.3s 49.00
Poisson SDSP 16 10 3.4s 68.00
Poisson SDSP 32 10 7.7s 74.00
Poisson SDSP 64 10 23.4s 88.00
Poisson SDSP 128 10 1m26.6s 49.00
Poisson SDSP 512 10 33m17.0s 56.00
Poisson SDSP 1024 10 101m5.0s 64.50
The LIF neuron model was applied

Table 8  (continued) 
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Input data Algorithm Neurons / layer Epochs Time Acc. [%]
Bernoulli BAL 32 10 22.2s 100.00
Bernoulli BAL 64 10 1m23.5s 98.00
Bernoulli BAL 128 10 5m22.5s 95.00
Bernoulli BAL 512 10 85m5.5s 100.00
Bernoulli BAL 1024 10 311m47s 52.00
Markov Tempotron 16 10 29.7s 90.00
Markov Tempotron 32 10 32.2s 50.00
Markov Tempotron 64 10 36.0s 93.75
Markov Tempotron 128 10 1m7.0s 97.75
Markov Tempotron 512 10 4m7.8s 49.50
Markov Tempotron 1024 10 10m53.1s 50.00
Markov SDSP 16 10 31.6s 80.50
Markov SDSP 32 10 36.4s 88.25
Markov SDSP 64 10 57.65s 88.89
Markov SDSP 128 10 1m59.65s 93.00
Markov SDSP 512 10 25m9.65s 50.00
Markov SDSP 1024 10 91m24.0s 99.00
Markov STPD 16 10 27.8s 47.25
Markov STPD 32 10 32.7s 49.75
Markov STPD 64 10 48.4s 53.25
Markov STPD 128 10 1m47.9s 80.75
Markov STPD 512 10 21m44.3s 100.00
Markov STPD 1024 10 89m45.9s 99.50
Markov BAL 16 10 33.4s 87.50
Markov BAL 32 10 38.5s 79.75
Markov BAL 64 10 57.1s 50.00
Markov BAL 128 10 2m5.2s 50.75
Markov BAL 512 10 12m12.4s 96.25
Markov BAL 1024 10 106m54.7s 61.75
Poisson Tempotron 16 10 1.8s 49.00
Poisson Tempotron 32 10 3.4s 49.00
Poisson Tempotron 64 10 5.8s 91.00
Poisson Tempotron 128 10 21.0s 49.00
Poisson Tempotron 512 10 1m50.7s 49.00
Poisson Tempotron 1024 10 5m39.6s 91.50
Poisson SDSP 16 10 11.7s 49.00
Poisson SDSP 32 10 41s 93.50
Poisson SDSP 64 10 2m49.9s 95.50
Poisson SDSP 128 10 11m9.2s 95.50
Poisson SDSP 512 10 190m53.1s 49.00
Poisson SDSP 1024 10 311m48s 49.00
Poisson STPD 16 10 4.9s 49.00
Poisson STPD 32 10 10.1s 49.00
Poisson STPD 64 10 31.1s 77.50
Poisson STPD 128 10 2m3.2s 95.00
Poisson STPD 512 10 7m31s 94.50
Poisson STPD 1024 10 95m50.7s 49.00
Poisson BAL 16 10 33.4s 76.00
Poisson BAL 32 10 2m6.3s 94.00
Poisson BAL 64 10 8m6.7s 97.50
Poisson BAL 128 10 32m29.2s 97.00
Poisson BAL 512 10 546m25.4s 49.00
Poisson BAL 1024 10 845m38.7s 49.00
The LB neuron model was applied
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