
RESEARCH

Neuroinformatics (2026) 24:5
https://doi.org/10.1007/s12021-025-09754-1

Introduction

Neural communication is a highly complicated and dynamic
process through which neurons convey information within
biological systems. The fundamental mechanism of this
communication involves the propagation of electrical sig-
nals, known as action potentials (Gerstner et al., 2014).
Artificial Neural Networks (ANNs) are designed to emulate
aspects of this biological communication process through a
system of interconnected computational nodes, or neurons.
These nodes process information via mathematical opera-
tions, and their interconnections are modifiable based on
learning algorithms, mirroring the adaptive mechanisms
observed in biological neural networks. The connections in
neural networks are adjusted based on feedback, allowing
them to “learn” from data and optimize their performance,

Zofia Rudnicka and Agnieszka Pregowska contributed equally to this
work.

	
 Agnieszka Pregowska
aprego@ippt.pan.pl

Zofia Rudnicka
zrudnick@ippt.pan.pl

Janusz Szczepanski
jszczepa@ippt.pan.pl

1	 Institute of Fundamental Technological Research, Polish
Academy of Sciences, Pawinskiego 5B, Warsaw
02-106, Poland

Abstract
This study addresses the important question of how neuron model choice and learning rules shape the classification perfor-
mance of Spiking Neural Networks (SNNs) in bio-signal processing. By systematically contrasting Leaky Integrate-and-
Fire, metaneurons, and probabilistic Levy-Baxter (LB) neurons across spike-timing dependent plasticity, tempotron, and
reward-modulated learning, we identify model-rule combinations best suited for capturing the temporal richness of neural
data. A novel contribution is the integration of a complexity-driven evaluation into the SNN pipeline. Using Lempel-Ziv
Complexity (LZC), an entropy-related measure of spike-train regularity, we provide a consistent and interpretable bench-
mark of classification outcomes across architectures. To probe neural dynamics under controlled conditions, we employed
synthetic datasets with varying temporal dependencies and stochasticity, including Markov and Poisson processes estab-
lished models of neuronal spike-trains. Moreover, we validated the observed trends on real data by testing the same archi-
tectures on an MNIST dataset. Performance trends reveal strong dependence on the interaction between neuron model,
learning rule, and network size. The LZC based evaluation highlights configurations resilient to weak or noisy signals. The
LB-tempotron combination proved most effective for tasks with complex temporal patterns, leveraging adaptive neuronal
dynamics and precise spike-timing exploitation. LIF-based architectures with Bio-inspired Active Learning delivered solid
accuracy at lower computational cost, while hybrid models offered a versatile middle ground when paired with appropri-
ate learning algorithms. This work delivers the first systematic mapping of neuron model learning rule synergies in SNNs
and introduces complexity-based evaluation framework that sets a robust benchmark for biosignal classification. Beyond
benchmarking, our results provide actionable guidelines for building next-generation SNNs capable of handling the vari-
ability and complexity of real neural data.

Keywords  Spiking neural networks · Neuron models · Learning algorithms · Lempel-Ziv complexity

Received: 2 September 2025 / Accepted: 4 November 2025
© The Author(s) 2025

Impact of Neuron Models on Spiking Neural Network Performance: A
Complexity-based Classification Approach

Zofia Rudnicka1 · Janusz Szczepanski1 · Agnieszka Pregowska1

1 3

https://doi.org/10.1007/s12021-025-09754-1
http://crossmark.crossref.org/dialog/?doi=10.1007/s12021-025-09754-1&domain=pdf&date_stamp=2025-12-27

Neuroinformatics (2026) 24:5

similar to the synaptic modifications in the brain. ANNs
utilize simplified mathematical models that simulate the
underlying processes of neural communication. These mod-
els operate within a hidden layer, where they are connected
to the output layer of the network. The computations within
these nodes are based on mathematical operations, and their
output is combined with the weights of the connections
between nodes, which are adjusted during training, mainly
with algorithms such as backpropagation (Wu et al., 2018).
In this framework, the training process involves iteratively
adjusting the weights of connections based on the discrep-
ancy between the predicted outputs and the actual outputs.
This adjustment allows the network to “learn” and improve
its performance over time. Although artificial neurons are
designed to mimic certain aspects of biological neurons,
they do so in a much more abstract and simplified man-
ner. The complexity of biological neurons, influenced by a
wide range of internal and external factors, is reduced to
a basic computational model that focuses on input-output
relationships.

While both biological and artificial neurons process infor-
mation, the mechanisms and complexity differ significantly
(Seguin et al., 2023). Biological neurons operate in highly
dynamic environments, with their activity influenced by a
multitude of biochemical processes and external stimuli. In
contrast, artificial neurons, governed by specific architec-
tures and learning algorithms, are simplified representations
of this complexity. This difference highlights the inherent
contrast between the adaptive, biochemical complexity of
biological systems and the structured, algorithmic frame-
work of computational models. Thus, the limitations of clas-
sical Artificial Intelligence, particularly in models based on
perceptrons and traditional ANNs naturally forced the explo-
ration of alternative neural network architectures that can
improve computational efficiency. One of the most promis-
ing candidates for overcoming these limitations seems to be
Spiking Neural Networks (SNNs), which are considered to
be a more energy-efficient option for complex calculations
(Datta et al., 2022). The key distinction between SNNs and
conventional ANNs lies in their output dynamics. Unlike
ANNs, SNNs utilize a spiking mechanism, where informa-
tion is transmitted as discrete temporal spikes rather than
as continuous signals. This dynamic spike-based signaling
more closely emulates the way information flows through
biological synapses, allowing SNNs to represent features in
spatiotemporal data more effectively. Consequently, SNNs
exhibit a promising ability to perform computations in a
manner that approaches the temporal processing capabili-
ties of the human brain, enabling richer and more efficient
representations of time-dependent data (Sun et al., 2025).

When studying the efficiency of information transmis-
sion in SNN, the selection of both neuron and network

architecture models is crucial. A model that accurately rep-
licates the spike response of a neuron to any input current
is fundamental for both constructing brain simulators and
understanding the computational mechanisms of neural
activity (Izhikevich, 2003; Shirsavar et al., 2023). Several
approaches to neuron modeling are being developed (Ger-
stner et al., 2014), with two primary lines of development
being most prominent. The first approach involves detailed
biophysical modeling, such as Hodgkin and Huxley-like
models, which describe the dynamics of ion channels within
the spatially structured tree-like morphology of neurons.
The second approach includes the integrate-and-fire (LIF)
models (Dutta et al., 2017), which treat neuronal electrical
activity as a threshold-based process. As network building
blocks (single-neuron models), first, we will assume percep-
torns, than recently used in SNNs, Leaky Integrate-and-Fire
neuron model, metaneurons (Weng et al., 2020) and proba-
bilistic Levy-Baxter neuron model (Levy & Baxter, 2002;
Paprocki et al., 2020), which provide results consistent
with physiological observed values. In this paper, we ana-
lyze how the performance of the SNN is influenced by the
neuron model used to build it. We introduce a novel hybrid
framework that integrates the temporal precision and bio-
logical plausibility of SNNs with the Lempel-Ziv complex-
ity (LZC) measure (Ziv & Lempel, 1976) to improve the
classification of spatiotemporal neural data. By quantifying
the structural complexity of spike patterns, the proposed
method offers interpretable and noise-robust classification,
particularly effective for data exhibiting variable temporal
dynamics, such as Poisson-distributed signals.

Main Contribution

The main contributions of the paper include a comprehensive
analysis of how different neuron models: LIF, metaneurons,
and probabilistic Levy-Baxter, affect SNN classification
performance across varying network sizes and tasks, as
well as a systematic evaluation of multiple learning algo-
rithms, including unsupervised (STDP, SDSP), supervised
(tempotron, backpropagation), and hybrid reward-modu-
lated approaches, to quantify their interaction with neuron
model choice. The study further demonstrates the effective-
ness of bio-inspired neuron models in bio-signal classifica-
tion, achieving high accuracy, sensitivity, and specificity on
synthetic datasets modeled with Poisson and Markov pro-
cesses. In addition, it introduces a complexity-based evalua-
tion by integrating Shannon’s information theory with SNN
output, using LZC to capture subtle temporal structures in
spike trains and improve the detection of weak or noisy sig-
nals. The results identify performance trends showing how
optimal neuron model-learning rule combinations depend

1 3

 5   Page 2 of 23

Neuroinformatics (2026) 24:5

on signal characteristics and network size, with tempotron
and reward-based learning showing notable advantages in
specific regimes. Finally, the paper highlights the potential
of SNNs as a biologically plausible and computationally
efficient framework for processing complex spatio-temporal
data, particularly biosignals.

Basics Notation

In Table 1 the notation used is presented.

Models of Neurons

The perceptron operates in an n-dimensional real vector
space Rn. The input vector is x = [x1, x2, . . . , xn], and the
weight vector is w = [w1, w2, . . . , wn] ∈ Rn. The percep-
tron computes a weighted sum of inputs with an added bias
b, as given by:

z =
n∑

i=1
wixi + b� (1)

where b ∈ R is the bias term, and the output is determined
by a threshold function f(z):

f(z) =
{

1 if z ≥ θ
0 otherwise � (2)

where θ is the activation threshold (Parlos et al., 1994).
The Leaky Integrate-and-Fire model describes the mem-

brane potential dynamics of a neuron (Dutta et al., 2017).
The membrane potential U(t) evolves over time according
to the equation:

τm
dU

dt
= −U(t) + RmI(t)� (3)

where τm is the membrane time constant, Rm is the mem-
brane resistance, and I(t) is the input current at time t. When
the membrane potential exceeds a threshold Uth, a spike

occurs, and the potential is reset to a lower value Ur. This
process models the gradual accumulation and leakage of
membrane potential.

The metaneuron is a higher-level computational unit that
abstracts the activity of multiple neurons or neural processes
(Cheng et al., 2023). It introduces a modular approach to
neural network design, facilitating large-scale modeling by
representing groups of neurons or collective behaviors. Like
the perceptron, it computes a weighted sum of inputs, but
with greater flexibility in activation functions, supporting
binary step, sigmoid, or ReLU. Unlike the perceptron, the
metaneuron can model dynamic neuron behaviors, includ-
ing spiking dynamics, by processing time-varying inputs
and evolving internal states, akin to LIF model. This gen-
eralization allows it to capture complex neural phenomena
such as oscillations and synchrony, making it highly adapt-
able for large-scale networks.

The Levy-Baxter (LB) model incorporates probabilistic
dynamics to capture synaptic transmission variability (Levy
& Baxter, 2002; Paprocki et al., 2020). The inputs to the
neuron are represented by the vector x = [x1, x2, . . . , xn],
with each xi modeled as a binary stochastic process. The
transformation of each input is governed by a Bernoulli ran-
dom variable ϕi with success probability s, and the ampli-
tude is scaled by a random variable Qi uniformly distributed
over [0, 1]. The transformed input is given by:

y = [ϕ1Q1x1, ϕ2Q2x2, . . . , ϕnQnxn]� (4)

The total excitation σ is the sum of the transformed inputs:

σ =
n∑

i=1
ϕiQixi� (5)

The output of the neuron is determined by a threshold func-
tion f(σ):

z =
{

1 if σ ≥ 0
0 if σ < 0 � (6)

where z = 1 indicates the neuron has fired, and z = 0 indi-
cates no spike. This probabilistic approach models a syn-
aptic variability, with xi as inputs, ϕi as quantal release
probabilities, and Qi as the scaling factor representing
amplitude fluctuations.

Each neuron model described here represents a different
abstraction of neural behavior. The perceptron is a simple
threshold-based model used for binary classification tasks,
operating deterministically. The spiking phenomenon is not
included. The LIF model incorporates temporal dynam-
ics, modeling the gradual integration of inputs and natural

Table 1  Basic notation used in the study
Description Notation
input vector x = (x1, . . . , xn) ∈ Rn

weight vector w = (w1, . . . , wn) ∈ Rn

bias b
threshold θ

weighted sum z = w⊤x + b ∈ R
activation function f(z), f : R → R or f : R → {0, 1}

1 3

Page 3 of 23  5

Neuroinformatics (2026) 24:5

architectures. In contrast, metaneurons aggregate multiple
neural responses into higher-level computational units,
effectively smoothing out micro-level noise. This suggests
a potential mechanism for emergent stability and energy
efficiency in large-scale networks. Incorporating stochastic
or hierarchical features into neuron models not only affects
computational performance but also aligns with physi-
ologically relevant principles of efficiency, variability, and
adaptive coding.

Spiking Neural Network Architecture

Spiking Neural Networks process information by consider-
ing spike signals, making them particularly promising for
handling complex tasks (Naderi et al., 2025). These net-
works excel at encoding intricate spatiotemporal informa-
tion through spike patterns. The design of SNNs is often
based on models like LIF neuron model, which is a sim-
plified representation of how biological neurons process
information. In these models, the arrival of a spike at a pre-
synaptic neuron triggers an input current I(t) that influences
the membrane potential of the postsynaptic neuron. For sim-
plicity, we can express the input current as a convolution
of the spike signal Sj(t) rom a presynaptic neuron with an
exponential decay function, representing the temporal filter-
ing of the spike signal

I(t) =
ˆ ∞

0
Sj(s − t)exp(−s

τs
)ds,� (7)

where Sj(s − t) represents the spike train from the j-th pre-
synaptic neuron, and τs is a synaptic time constant, dictat-
ing the decay of the signal over time. This equation models
the temporal dynamics of the input signal, which integrates
over time, decaying with rate τs.

The neural network consists of three layers of neurons:
input, hidden, and output, each containing n neurons, as
shown in Fig. 1. We considered neural networks comprising

leakage of membrane potential. It introduces time-depen-
dent behavior and spiking. The metaneuron abstracts the
collective activity of multiple neurons into a higher-level
computational unit, enabling modular and hierarchical net-
work design. The spiking phenomenon is optional. The LB
model introduces stochastic and quantal variability in syn-
aptic transmission, providing a probabilistic framework for
understanding neural responses. While stochastic provides
more realistic noise modeling.

The LB neuron introduces probabilistic variability
into synaptic transmission, modeling the inherently noisy
and quantal nature of biological synapses. This stochastic
mechanism allows the neuron to represent uncertainty and
adapt its response to fluctuating input conditions, thereby
capturing a key physiological property of biological neu-
ral systems often overlooked in deterministic models. The
probabilistic firing behavior enhances the diversity and rich-
ness of temporal activity patterns, increasing the model’s
coding capacity through variability in spike timing and
amplitude. Such variability supports distributed and redun-
dant representations, improving robustness to input pertur-
bations and synaptic noise.

Moreover, stochasticity contributes to energy-efficient
signaling: rather than maintaining continuous high-fre-
quency activity, the LB neuron exhibits adaptive firing
rates governed by probabilistic thresholds, reducing met-
abolic load while preserving informational throughput.
Relative to the LIF model, which integrates inputs in a
fixed, deterministic manner, the LB neuron offers a more
flexible and biologically plausible framework that links
noise to computation rather than treating it as an unwanted
artifact. When compared to metaneurons, the LB model
emphasizes fine-grained, probabilistic mechanisms at the
single-neuron level, whereas metaneurons abstract this
variability into ensemble-level stability and modular com-
putation. Together, these perspectives highlight the role of
stochastic dynamics as both a source of biological realism
and a functional advantage, enabling adaptive coding, effi-
cient energy utilization, and resilience in complex neural

Fig. 1  The basics scheme of the conducted classification task

1 3

 5   Page 4 of 23

Neuroinformatics (2026) 24:5

deterministic sequences. For random sequences, the normal-
ized complexity tends to 1, and for deterministic sequences,
it approaches 0. The LZ complexity serves as an effective
estimator of entropy for ergodic stochastic processes (Ziv
& Lempel, 1976; Arnold et al., 2013; Pregowska et al.,
2016, 2019). In neural networks, Lempel-Ziv complexity is
applied to classify output sequences based on their infor-
mational content and unpredictability. The output sequences
are classified using the Lempel-Ziv 1976 complexity-based
classifier. Various neuron models were used to construct the
SNN, including the perceptron, LIF, metaneuron, and LB
neuron models. Moreover, different types of learning algo-
rithms, including unsupervised methods (e.g., spike-timing
dependent plasticity STDP Zhao et al., 2025), spike-driven
synaptic plasticity SDSP He et al., 2025), supervised meth-
ods (e.g., tempotron Gutig & Sompolinsky, 2006; Yu et al.,
2014, backpropagation Wuet al., 2018), and hybrid methods
(e.g., reward-based learning with active learning Zhan et al.,
2023), have been widely investigated to optimize network
performance.

To ensure the reproducibility and transparency of our
results, simulations were carried out within a controlled
environment, where all parameters and procedures were
explicitly defined. The architecture of the networks, the
choice of neuron models (perceptron, LIF, metaneuron, LB
neuron) and the learning rules were consistently specified
across experiments. In order to minimize variability, fixed
random seeds were used during initialization, ensuring that
repeated runs yielded comparable results (Beyeler et al.,
2014; Richmond et al., 2014). The input data consisted of
binary sequences of length 1024, processed by networks
of different sizes ranging from 16 to 1024 neurons per

16, 32, 64, 128, 256, 512, and 1024 neurons per layer. The
best of the results obtained are presented in Tables 1, 2, 3,
4 and 5. Sequences of binary values (strings of zeros and
ones), each 1024 bits long, are fed into the network. Then,
n-bit-long sequences of action potentials (spike trains) are
generated by the network and subsequently converted back
into sequences of zeros and ones. To store and manipulate
spike times efficiently at scale, we adopt a bit-encoding data
structure specialized for event-based signals, which sub-
stantially reduces memory footprint and improves runtime
for large spike matrices (Ljungquist et al., 2018).

Shannon’s Information Theory establishes a mathemati-
cal framework for quantifying and analyzing the trans-
mission of information within communication systems
(Shannon, 1948). Thus, entropy rate estimators provide a
rigorous mathematical approach to approximating informa-
tion transmission rates, offering an alternative to traditional
firing rate analysis. Notably, Lempel-Ziv complexity, as
defined by Ziv and Lempel (1976), has been successfully
employed as an effective estimator. The Lempel-Ziv com-
plexity is a widely used metric for estimating entropy, and
consequently the informational content of sequences. Given
a sequence x1

n := [x1, x2, . . . , xn], where each xi belongs
to a finite source alphabet (e.g., xi ∈ {0, 1}), the complexity
Cα(x1

n) counts the number of distinct blocks (or patterns) in
the sequence. A new block is defined when a substring start-
ing from the current position has not appeared before. The
normalized complexity, cα(x1

n), which measures the rate at
which new patterns are generated, is defined as:

cα(x1
n) = Cα(x1

n)
n

logα n,� (8)

where α = 2 for binary sequences. Asymptotically,
c2(x1

n) → 1 for random sequences and c2(x1
n) → 0 for

Table 2  Representative configurations: best accuracy and best time-
accuracy trade-off per input process
Input Model +

Learining
Rule

Neurons/layer Epochs Accu-
racy
(%)

Time

Poisson
(best
trade-off)

Percep-
tron +
Tempotron

64 10 100.00 8.5 s

Bernoulli
(fast, high
acc.)

Meta +
BAL

32 10 99.50 6.7 s

Bernoulli
(max
acc.)

LB + BAL 32 10 100.00 22.2
s

Markov
(max
acc.)

Percep-
tron +
Tempotron

128 10 100.00 53.6
s

Full grids in Tables 5-9 in Appendix

Table 3  Per-run accuracy, normalized LZC c2 (bin=4), and spike-rate
(Conv only)
arch dataset acc c2 (bin=4)
Conv-SNN Poisson 0.917 1.254
Conv-SNN Markov 1.000 1.082
Conv-SNN Bernoulli 1.000 0.936
Reservoir-SNN Poisson 0.667 0.208
Reservoir-SNN Markov 0.938 1.010
Reservoir-SNN Bernoulli 1.000 0.431

Table 4  Accuracy and fractional LZC (bin=4) aggregated over seeds
(mean ± std)
arch dataset acc c2 (mean ± std)
Conv-SNN Bernoulli 1.000 ± 0.000 0.156 ± 0.000
Conv-SNN Markov 1.000 ± 0.000 0.168 ± 0.000
Conv-SNN Poisson 0.950 ± 0.000 0.200 ± 0.000
Reservoir-SNN Bernoulli 1.000 ± 0.000 0.076 ± 0.000
Reservoir-SNN Markov 0.938 ± 0.000 0.173 ± 0.000
Reservoir-SNN Poisson 0.750 ± 0.000 0.036 ± 0.000

1 3

Page 5 of 23  5

Neuroinformatics (2026) 24:5

Poisson sequences are generated from a Poisson process,
where events occur independently at a constant average
rate λ. For each Poisson process, spike trains are generated
with rate parameters λx and λy . These sequences are tested
under various rate configurations to observe the effect of
spike timing variability on system behavior and classifica-
tion performance.

To explore neural dynamics, we use Poisson and Markov
processes to model neuronal spike trains, a well-established
method for simulating the stochastic firing behavior of bio-
logical neurons.

The rationale for using synthetic sequences with con-
trolled stochastic properties is to enable a rigorous evalu-
ation of how SNNs and biologically inspired learning
algorithms respond to different temporal structures and sta-
tistical dependencies. Unlike real-world benchmarks, these
synthetic inputs allow for precise manipulation of noise,
memory, and event distributions, i.e. factors that are cru-
cial for understanding the encoding capabilities of SNNs.
Moreover, the use of interpretable, parameterized inputs
facilitates a clearer attribution of classification outcomes to
underlying neural dynamics and complexity-based decision
mechanisms.

Our use of Bernoulli/Markov/Poisson generators is delib-
erate: these canonical regimes approximate real dynamics
while providing controllable ground truth for neuron-level
analyses. In particular, inhomogeneous Poisson point pro-
cesses are standard for event-based neural/biomedical
data (e.g., spike trains), and Poisson-intensity GLMs are a
workhorse in neural decoding (Truccolo et al., 2004).The
time-rescaling theorem maps any simple point process to a
unit-rate Poisson via its conditional intensity, and Ogata’s
thinning supplies unbiased simulation/diagnostics-hence
Poisson-family baselines. Although EEG/EMG are con-
tinuous, many derived features are event-like (spindles,
microstate transitions, thresholded band-power), so Poisson
naturally models event times/counts for multi-class tempo-
ral classification with clear probabilistic semantics.

Biologically, cortical firing often approximates inho-
mogeneous Poisson processes over mesoscale windows,
capturing ISI variability and trial-to-trial jitter. The result-
ing controlled stochasticity meaningfully stress-tests SNN
encoding and decision mechanisms.

In addition to synthetic spike-train inputs, we evaluate
the networks on an event-based MNIST benchmark derived
from the standard handwritten digit classification task. Pixel
intensities are converted into spike trains using a rate-based
encoding, providing a structured but non-random input
with spatially meaningful correlations. This dataset serves
as an intermediate step between fully controlled synthetic
inputs and real biosignals, allowing us to assess whether the

layer. Identical pre-processing and spike-encoding proce-
dures were applied to all datasets, making the experimental
pipeline uniform and comparable. For every network con-
figuration, training and evaluation followed standardized
protocols, including the number of epochs, the selection of
learning algorithms (e.g., STDP, SDSP, backpropagation),
and the relevant hyperparameters. Furthermore, simulation
scripts, together with parameter settings, were designed in
a portable manner, so that the experiments can be repro-
duced on different computational platforms without loss of
generality.

Input Datasets

Neuronal action potentials and spike sequences are often
modeled as point processes, providing a statistical frame-
work for analyzing discrete events over time (Daley et al.,
2003; Wojcik et al., 2009). Poisson point processes are par-
ticularly useful for representing spike trains with minimal
temporal dependencies, effectively capturing the stochastic
nature of neuronal firing (Rieke et al., 1997). Their Mar-
kov properties make them suitable for modeling short-term
memoryless behavior in neural dynamics (Papoulis et al.,
2002).

These insights emphasize the need for probabilistic and
temporally structured input data to evaluate the capacity of
computational models to represent neural signals accurately.
To this study uses three types of synthetic binary sequences
as input datasets: Bernoulli sequences, first-order Markov
sequences, and Poisson-based spike trains. Each of these
allows for controlled manipulation of randomness, temporal
dependence, and rate-based variability, i.e. factors critical
for evaluating the interplay between neural dynamics and
classification mechanisms based on complexity.

Bernoulli sequences are generated from independent
Bernoulli processes, where each binary element Bi is drawn
independently with probability p. For our experiments, we
generate two sets of binary sequences B1 and B2, each of
length 1024, using different values of p. The independence
of events allows us to assess the system’s performance
under random binary outcomes with varying probabilities.

Markov sequences are generated from a first-order Markov
process, where the probability of each element Mi depends
on the previous state Mi−1. For our experiments, two sets
of binary sequences M1 = {m1i}, i = 1, 2, . . . , 1000 and
M2 = {m2i}, i = 1, 2, . . . , 1000 are generated with tran-
sition probabilities defining the dependency structure. We
explore different transition probability configurations to
evaluate the impact of state dependencies on classification
accuracy.

1 3

 5   Page 6 of 23

Neuroinformatics (2026) 24:5

Despite these advances, none of the aforementioned
studies considered the impact of neuron models on SNN
performance, particularly the effects on accuracy and com-
putation time in relation to the number of neurons per layer
and different neural network learning algorithms. All the
reviewed works relied on the LIF neuron model or its varia-
tions, such as the meta neuron, and there is a clear trend
toward implementing biologically inspired algorithms in
SNNs based on LIF neurons. However, these studies did not
investigate the influence of network size or the potential of
alternative neuron models. Moreover, to our knowledge, no
existing research has explored combining SNNs with con-
cepts derived from Information Theory to enhance network
accuracy while reducing computation time. This gap in the
literature underscores the novelty of our proposed approach.

Results

The considered datasets were divided into two subsets:
90.00% for training and 10.00% for testing, ensuring that
the models had sufficient data to learn while retaining a sep-
arate evaluation set. Accuracy was used the primary metric
for evaluating classification performance. All computations
were provided on Intel(R) Core(TM) i7-14700F, 2.10 GHz.

First, we consider four spiking neural networks made of
LIF, perceptron, meta neurons, LB neuron model as well
as the hybrid network, in which input layer was construed
by LIF neurons, while the hidden and output layers were
made of perceprtrons, respectively. In and Fig. 2 and Table
5 in Appendix the influence of neuron model on commonly
used learning algorithm, i.e. BP learning algorithm was pre-
sented. It turned out that all cases gave accuracies above
90.00%, except for the use of a network composed of the
LIF model to the Poisson source, however, the computation
times differed significantly. The application of the compared
to a neural network composed of LIF neurons, the use of the
meta nueron model in the case of BP learning algortihms
gives higher accuracy in comparable computation time. Sur-
prisingly, for input data in the form of the Bernoulli process
(actually the simplest data set), a neural network consisting
of 512 LIF neuron in input layer and 512 perceptrons in hid-
den and output layers was needed to achieve high accuracy.
In comparison, architectures composed of the remaining
neurons models required only 64 neurons per layer. More-
over, in the case of the Poisson process, the network based
on LIF neurons also required four times more epochs to
achieves lower accuracy than in other cases.

Figure 3 and Table 6 in Appendix show the influence of
neuron model on bio-inspired learning algorithms like tem-
potron learning rule, Bio-inspired Active Learning (BAL),

observed model-rule synergies generalize to a widely used
classification task.

Related Works

In the paper by Dan et al. (2025), a Spiking Neural Network
architecture based on LIF neuron model was proposed.
The authors introduced a residual-based SNN architec-
ture with dynamic threshold adjustment, which combines
direct encoding (frequency-based neuronal representation)
with multineuronal population decoding. The MNIST data-
set was considered, and the architecture achieved notable
performance in just 6 time-steps, with accuracy improve-
ments ranging between 1.00% and 7.50%, depending on
the dataset. Similarly, Luo et al. (2025) proposed an SNN
based on a current-based adaptive LIF (CuAdLIF) neuron
model featuring delayed responses and membrane poten-
tial adaptation. This design improves temporal correlations
and maintains long short-term memory. On the other hand,
Zhao et al. (2025) advanced neuromorphic computing by
developing a high-performance neuromorphic processing
unit (NPU) tailored for high data throughput and robust
SNN processing. This NPU utilized LIF neurons with a
backpropagation-based spike-timing-dependent plasticity
learning algorithm, achieving an accuracy of 91.00% on
the MNIST dataset. This approach set a new benchmark in
neuromorphic computing, offering superior data throughput
and neural processing precision compared to systems like
SpiNNaker 2.

Study (Liu et al., 2025) applied the STDP learning algo-
rithm to an SNN based on LIF neurons for classification
tasks on the MNIST dataset, showing promising results and
highlighting the potential of this research direction. Another
bio-inspired learning algorithm tested in SNNs is the tem-
potron, as reported by Yu et al. (2014), who achieved high
classification accuracy on the MNIST dataset. Building on
this, Patankar et al. (2025) employed a tempotron learning
rate method for training and standard STDP for optimi-
zation in an SNN based on LIF neurons for medical data
applications. This approach significantly improved process-
ing speed and reduced complexity compared to other SNN
methods. Various cross-validation techniques were used to
validate the robustness of the model, demonstrating its supe-
riority over existing state-of-the-art SNNs. Additionally,
Luo et al. (2025) addressed the limitations of SNNs based
on meta neuron models by improving the You-Only-Look-
Once (YOLO) algorithm. Their SpikeYOLO architecture,
i.e. a simplified version of YOLO incorporating meta SNN
blocks, which minimized spike degradation and improved
detection accuracy.

1 3

Page 7 of 23  5

Neuroinformatics (2026) 24:5

The analysis of neuron models under BAL, tempotron, and
STDP learning algorithms for Markov sequences revealed
distinct performance trends, emphasizing the trade-offs
between accuracy and computational efficiency. The percep-
tron model consistently excelled, achieving perfect accuracy
(i.e., 100.00%) in BP and STDP scenarios, demonstrating its
effectiveness in capturing Markovian dependencies. Hybrid
models integrating LIF neurons with perceptrons exhibited
significant potential under BP and bio-inspired learning algo-
rithms, balancing low computational cost with high accu-
racy. However, these models showed inefficiencies under
SDPD, where accuracy declined to 83.00%. The biologically
inspired LB model demonstrated exceptional robustness,
achieving near-perfect accuracy (93.75–100.00%) across
tasks. However, its substantially longer runtimes make it
more suitable for precision-critical applications rather than
time-sensitive computations. Conversely, meta neurons pro-
vided a compelling balance between accuracy and efficiency,
maintaining high accuracy while requiring only 32-64 neu-
rons per layer, significantly reducing computational over-
head compared to alternative neuron models.

For datasets containing Poisson processes, the percep-
tron-based neural network model consistently demonstrated
the highest efficiency and effectiveness, achieving perfect
accuracy (i.e. 100.00%) in minimal time under the tempo-
tron learning algorithm and SDPS. However, in the case
of BAL, the computational time increased by an order of
magnitude while maintaining the same accuracy. Hybrid
models, such as those combining LIF neurons with percep-
trons, exhibited significantly lower accuracy, ranging from
68.00% to 89.00%, but with relatively low computational
costs. While this approach benefits from step dynamics
and linear decision boundaries, it requires careful tuning to

STDP, and SDSP. We consider the same architectures as in
Table 5. The results obtained show that involving biologi-
cally inspired learning algorithms in the process of training
a neural network allows for significantly shortened com-
putation time, especially when the neural network is built
from LIF, meta, and LB neuron models. The meta and LB
neurons models consistently demonstrated high efficiency
in handling Bernoulli processes across different bio-inspired
learning algorithms. It achieved a balance between accu-
racy and computational time, making it well-suited for
time-sensitive applications requiring moderate accuracy.
The first approach demonstrates high efficacy for Ber-
noulli sequences, where the independence between events
reduces the necessity for complex temporal integration. The
Levy-Baxter model, although slightly slower, consistently
achieved perfect accuracy across all Bernoulli datasets. The
introduction of perceptrons into neural networks presented
trade-offs: while they occasionally improved processing
speed, particularly in the BAL and tempotron algorithms,
they generally led to reduced accuracy and significantly
increased training times, as observed in the case of STDP-
based algorithms. The Levy-Baxter neural model exhibited
superior accuracy, consistently reaching 99.00-100.00% in
all scenarios tested. Despite requiring slightly longer train-
ing times compared to simpler neuron models, its adapt-
ability and robustness in BAL scenarios make it a strong
candidate for accuracy-critical applications. The application
of the tempotron learning algorithm enables high-accuracy
computations within optimal time constraints. Furthermore,
meta-neurons demonstrated an accuracy range of 90 to
100% when implemented in SNNs with 32 to 64 neurons,
while other neuron models typically required 128 neurons
or more to achieve comparable performance.

Fig. 2  Comparison of commonly used learning algorithms across neuron models (rows: LIF, LIF input + perceptron hidden/output, Perceptron,
Meta, LB) and input processes (columns: Bernoulli, Markov, Poisson). (a) Accuracy [%]; (b) computation time [min]

1 3

 5   Page 8 of 23

Neuroinformatics (2026) 24:5

Fig. 3  Bio-inspired algorithms across neuron models and input processes. Panels (a,c,e) show accuracy (%); panels (b,d,f) show computation time
(min). Rows of each heatmap correspond to neuron models (LIF, LB), columns to algorithms (Tempotron, SDSP, STDP, BAL)

1 3

Page 9 of 23  5

Neuroinformatics (2026) 24:5

cost of increased computational time. In turn, metaneuron
networks consistently provided high accuracy with low
computational costs for 64 neurons per layer across all bio-
inspired learning algorithms, except for tempotron. In the
case of the tempotron learning algorithm, achieving com-
parable accuracy required 128 neurons per layer. Neverthe-
less, the computational cost remained an order of magnitude
lower than in previous cases, reinforcing the efficiency of
metaneuron networks.

The optimal neuron model and learning algorithm depend
on the application’s accuracy and efficiency requirements.
LB models excel in accuracy-critical tasks, while LIF-based
architectures with BAL provide efficient solutions. Hybrid
models offer a promising middle ground, performing well
when paired with appropriate learning algorithms (Fig. 4).

prevent inefficiencies, particularly with increased learning
periods or larger network sizes. Under the SDSP algorithm,
a configuration with 16 neurons and 10 epochs achieved
an accuracy of 68.00% with a runtime of 28.1 seconds.
Similarly, under the STDP algorithm, the same configura-
tion yielded the same accuracy (i.e. 68.00%) but with a sig-
nificantly reduced runtime of 2.7 seconds, highlighting the
computational efficiency of STDP. In contrast, applying the
BAL algorithm to a larger network configuration (64 neu-
rons, 20 epochs) resulted in a significantly higher accuracy
of 88.00%, with a runtime of 1 minute and 48.0 seconds.
Biologically inspired models, such as the LB model, exhib-
ited robustness and representational richness, achieving
accuracy levels between 91.00% and 99.00% with 64–128
neurons under bio-inspired learning algorithms, albeit at the

Fig. 4  Results for the LIF and LB neuron models across three input
processes: Bernoulli, Markov, Poisson. Rows correspond to input pro-
cesses. The left column reports accuracy (%) versus the number of
neurons per layer (log2 scale) for a commonly applied learning rule

(e.g., BP). The right column shows time–accuracy trade-offs (log-
scaled time). Bubble area is proportional to neuron count (∝ N), and
color encodes the learning algorithm. Colors and size mapping are
kept consistent across panels for direct comparison

1 3

 5   Page 10 of 23

Neuroinformatics (2026) 24:5

and temporton learning algorithm increasing the number of
neurons in the range 16-64 does not result in a significant
increase in accuracy. For 128 and 512 neurons in each layer,
we obtain an accuracy of over 93.00%, while for 1024 we
obtained only 42.50%. When we classify a two-state Mar-
kov process, we get such accuracy over 90.00% in the case
of 128, 512 and 1024 neurons in layers. However, for the
number of neurons in layers 64 it reaches 82.00%. In turn,
this learning algorithm does not work for the Poisson pro-
cess. Only an accuracy greater than 80.00% is achieved for
128 neurons in each layer. The SDSP algorithm allows to
achieve high accuracy regardless of the number of neurons
in the layers when classifying Bernoulli and Markov pro-
cesses, while in the case of the Poisson process only when
each layer has 64 neurons, i.e. 88.00%. In the case of the
BAL algorithm accuracy increases as the number of neu-
rons in layers increases. Surprisingly, the BAL and SDSP
learning algorithms can achieve accuracy above 80.00%
only for 64 neurons in layers when classifying Poisson pro-
cesses. The STPD algorithm gives high accuracy for net-
works composed of a larger number of neurons, however
not exceed 128 neurons in each layer. In turn, the compu-
tation times for the tempotron, BAL and SDSP learning
algorithms are similar for all data. However, in the case of
the STDP algorithm, with a large number of neurons in the
layers, the computation time is more than twice as high.

In turn, in Table 9 the results obtained for neural net-
work that consist of LB neuron was shown. Calculations
were performed for 10 epochs. It turned out that the use
of the tempotron learning algorithm gave high accuracy
for all considered data, while the neural network architec-
ture had 128, and 512 neurons in each layer. When the
number of neurons in the layers was higher, the accuracy
dropped below 50.00%. A similar situation occurred when
the number of neurons in the layers was smaller. For exam-
ple, in the case of tempotron learning rule, the small layer
sizes (16, 32 neurons) may lack sufficient representational
capacity to capture the temporal and probabilistic depen-
dencies in Bernoulli, Markov, and Poisson processes. This
results in underfitting, where the model cannot adequately
learn the patterns in the data. On the other hand, large layer
sizes like 512, 1024 neurons may overfit the data, particu-
larly for simpler processes. Overfitting can occur when
the model memorizes specific patterns instead of general-
izing, leading to poor performance on test data. A similar
situation is with other learning algorithms, only BAL is
exception.

To summarize, our representative results show clear,
model-dependent trade-offs in both accuracy and runtime. It
turned out that for Poisson-distributed inputs, the most opti-
mal configuration is a perceptron trained with the Tempo-
tron rule, achieving 100.00% accuracy in just 8.5 seconds.

Also taking into account the results obtained in the
Paprocki et al. (2024) paper, namely that a large num-
ber of neurons in the network does not necessarily lead
to significant improvements in transmission efficiency
but can enhance the reliability of the system, we exam-
ined the influence of the number of neurons in individual
layers on accuracy and computation time. Figures 5 and
6 present time-accuracy trade-off for neuron model with
input process. Each marker corresponds to one network
configuration trained for 10 epochs. Color encodes the
learning algorithm (BP, BAL, SDSP, STDP/STPD, Tem-
potron). The x-axis shows wall-clock training time in sec-
onds on a logarithmic scale (tick marks are powers of ten),
and the y-axis reports classification accuracy (%). Bubble
size encodes model scale: the area of each bubble is pro-
portional to the number of neurons per layer (area ∝ N).
Consequently, doubling N doubles the bubble area, while
the bubble diameter grows only with

√
N . This area-based

encoding preserves perceptual proportionality and avoids
over-emphasizing very large models. For orientation, the
legends include three reference sizes (16 / 128 / 1024
neurons), and all other sizes are interpolated proportion-
ally. The same color and size mappings are used consis-
tently across figures, enabling direct visual comparison.
Points closer to the upper-left corner indicate more favor-
able configurations on the empirical Pareto front (higher
accuracy at lower time). In Tables 7, 8, 9 in Appendix, the
influence of numbers of neurons on learning algorithms,
taking account BP algorithms and bio-inspired learning
algorithms were presented. The neural architecture made
by LIF and LB neuron model, respectively, were widely
investigated. Variants of neural networks that had 16, 32,
64, 128, 512 and 1024 nuerons in each layer were tested,
respectively. In the case of BP learning algorithm (see,
Table 7) all computation was provided in the 10 epochs.
Both networks composed of LIF and LB neurons achieved
high accuracy in the case of data from Bernoulli and Mar-
kov processes, however, in the case of the Poisson pro-
cess, the network model based on LIF neurons achieved
a maximum accuracy of 73.50 percent with the number of
neurons in the layer also 32. Then, as the number of neu-
rons in the layers increased, the accuracy dropped below
50.00%. The network based on the Levy-Baxter neuron
model achieved an accuracy of more than 97. 00% at 64,
but the computation time was longer than when using the
neural network based on the LIF model. In other cases,
there is a visible trend towards an increase in precision as
the number of neurons in the layers increases.

In Table 8 we consider the influence of numbers of neu-
rons in neural networks, which consists of LIF neurons
on bio-inspired learning algorithms. Calculations were
performed for 10 epochs. In the case of Bernoulli process

1 3

Page 11 of 23  5

Neuroinformatics (2026) 24:5

Fig. 5  Results for the LIF neuron model across three input processes: Bernoulli, Markov, Poisson. (a,c,e) Accuracy (%) against number of neurons
(log2); (b,d,f) Time–accuracy trade-offs (log time). Bubble area ∝ N and color encodes the algorithm

1 3

 5   Page 12 of 23

Neuroinformatics (2026) 24:5

Fig. 6  Results for the LB neuron model across three input processes: Bernoulli, Markov, Poisson. (a,c,e) Accuracy (%) against number of neurons
(log2); (b,d,f) Time–accuracy trade-offs (log time). Bubble area ∝ N and color encodes the algorithm

1 3

Page 13 of 23  5

Neuroinformatics (2026) 24:5

rate and firing threshold must be tuned to network size; uni-
form settings often lead to underfitting in small networks
or instability in large ones. In high-dimensional architec-
tures, the increased number of synaptic weights expands
the parameter space, making optimization more sensitive to
initialization and regularization.

The choice of neuron model shapes both computational
capacity and task suitability. Simple models like percep-
trons are computationally efficient for basic tasks but cannot
capture temporal dynamics or nonlinear boundaries without
deeper architectures (Parlos et al., 1994). Their performance
is especially limited for stochastic inputs such as Poisson
processes, where spike variability does not align well with
their linear decision structure (Dutta et al., 2017).

More biologically plausible spiking models, e.g., LIF
neurons capture temporal coding through spiking dynamics
and refractory periods, improving performance on tempo-
ral classification tasks. However, they simplify real neuron
behavior by omitting channel and synapse dynamics. The
Levy-Baxter model combines deterministic and stochastic
dynamics, enabling it to represent irregular neural firing
more realistically (Levy & Baxter, 2002; Paprocki et al.,
2020), at the expense of computational complexity. Meta-
neurons (Cheng et al., 2023) aggregate neuron populations
into efficient computational units, improving scalability for
complex tasks but reducing biological interpretability.

Learning algorithm choice is equally critical: supervised
approaches (backpropagation, tempotron) offer high accu-
racy and fast convergence for well-labeled datasets, while
unsupervised rules (STDP, SDSP) are advantageous for
limited labels or latent structure discovery. Optimal perfor-
mance often arises from tailoring the learning rule to both
the neuron model and the input statistics.

The input process type Bernoulli, Poisson, or Markov
has a measurable effect on model-algorithm combinations.
Smaller networks struggle with the temporal complexity of
Poisson and Markov sequences, whereas larger networks
risk overfitting simpler Bernoulli data. LB neurons com-
bined with tempotron learning perform well for two-state
Markov data, effectively capturing transition probabilities
(p10, p01).

Moroever, LB neurons behave as renewal units driven
by heavy-tailed fluctuations, yielding super-Poisson count
variability and burst-quiescence regimes without explicit
adaptors. This matches irregularity commonly observed in
cortical recordings and explains why LB maintains high
accuracy on Poisson/Markov inputs at moderate widths.
LIF, by contrast, is near-Poisson unless augmented with
history/adaptation, which we empirically observe as either
lower accuracy or the need for wider layers. Meta neurons
approximate LB-like benefits via learned internal dynam-
ics at lower compute, but with reduced physiological

For Bernoulli data, meta networks trained with BAL or
Tempotron offer the best speed-accuracy trade-off under
tight computational budgets. If accuracy is prioritized over
runtime for Bernoulli inputs, LB models trained with BAL
or Tempotron are preferable. In the case of Markov data, LB
networks trained with BAL or Tempotron yield the high-
est accuracy (up to 100.00%) but at a higher computational
cost. When balancing speed and performance for Markov
input, Tempotron perceptrons remain a strong choice. Over-
all, model selection should consider both data structure and
resource constraints, as optimal configurations vary signifi-
cantly across input types.

Across datasets, a small set of model-rule pairs consis-
tently dominated, see Table 2. For Poisson inputs, a per-
ceptron trained with the Tempotron rule achieved 100.00%
accuracy in 8.5 s with 64 neurons and 10 epochs, offering
the best time-accuracy trade-off. For Bernoulli, meta neu-
rons with BAL reached 99.50% in 6.7 s using 32 neurons
(fastest high-accuracy option), whereas LB + BAL achieved
100.00% at a modestly higher cost (22.2 s, 32 neurons).
For Markov sequences, perceptron + Tempotron attained
100.00% accuracy in 53.6 s with 128 neurons. Increasing
layer width beyond 128 neurons rarely helped and some-
times degraded performance (e.g., LIF on Poisson dropped
to ≤ 49% for N ≥ 64). Overall, LB models favor accuracy
at higher runtime, meta models strike an efficiency-accuracy
balance, and hybrid LIF + perceptron can be competitive on
Bernoulli/Markov but lags on Poisson.

On MNIST reference dataset, all architectures except
the metaneuron exceed 99.00% accuracy, and the practical
differentiator is training cost, see Table 1 in Appendix. A
pure LIF network attains the top score (≈ 99.90%) but with
the longest wall time, reflecting the expense of simulating
membrane dynamics and resets. A hybrid LIF + perceptron
(LIF input, perceptron hidden/output) delivers almost the
same accuracy with a markedly shorter runtime, indicat-
ing that precise temporal encoding at the front end is suf-
ficient while a linear/readout layer can close the decision
boundary. A plain perceptron provides a very strong, fast
baseline (≈ 99.30%) on this static vision task. The LB
model matches LIF-level accuracy but trains slower due to
its stochastic synaptic mechanism. For Poisson inputs, the
LB neuron reaches 97.00% already with 64 neurons and
10 epochs, underscoring its robustness to stochastic spike
trains.

Discussion

The results clearly show that classification performance in
SNNs depends strongly on network scale and the statistical
structure of input data. Hyperparameters such as learning

1 3

 5   Page 14 of 23

Neuroinformatics (2026) 24:5

attention-weighted). Hence, the analysis is architecture-
agnostic and directly comparable across models. To illus-
trate, we include a brief study on a convolutional SNN
(STDP layer + linear/ridge readout) and a reservoir SNN
(recurrent dynamics + linear readout), where c2 increases
with temporal richness and positively correlates with
accuracy (see Tables 3 and 4).

Reproducibility Details

All computations were run on an Intel(R) Core(TM)
i7–14700F (2.10 GHz, 20 threads), 32 GB RAM, Windows 10
(10.0.26100, x86_64). Python 3.10.15 (conda– forge);
packages: NumPy 2.2.6, SciPy 1.14.1, Matplotlib 3.9.2,
Seaborn 0.13.2, scikit– learn 1.6.0, Optuna 4.1.0. NumPy
was linked against OpenBLAS 0.3.29. Wall– clock time
was measured with time.perf_counter() and aver-
aged over 5 seeds ({42,43,44,45,46}). Multiply– accumu-
late operations (MACs), floating-point operations (FLOPs)
are reported as 2×MACs when used.

Conclusions

This study provides a systematic evaluation of how neu-
ron model selection, network size, and learning rule jointly
affect SNN classification efficiency. A key contribution
is the introduction of a complexity-based classification
method that uses Lempel-Ziv Complexity to analyze the
structural regularity of spike trains. This method serves as
a lightweight, interpretable decision mechanism, replac-
ing conventional output layers and showing strong per-
formance for noisy or temporally irregular signals. Our
results show that the interaction between neuron model,
network size, and learning algorithm is critical to classifi-
cation accuracy. Moreover, data characteristics dictate the
most effective combination of model-algorithm, with LB
neurons and tempotron learning particularly effective for
temporally complex data. Also, the LZC-based decision
approach complements biologically inspired models by
enabling robust, low-power classification, opening paths
for neuromorphic applications in biosignal processing.
Our results are obtained on synthetic inputs and further
validated on the MNIST dataset. However, validating the
LZC-based decision mechanism and model-rule trade-offs
on real biosignal datasets is therefore an essential next
step and a current limitation of this study. Future work
will extend this framework to other real biosignal datasets,
explore adaptive LZC thresholds, and investigate hard-
ware implementation for real-time SNN deployment.

interpretability. Together with the rate-controlled ∆c2
results, these findings indicate that neuron-level temporal
richness (not just network size) is a key driver of down-
stream performance and efficiency.

For accuracy-critical and temporally complex inputs
(Poisson/Markov), LB is preferred. However, for tight com-
pute budgets on simpler inputs like Bernoulli, meta neurons
deliver the best accuracy per Multiply–accumulate opera-
tions (MACs). In turn, hybrid architecture, which is built
with LIF neurons and perceptron is competitive on Ber-
noulli/Markov but degrades on Poisson unless widened or
tuned for refractoriness/history.

It is worth nothing that a key novel aspect of this study
is the application of Lempel-Ziv Complexity as a classifica-
tion mechanism for SNN outputs. By quantifying the struc-
tural complexity of spike trains, the LZC approach provides
a lightweight and interpretable decision tool that avoids
additional classifier layers, aligning well with low-power,
real-time neuromorphic applications.

Limitations

This study evaluates SNNs exclusively on synthetic
inputs (Bernoulli, Markov, and Poisson spike trains) and
on the MNIST benchmark. While such datasets enable
controlled manipulation of randomness and temporal
dependence, they do not capture several properties of
real biosignals, including nonstationarity across sessions
and subjects,sensor/physiology artifacts (e.g., motion,
electrode drift, burst noise), class imbalance and label
uncertainty, and device constraints (quantization, mem-
ory, power).

Scalability Across Architectures

We evaluate complexity using the normalized Lem-
pel-Ziv measure c2 (8), computed on binary spike ras-
ters from any layer or population. Given a spike tensor
S ∈ {0, 1}T ×C (time × channels), we form multi-scale
temporal bins b ∈ {1, 2, 4, 8}, pool spikes within each bin
(logical OR or spike counts), compute c2 = (C/n) log2 n
per channel (with n = T/b), and average over channels.
The computational cost is O(T · C) and does not depend
on synapse count or layer type. In convolutional SNNs,
we treat feature maps as channels and compute c2 on post-
spike tensors; in recurrent/reservoir models, we compute
c2 on reservoir population spikes (optionally layer-
wise). In graph-based SNNs, we compute c2 per node
or community and aggregate (mean, trimmed mean, or

1 3

Page 15 of 23  5

Neuroinformatics (2026) 24:5

Appendix A: Summary of Numerical Results

Table 5  Influence of neuron model on commonly used learning algorithm
Input data Neuron model Neurons / layer Epochs Time Accuracy

[%]
Bernoulli LIF 128 10 12m36.8s 99.00
Bernoulli LIF in input layer + perceptron in hidden and output layers 512 20 2m26.7s 100.00
Bernoulli Perceptron 128 10 17.0s 100.00
Bernoulli Meta 32 10 7.8s 99.50
Bernoulli Levy-Baxter 128 20 11m58.6s 100.00
Markov LIF 128 10 12m36.8s 97.64
Markov LIF in input layer + perceptron in hidden and output layers 64 20 2m26.7s 100.00
Markov Perceptron 32 20 17.0s 93.94
Markov Meta 32 10 1m7.4s 98.75
Markov Levy-Baxter 64 20 11m58.6s 100.00
Poisson LIF 64 40 12m36.8s 87.00
Poisson LIF in input layer + perceptron in hidden and output layers 64 20 2m26.7s 99.50
Poisson Perceptron 64 10 17.0s 100.00
Poisson Meta 32 10 40.7s 96.00
Poisson Levy-Baxter 64 10 11m58.6s 97.00
MNIST LIF 128 10 27m3.3s 99.86
MNIST LIF in input layer + perceptron in hidden and output layers 784 20 4m34.5s 99.66
MNIST Perceptron 256 20 4m41.05s 99.36
MNIST Meta 32 20 62m55.0s 87.69
MNIST Levy-Baxter 784 20 16m59.4s 99.86
The BP learning algorithm was applied

Input Neuron model Algorithm Neurons / layer Epochs Time Acc. [%]
Bernoulli LIF Tempotron 128 10 7.02 96.00
Bernoulli LIF (in) + Perceptron (hid/out) Tempotron 128 10 19.9s 100.00
Bernoulli Perceptron Tempotron 128 10 19.6s 100.00
Bernoulli Meta Tempotron 64 40 1m24.4s 90.50
Bernoulli Levy-Baxter Tempotron 128 10 2m38.4s 99.50
Bernoulli LIF SDSP 128 45 3m2.3s 89.00
Bernoulli LIF (in) + Perceptron (hid/out) SDSP 128 10 12m1.7s 87.50
Bernoulli Perceptron SDSP 128 10 17s 100.00
Bernoulli Meta SDSP 32 10 3m56.0s 100.00
Bernoulli Levy-Baxter SDSP 128 10 6m48.0s 99.00
Bernoulli LIF STPD 128 10 3m44.4s 91.50
Bernoulli LIF (in) + Perceptron (hid/out) STPD 128 10 11m50.9s 87.50
Bernoulli Perceptron STPD 512 10 86m48.8s 100.00
Bernoulli Meta STPD 32 10 20.2s 92.50
Bernoulli Levy-Baxter STPD 128 10 3m49s 100.00
Bernoulli LIF BAL 128 30 3m28.9s 86.50

Table 6  Influence of neuron model on bio-inspired learning algorithms

1 3

 5   Page 16 of 23

Neuroinformatics (2026) 24:5

Input Neuron model Algorithm Neurons / layer Epochs Time Acc. [%]
Bernoulli LIF (in) + Perceptron (hid/out) BAL 128 10 4.7s 87.50
Bernoulli Perceptron BAL 128 10 5m38.5s 99.00
Bernoulli Meta BAL 32 10 6.7 99.50
Bernoulli Levy-Baxter BAL 32 10 22.2s 100.00
Markov LIF Tempotron 128 10 40.5s 90.59
Markov LIF (in) + Perceptron (hid/out) Tempotron 64 10 29.1s 96.75
Markov Perceptron Tempotron 128 10 53.6s 100.00
Markov Meta Tempotron 64 10 1m8.2s 92.00
Markov Levy-Baxter Tempotron 64 10 36.0s 93.75
Markov LIF SDSP 128 10 1m46.4s 92.25
Markov LIF (in) + Perceptron (hid/out) SDSP 256 10 93m2.4s 83.00
Markov Perceptron SDSP 128 20 3m44.7s 100.00
Markov Meta SDSP 64 10 53.1s 97.53
Markov Levy-Baxter SDSP 128 10 11m9.2s 95.50
Markov LIF STPD 128 10 3m45.1s 91.50
Markov LIF (in) + Perceptron (hid/out) STPD 64 10 1m17.3s 85.00
Markov Perceptron STPD 512 10 195m34.2s 100.00
Markov Meta STPD 64 10 51.3s 99.20
Markov Levy-Baxter STPD 128 10 1m47.9s 80.75
Markov LIF BAL 128 10 1m56.2s 96.25
Markov LIF (in) + Perceptron (hid/out) BAL 256 20 11m12.9s 95.00
Markov Perceptron BAL 512 10 266m55.1s 99.75
Markov Meta BAL 32 10 7.6s 99.50
Markov Levy-Baxter BAL 64 10 2m12.4s 96.25
Poisson LIF Tempotron 128 10 7.3s 89.50
Poisson LIF (in) + Perceptron (hid/out) Tempotron 128 20 3m23.9s 89.00
Poisson Perceptron Tempotron 64 10 8.5s 100.00
Poisson Meta Tempotron 128 10 7.8s 89.50
Poisson Levy-Baxter Tempotron 64 10 5.8s 91.00
Poisson LIF SDSP 64 10 32.2s 90.00
Poisson LIF (in) + Perceptron (hid/out) SDSP 16 10 28.1s 68.00
Poisson Perceptron SDSP 16 10 3.1s 100.00
Poisson Meta SDSP 64 10 26.1s 91.00
Poisson Levy-Baxter SDSP 128 10 20m57.7s 99.00
Poisson LIF STPD 128 20 10m44.7s 97.50
Poisson LIF (in) + Perceptron (hid/out) STPD 16 10 2.7s 68.00
Poisson Perceptron STPD 64 10 10.7s 91.00
Poisson Meta STPD 64 10 31.9s 88.00
Poisson Levy-Baxter STPD 128 10 8m7.9s 95.00
Poisson LIF BAL 128 30 10m6.9s 96.00
Poisson LIF (in) + Perceptron (hid/out) BAL 64 20 1m48.0s 88.00
Poisson Perceptron BAL 64 10 1m54.0s 100.00
Poisson Meta BAL 64 10 31.4s 91.00
Poisson Levy-Baxter BAL 64 10 18m19.0s 97.50

Table 6  (continued)

1 3

Page 17 of 23  5

Neuroinformatics (2026) 24:5

Table 7  Influence of numbers of neurons on commonly applied learning algorithms
Neuron model Input data Neurons / layer Epochs Time Accuracy [%]
LIF Bernoulli 16 10 14.2s 97.00
LIF Bernoulli 32 10 51.2s 100.00
LIF Bernoulli 64 10 3m19s 99.00
LIF Bernoulli 128 10 13m16.5s 99.00
LIF Bernoulli 512 10 223m53.5s 99.50
LIF Bernoulli 1024 10 729m36s 100.00
LIF Markov 16 10 28.7s 95.92
LIF Markov 32 10 32.4s 97.42
LIF Markov 64 10 49.9s 88.22
LIF Markov 128 10 1m51.0s 97.64
LIF Markov 512 10 26m9.0s 96.08
LIF Markov 1024 10 720m4.8s 100.00
LIF Poisson 16 10 2.9s 69.50
LIF Poisson 32 10 7.1s 73.50
LIF Poisson 64 10 22.3s 47.00
LIF Poisson 128 10 1m15.2s 49.00
LIF Poisson 512 10 24m48.0s 49.00
LIF Poisson 1024 10 84m10.5s 49.00
LB Bernoulli 16 10 20.0s 100.00
LB Bernoulli 32 10 1m7.1s 100.00
LB Bernoulli 64 10 4m12.9s 100.00
LB Bernoulli 128 10 17m34.1s 100.00
LB Bernoulli 512 10 326m32.5s 100.00
LB Bernoulli 1024 10 79m48.4s 49.00
LB Markov 16 10 40.6s 68.29
LB Markov 32 10 1m2.3s 98.05
LB Markov 64 10 2m24.2s 99.62
LB Markov 128 10 7m51.3s 99.88
LB Markov 512 10 143m9.1s 100.00
LB Markov 1024 10 470m1.1s 49.62
LB Poisson 16 10 14.6s 88.00
LB Poisson 32 10 51.0s 87.50
LB Poisson 64 10 3m0.1s 97.00
LB Poisson 128 10 11m51.5s 99.00
LB Poisson 512 10 19m45.6s 49.00
LB Poisson 1024 10 210m11.0s 49.00
The BP learning algorithm was applied

1 3

 5   Page 18 of 23

Neuroinformatics (2026) 24:5

Input data Algorithm Neurons / layer Epochs Time Acc. [%]
Bernoulli Tempotron 16 10 1.6s 69.50
Bernoulli Tempotron 32 10 2.5s 66.50
Bernoulli Tempotron 64 10 3.2s 59.00
Bernoulli Tempotron 128 10 7.02s 96.00
Bernoulli Tempotron 512 10 38.0s 93.00
Bernoulli Tempotron 1024 10 1m41.9s 42.50
Bernoulli BAL 16 10 2.7s 55.50
Bernoulli BAL 32 10 7.1s 85.50
Bernoulli BAL 64 10 22.2s 86.00
Bernoulli BAL 128 10 1m20.3s 87.50
Bernoulli BAL 512 10 21m21.6s 95.00
Bernoulli BAL 1024 10 82m27.9s 97.00
Bernoulli STDP 16 10 5.9s 49.00
Bernoulli STDP 32 10 16.9s 75.00
Bernoulli STDP 64 10 1m3.9s 87.00
Bernoulli STDP 128 10 4m5.3s 91.50
Bernoulli STDP 512 10 65m21.0s 49.00
Bernoulli STDP 1024 10 285m6.4s 49.00
Bernoulli SDSP 16 10 2.6s 97.00
Bernoulli SDSP 32 10 5.8s 93.00
Bernoulli SDSP 64 10 17.6s 89.50
Bernoulli SDSP 128 10 1m3.5s 98.00
Bernoulli SDSP 512 10 16m23.5s 100.00
Bernoulli SDSP 1024 10 58m36.4s 100.00
Markov Tempotron 16 10 30.6s 69.93
Markov Tempotron 32 10 30.9s 77.27
Markov Tempotron 64 10 33.7s 82.00
Markov Tempotron 128 10 40.5s 90.59
Markov Tempotron 512 10 2m1.7s 90.08
Markov Tempotron 1024 10 4m33.1s 90.08
Markov STDP 16 10 49s 49.00
Markov STDP 32 10 14.9s 75.00
Markov STDP 64 10 57.5s 87.00
Markov STDP 128 10 3m45.1s 91.50
Markov STDP 512 10 59m33.4s 53.00
Markov STDP 1024 10 247m21.1s 49.00
Markov BAL 16 10 30.0s 50.25
Markov BAL 32 10 35.1s 50.75
Markov BAL 64 10 52.5s 91.50
Markov BAL 128 10 1m56.2s 96.25
Markov BAL 512 10 23m57s 99.00

Table 8  Influence of numbers of neurons on bio-inspired learning algorithms

1 3

Page 19 of 23  5

Neuroinformatics (2026) 24:5

Input data Algorithm Neurons / layer Epochs Time Acc. [%]
Bernoulli Tempotron 16 10 2.2s 49.00
Bernoulli Tempotron 32 10 4.5s 49.00
Bernoulli Tempotron 64 10 12.2s 49.00
Bernoulli Tempotron 128 10 49.0s 91.50
Bernoulli Tempotron 512 10 2m38.4s 99.50
Bernoulli Tempotron 1024 10 23m45.1s 53.00
Bernoulli SDSP 16 10 8.7s 49.00
Bernoulli SDSP 32 10 27.5s 100.00
Bernoulli SDSP 64 10 1m50.5s 95.00
Bernoulli SDSP 128 10 6m48.0s 99.00
Bernoulli SDSP 512 10 74m51.5s 100.00
Bernoulli SDSP 1024 10 585m52.5s 74.00
Bernoulli STPD 16 10 4.6s 49.00
Bernoulli STPD 32 10 15.6s 49.00
Bernoulli STPD 64 10 56.1s 59.10
Bernoulli STPD 128 10 18m27.7s 99.50
Bernoulli STPD 512 10 59m20.9s 100.00
Bernoulli STPD 1024 10 325m51.4s 49.00
Bernoulli BAL 16 10 6.6s 97.00

Table 9  Influence of numbers of neurons on bio-inspired learning algorithms

Input data Algorithm Neurons / layer Epochs Time Acc. [%]
Markov BAL 1024 10 93m53.3s 99.75
Markov SDSP 16 10 28.1s 91.75
Markov SDSP 32 10 31.4s 97.00
Markov SDSP 64 10 47.0s 94.50
Markov SDSP 128 10 1m46.4s 92.25
Markov SDSP 512 10 21m40.8s 78.00
Markov SDSP 1024 10 91m24.0s 99.00
Poisson Tempotron 16 10 1.2s 69.50
Poisson Tempotron 32 10 1.9s 68.00
Poisson Tempotron 64 10 3.5s 68.00
Poisson Tempotron 128 10 7.3s 89.50
Poisson Tempotron 512 10 44.6s 73.50
Poisson Tempotron 1024 10 2m6s 67.50
Poisson BAL 16 10 3.5s 79.00
Poisson BAL 32 10 7.6s 82.00
Poisson BAL 64 10 25.0s 48.50
Poisson BAL 128 10 1m36.3s 94.50
Poisson BAL 512 10 24m48.1s 49.00
Poisson BAL 1024 10 109m38.3s 48.50
Poisson STDP 16 10 3.2s 80.50
Poisson STDP 32 10 7.3s 83.50
Poisson STDP 64 10 24.1s 89.50
Poisson STDP 128 10 1m27.5s 49.00
Poisson STDP 512 10 22m8.5s 49.00
Poisson STDP 1024 10 95m35.3s 49.00
Poisson SDSP 16 10 3.4s 68.00
Poisson SDSP 32 10 7.7s 74.00
Poisson SDSP 64 10 23.4s 88.00
Poisson SDSP 128 10 1m26.6s 49.00
Poisson SDSP 512 10 33m17.0s 56.00
Poisson SDSP 1024 10 101m5.0s 64.50
The LIF neuron model was applied

Table 8  (continued)

1 3

 5   Page 20 of 23

Neuroinformatics (2026) 24:5

Input data Algorithm Neurons / layer Epochs Time Acc. [%]
Bernoulli BAL 32 10 22.2s 100.00
Bernoulli BAL 64 10 1m23.5s 98.00
Bernoulli BAL 128 10 5m22.5s 95.00
Bernoulli BAL 512 10 85m5.5s 100.00
Bernoulli BAL 1024 10 311m47s 52.00
Markov Tempotron 16 10 29.7s 90.00
Markov Tempotron 32 10 32.2s 50.00
Markov Tempotron 64 10 36.0s 93.75
Markov Tempotron 128 10 1m7.0s 97.75
Markov Tempotron 512 10 4m7.8s 49.50
Markov Tempotron 1024 10 10m53.1s 50.00
Markov SDSP 16 10 31.6s 80.50
Markov SDSP 32 10 36.4s 88.25
Markov SDSP 64 10 57.65s 88.89
Markov SDSP 128 10 1m59.65s 93.00
Markov SDSP 512 10 25m9.65s 50.00
Markov SDSP 1024 10 91m24.0s 99.00
Markov STPD 16 10 27.8s 47.25
Markov STPD 32 10 32.7s 49.75
Markov STPD 64 10 48.4s 53.25
Markov STPD 128 10 1m47.9s 80.75
Markov STPD 512 10 21m44.3s 100.00
Markov STPD 1024 10 89m45.9s 99.50
Markov BAL 16 10 33.4s 87.50
Markov BAL 32 10 38.5s 79.75
Markov BAL 64 10 57.1s 50.00
Markov BAL 128 10 2m5.2s 50.75
Markov BAL 512 10 12m12.4s 96.25
Markov BAL 1024 10 106m54.7s 61.75
Poisson Tempotron 16 10 1.8s 49.00
Poisson Tempotron 32 10 3.4s 49.00
Poisson Tempotron 64 10 5.8s 91.00
Poisson Tempotron 128 10 21.0s 49.00
Poisson Tempotron 512 10 1m50.7s 49.00
Poisson Tempotron 1024 10 5m39.6s 91.50
Poisson SDSP 16 10 11.7s 49.00
Poisson SDSP 32 10 41s 93.50
Poisson SDSP 64 10 2m49.9s 95.50
Poisson SDSP 128 10 11m9.2s 95.50
Poisson SDSP 512 10 190m53.1s 49.00
Poisson SDSP 1024 10 311m48s 49.00
Poisson STPD 16 10 4.9s 49.00
Poisson STPD 32 10 10.1s 49.00
Poisson STPD 64 10 31.1s 77.50
Poisson STPD 128 10 2m3.2s 95.00
Poisson STPD 512 10 7m31s 94.50
Poisson STPD 1024 10 95m50.7s 49.00
Poisson BAL 16 10 33.4s 76.00
Poisson BAL 32 10 2m6.3s 94.00
Poisson BAL 64 10 8m6.7s 97.50
Poisson BAL 128 10 32m29.2s 97.00
Poisson BAL 512 10 546m25.4s 49.00
Poisson BAL 1024 10 845m38.7s 49.00
The LB neuron model was applied

Table 9  (continued)

1 3

Page 21 of 23  5

Neuroinformatics (2026) 24:5

Daley, D. J., & Vere-Jones, D. (2003). An introduction to the theory
of point processes. Springer-Verlag, New York. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​
0​.​1​​0​0​7​​/​b​9​​7​2​7​7

Dan, Y., Sun, C., Li, H., & Meng, L. (2025). Adaptive spiking neu-
ron with population coding for a residual spiking neural network.
Applied Intelligence, 5, 288. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​0​7​​/​s​1​​0​4​8​9​-​0​2​
4​-​0​6​1​2​8​-​z

Datta, G., Kundu, S., Jaiswal, A. R., & Beerel, P. A. (2022). ACE-
SNN: Algorithm-hardware Co-design of energy-efficient & low-
latency deep spiking neural networks for 3D image recognition.
Frontiers in Neuroscience, 815258. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​3​​3​8​9​​/​f​n​​i​n​s​
.​2​0​2​2​.​8​1​5​2​5​8

Dutta, S., Kumar, V., Shukla, A., Mohapatra, N. R., & Ganguly, U.
(2017). Leaky integrate and fire neuron by charge-discharge
dynamics in floating-body MOSFET. Scientific Reports, 7, 8257. ​
h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​3​8​​/​s​4​​1​5​9​8​-​0​1​7​-​0​7​4​1​8​-​y

Gerstner, W., Kistler, W., Naud, R., & Paninski, L. (2014). Neuronal
dynamics from single neurons to networks and models of cogni-
tion. Cambridge University Press. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​1​7​​/​C​B​​O​9​
7​8​1​1​0​7​4​4​7​6​1​5

Gutig, R., & Sompolinsky, H. (2006). The tempotron: a neuron that
learns spike timing-based decisions. Nature Neuroscience, 9(3),
420–428. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​3​8​​/​n​n​​1​6​4​3

He, S., Peng, Y., Wang, H., & Ma, M. (2025). Discrete memristor
synapse-driven spiking neural networks: Dynamics of firing and
synaptic plasticity. Nonlinear Dynamics. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​0​7​​/​
s​1​​1​0​7​1​-​0​2​5​-​1​1​5​7​9​-​1

Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE
Transactions on Neural Networks, 14(6), 1569–1572. ​h​t​t​p​​s​:​/​​/​d​o​
i​​.​o​​r​g​/​​1​0​.​1​​1​0​9​​/​T​N​​N​.​2​0​0​3​.​8​2​0​4​4​0

Levy, W., & Baxter, R. (2002). Energy-efficient neuronal computation via
quantal synaptic failures. The Journal of Neuroscience, 22, 4746–
4755. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​5​2​3​​/​J​N​​E​U​R​​O​S​C​​I​.​2​2​​-​1​​1​-​0​4​7​4​6​.​2​0​0​2

Liu, X., Mo, L., & Tang, M. (2025). TinySpiking: a lightweight and
efficient python framework for unsupervised learning spiking
neural networks. Engineering Research Express, 7, 015217. ​h​t​t​p​​s​
:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​8​8​​/​2​6​​3​1​-​8​6​9​5​/​a​d​a​7​2​5

Ljungquist, B., Petersson, P., Johansson, A. J., Schouenborg, J., & Gar-
wicz, M. (2018). A bit-encoding based new data structure for time
and memory efficient handling of spike times in an electrophysi-
ological setup. Neuroinformatics, 16, 217–229. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​
.​1​​0​0​7​​/​s​1​​2​0​2​1​-​0​1​8​-​9​3​6​7​-​z

Luo, X., Yao, M., Chou, Y., Xu, B., & Li, G. (2025). Integer-valued
training and spike-driven inference spiking neural network for
high-performance and energy-efficient object detection. In: A.
Leonardis, E. Ricci, S. Roth, O. Russakovsky, T. Sattler, & G.
Varol (Eds.), Computer Vision – ECCV 2024. ECCV 2024. Lec-
ture Notes in Computer Science, vol 15090. Springer, Cham. ​h​t​t​p​​
s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​0​7​​/​9​7​​8​-​3​-​0​3​1​-​7​3​4​1​1​-​3​_​1​5

Naderi, R., Rezaei, A., Amiri, M., & Peremans, H. (2025). Unsuper-
vised post-training learning in spiking neural networks. Scientific
Reports, 15, 17647. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​3​8​​/​s​4​​1​5​9​8​-​0​2​5​-​0​1​7​4​9​-​x

Papoulis, A., & Pillai, S. U. (2002). Probability, random variables, and
stochastic processes. Fourth Boston: McGraw Hill.

Paprocki, B., Pregowska, A., & Szczepanski, J. (2020). Optimizing
information processing in brain-inspired neural networks. BPAS
Technical Sciences, 68(2), 225–233. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​2​​4​4​2​​5​/​b​​p​
a​s​t​s​.​2​0​2​0​.​1​3​1​8​4​4

Paprocki, B., Pregowska, A., & Szczepanski, J. (2024). Does adding
of neurons to the network layer lead to increased transmission
efficiency? IEEE Access, 12, 42701–42709. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​
1​6​​/​1​0​​.​1​1​​0​9​/​​A​C​C​E​​S​S​​.​2​0​2​4​.​3​3​7​9​3​2​4

Parlos, A. G., Chong, K. Y., & Atiya, A. F. (1994). Application of the
recurrent multilayer perceptron in modeling complex process
dynamics. IEEE Transactions on Neural Networks, 5(2), 255–
266. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​1​0​9​​/​7​2​​.​2​7​9​1​8​9

Information Sharing Statement

Author Contributions  All authors contributed to the conception and
design of the study. All authors performed material preparation, data
collection, and analysis. The first draft of the manuscript was written
by all authors who commented on previous versions of the manuscript.
All authors read and approved the final manuscript.

Funding  Not applicable.

Data Availability  No datasets were generated or analysed during the
current study.

Materials availability  Not applicable.

Code availability  Not applicable.

Declarations

Conflicts of Interest  The authors declare that they have no known
competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Ethics approval and consent to participate  The authors affirm that this
work adheres to the highest ethical standards of scientific publication,
in accordance with COPE guidelines.

Consent for publication  Not applicable.

Competing interests  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropri-
ate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if you modified the licensed
material. You do not have permission under this licence to share
adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Cre-
ative Commons licence, unless indicated otherwise in a credit line to
the material. If material is not included in the article’s Creative Com-
mons licence and your intended use is not permitted by statutory regu-
lation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit ​
h​t​t​p​​:​/​/​​c​r​e​a​​t​i​​v​e​c​​o​m​m​o​​n​s​.​​o​r​g​​/​l​i​​c​e​n​​s​e​s​/​​b​y​​-​n​c​-​n​d​/​4​.​0​/.

References

Arnold, M. M., Szczepanski, J., Montejo, N., Amigó, J. M., Wajnryb,
E., & Sanchez-Vives, M. V. (2013). Information content in cortical
spike trains during brain state transitions. Journal of Sleep Research,
22, 13–21. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​1​1​1​​/​j​.​​1​3​6​​5​-​2​​8​6​9​.​​2​0​​1​2​.​0​1​0​3​1​.​x

Beyeler, M., Richert, M., Dutt, N. D., & Krichmar, J. L. (2014). Effi-
cient spiking neural network model of pattern motion selectivity
in visual cortex. Neuroinformatics, 12, 435–454. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​
0​.​1​​0​0​7​​/​s​1​​2​0​2​1​-​0​1​4​-​9​2​2​0​-​y

Cheng, X., Zhang, T., Jia, S., & Xu, B. (2023). Meta neurons improve
spiking neural networks for efficient spatio-temporal learning.
Neurocomputing, 531, 217–225. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​1​6​​/​j​.​​n​e​u​c​o​
m​.​2​0​2​3​.​0​2​.​0​2​9

1 3

 5   Page 22 of 23

https://doi.org/10.1007/b97277
https://doi.org/10.1007/b97277
https://doi.org/10.1007/s10489-024-06128-z
https://doi.org/10.1007/s10489-024-06128-z
https://doi.org/10.3389/fnins.2022.815258
https://doi.org/10.3389/fnins.2022.815258
https://doi.org/10.1038/s41598-017-07418-y
https://doi.org/10.1038/s41598-017-07418-y
https://doi.org/10.1017/CBO9781107447615
https://doi.org/10.1017/CBO9781107447615
https://doi.org/10.1038/nn1643
https://doi.org/10.1007/s11071-025-11579-1
https://doi.org/10.1007/s11071-025-11579-1
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1523/JNEUROSCI.22-11-04746.2002
https://doi.org/10.1088/2631-8695/ada725
https://doi.org/10.1088/2631-8695/ada725
https://doi.org/10.1007/s12021-018-9367-z
https://doi.org/10.1007/s12021-018-9367-z
https://doi.org/10.1007/978-3-031-73411-3_15
https://doi.org/10.1007/978-3-031-73411-3_15
https://doi.org/10.1038/s41598-025-01749-x
https://doi.org/10.24425/bpasts.2020.131844
https://doi.org/10.24425/bpasts.2020.131844
https://doi.org/10.1016/10.1109/ACCESS.2024.3379324
https://doi.org/10.1016/10.1109/ACCESS.2024.3379324
https://doi.org/10.1109/72.279189
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1111/j.1365-2869.2012.01031.x
https://doi.org/10.1007/s12021-014-9220-y
https://doi.org/10.1007/s12021-014-9220-y
https://doi.org/10.1016/j.neucom.2023.02.029
https://doi.org/10.1016/j.neucom.2023.02.029

Neuroinformatics (2026) 24:5

covariate effects. Journal of Neurophysiology, 93(2), 1074–1089. ​
h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​1​5​2​​/​j​n​​.​0​0​6​9​7​.​2​0​0​4

Weng, J. K., Ding, Y. J., Hu, C. B., Zhu, X. F., Liang, B., Yang, J., &
Cheng, J. C. (2020). Meta-neural-network for real-time and pas-
sive deep-learning-based object recognition. Nature Communica-
tions, 11(1), 6309. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​3​8​​/​s​4​​1​4​6​7​-​0​2​0​-​1​9​6​9​3​-​x

Wojcik, D., Mochol, G., Jakuczun, W., Wypych, M., & Waleszczyk, W.
J. (2009). Direct estimation of inhomogeneous Markov interval
models of spike trains. Neural Computation, 21(8), 2105–2113. ​h​
t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​1​6​2​​/​n​e​​c​o​.​2​0​0​9​.​0​7​-​0​8​-​8​2​8

Wu, Y., Deng, L., Li, G., Zhu, J., & Shi, L. (2018). Spatio-temporal
backpropagation for training high-performance spiking neural
networks. Frontiers in Neuroscience, 12, 331. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​
.​3​​3​8​9​​/​f​n​​i​n​s​.​2​0​1​8​.​0​0​3​3​1

Yu, Q., Tang, H., Tan, K. C., & Yu, H. (2014). A brain-inspired spik-
ing neural network model with temporal encoding and learning.
Neurocomputing, 138, 3–13. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​1​6​​/​j​.​​n​e​u​c​o​m​.​2​0​
1​3​.​0​6​.​0​5​2

Zhan, Q., Liu, G., Xie, X., Zhang, M., & Sun, G. (2023). Bio-inspired
Active Learning method in spiking neural network. Knowledge-
Based Systems 261, C. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​1​6​​/​j​.​​k​n​o​s​y​s​.​2​0​2​2​.​1​1​
0​1​9​3

Ziv, J., & Lempel, A. (1976). On the complexity of finite sequences.
IEEE Transactions on information theory, 22, 75–81. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​
o​​r​g​/​​1​0​.​1​​1​0​9​​/​T​I​​T​.​1​9​7​6​.​1​0​5​5​5​0​1

Zong, J., Wang, J., Wang, J., Li, G., & Wu, R. (2026). Polaris 23: A
high throughput neuromorphic processing element by RISC-V
customized instruction extension for spiking neural network (RV-
SNN 2.0) and SIMD-style implementation of LIF model with
backpropagation STDP. The Journal of Supercomputing, 81, 398. ​
h​t​t​p​s​:​​​/​​/​d​o​​i​.​o​​r​​g​​/​​1​0​​.​1​0​​​0​7​/​​s​1​1​​2​2​7​-​​0​2​4​-​0​​6​8​2​6​-​y

Publisher's Note  Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Patankar, M., Chaurasia, V., & Shandilya, M. (2025). A novel spik-
ing neural network method for classification of tuberculosis
using X-ray images. Computers and Electrical Engineering, 122,
110003. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​1​6​​/​j​.​​c​o​m​​p​e​l​​e​c​e​n​​g​.​​2​0​2​4​.​1​1​0​0​0​3

Pregowska, A., Proniewska, K., van Dam, P., & Szczepanski, J.
(2019). Using Lempel-Ziv complexity as effective classification
tool of the sleep-related breathing disorders. Computer Methods
and Programs in Biomedicine, 182, 105052-1–7. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​
0​.​1​​0​1​6​​/​j​.​​c​m​p​b​.​2​0​1​9​.​1​0​5​0​5​2

Pregowska, A., Szczepanski, J., & Wajnryb, E. (2016). Temporal code
versus rate code for binary Information Sources. Neurocomput-
ing, 216, 756–762. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​1​6​​/​j​.​​n​e​u​c​o​m​.​2​0​1​6​.​0​8​.​0​3​4

Richmond, P., Cope, A., Gurney, K., & Allerton, D. J. (2014). From
model specification to simulation of biologically constrained net-
works of spiking neurons. Neuroinformatics, 12, 307–323. ​h​t​t​p​​s​:​
/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​0​7​​/​s​1​​2​0​2​1​-​0​1​3​-​9​2​0​8​-​z

Rieke, F., Warland, D., van Steveninck, R. R., & Bialek, W. (1997).
Spikes. Exploring the neural code. MIT Press, Cambridge. ​h​t​t​p​​s​:​
/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​5​​5​5​5​​/​3​1​​9​2​8​3

Seguin, C., Sporns, O., & Zalesky, A. (2023). Brain network com-
munication: Concepts, models and applications. Nature Reviews
Neuroscience, 24(9), 557–574. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​3​8​​/​s​4​​1​5​8​3​-​0​
2​3​-​0​0​7​1​8​-​5

Shannon, C. E. (1984). A mathematical theory of communication. Bell
System Technical Journal, 27, 379–423. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​0​2​​/​j​
.​​1​5​3​​8​-​7​​3​0​5​.​​1​9​​4​8​.​t​b​0​1​3​3​8​.​x

Shirsavar, S. R., Vahabie, A. H., & Dehaqani, M. A. (2023). Models
developed for spiking neural networks. MethodsX, 10, 102157. ​h​
t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​1​6​​/​j​.​​m​e​x​.​2​0​2​3​.​1​0​2​1​5​7

Sun, P., Wu, J., Devos, P., & Botteldooren, D. (2025). Towards param-
eter-free attentional spiking neural networks. Neural Networks,
185, 107154. ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​1​6​​/​j​.​​n​e​u​n​e​t​.​2​0​2​5​.​1​0​7​1​5​4

Truccolo, W., Eden, U. T., Fellows, M. R., Donoghue, J. P., & Brown,
E. N. (2004). A point process framework for relating neural spik-
ing activity to spiking history, neural ensemble, and extrinsic

1 3

Page 23 of 23  5

https://doi.org/10.1152/jn.00697.2004
https://doi.org/10.1152/jn.00697.2004
https://doi.org/10.1038/s41467-020-19693-x
https://doi.org/10.1162/neco.2009.07-08-828
https://doi.org/10.1162/neco.2009.07-08-828
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.1016/j.neucom.2013.06.052
https://doi.org/10.1016/j.neucom.2013.06.052
https://doi.org/10.1016/j.knosys.2022.110193
https://doi.org/10.1016/j.knosys.2022.110193
https://doi.org/10.1109/TIT.1976.1055501
https://doi.org/10.1109/TIT.1976.1055501
https://doi.org/10.1007/s11227-024-06826-y
https://doi.org/10.1007/s11227-024-06826-y
https://doi.org/10.1016/j.compeleceng.2024.110003
https://doi.org/10.1016/j.cmpb.2019.105052
https://doi.org/10.1016/j.cmpb.2019.105052
https://doi.org/10.1016/j.neucom.2016.08.034
https://doi.org/10.1007/s12021-013-9208-z
https://doi.org/10.1007/s12021-013-9208-z
https://doi.org/10.5555/319283
https://doi.org/10.5555/319283
https://doi.org/10.1038/s41583-023-00718-5
https://doi.org/10.1038/s41583-023-00718-5
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1016/j.mex.2023.102157
https://doi.org/10.1016/j.mex.2023.102157
https://doi.org/10.1016/j.neunet.2025.107154

	﻿Impact of Neuron Models on Spiking Neural Network Performance: A Complexity-based Classification Approach
	﻿Abstract
	﻿Introduction
	﻿Main Contribution
	﻿Basics Notation
	﻿Models of Neurons
	﻿Spiking Neural Network Architecture
	﻿Input Datasets
	﻿Related Works
	﻿Results
	﻿Discussion
	﻿Limitations
	﻿Scalability Across Architectures
	﻿Reproducibility Details
	﻿Conclusions
	﻿References

