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ABSTRACT: Transport tunnels in enzymes with buried active sites are critical
gatekeepers of enzymatic function, controlling substrate access, product release,
and catalytic efficiency. Despite their importance, the transient nature of these
tunnels makes them difficult to study using conventional simulation methods. In
this study, we systematically evaluate three coarse-grained (CG) molecular
dynamics approaches�Martini with Elastic network restraints, Martini with Go̅-
model restraints, and SIRAH�for their ability to characterize tunnel structure and
dynamics across diverse enzyme classes. Using haloalkane dehalogenase LinB and
its engineered variants as model systems, we show that CG methods accurately
reproduce the geometry of tunnel ensembles observed in all-atom (AA)
simulations while providing notable computational speedups. The Martini-Go̅ model performed particularly well, capturing subtle
mutation-induced changes in tunnel dynamics, such as the closure of a main tunnel and the de novo opening of a transient auxiliary
tunnel in LinB variants. In contrast, Martini with Elastic network restraints was limited in capturing tunnel dynamics due to the
structural bias introduced by the restraints. We further validated these findings across nine enzymes from the oxidoreductase,
transferase, and hydrolase classes with diverse structural folds. Although all CG methods reliably identified functionally relevant
tunnels and provided fairly accurate estimates of their ensemble geometry and key bottleneck residues, they differed in their ability to
replicate tunnel dynamics, with tunnel occurrences and ranking showing moderate to good correspondence with AA results. This
comprehensive evaluation highlights the strengths and weaknesses of CG simulations, establishing them as powerful tools for high-
throughput analysis of enzyme tunnels, which enables more efficient enzyme engineering and drug design efforts targeting these
critical structural features.

■ INTRODUCTION
Enzymes are essential for life, enabling organisms to grow,
maintain homeostasis, and reproduce. Despite decades of
extensive research, the intricate mechanisms behind enzyme
action remain only partially understood due to their immense
complexity and diversity. Transport tunnels in enzymes with
buried active sites are critical to enzymatic function by
controlling substrate access, product release, and overall
catalytic efficiency.1−4 These dynamic structural features are
not merely passive conduits but sophisticated regulatory
elements that can significantly influence enzyme activity
through conformational gating mechanisms.2 Notably, approx-
imately 50% of enzymes across all six Enzyme Commission
(EC) classes contain such buried active sites,5−7 making
tunnels essential yet often overlooked determinants of
enzymatic behavior.
Understanding the structural dynamics of these tunnels is

essential for deciphering complex structure−function relation-
ships in enzymes and has significant implications for both
fundamental enzymology and applied biotechnology. Key
elements such as tunnel-lining residues, bottleneck regions
controlling the passage diameter, and entrance residues at the

tunnel mouth form a sophisticated filtration and regulation
system. Strategic engineering of these elements has proven
remarkably effective for modulating catalytic properties, with
even single-point mutations capable of dramatically altering
substrate specificity, reaction rates, and product release
kinetics.3−8 The therapeutic relevance of enzyme tunnels is
also noteworthy because numerous disease-associated enzymes
contain druggable tunnels, making them attractive targets for
pharmaceutical intervention.9 This has led to the development
of therapeutic agents that modulate enzyme function by
binding within these tunnels rather than at the active site.9

Furthermore, tunnels provide structural frameworks for
regulatory mechanisms such as substrate inhibition and
allosteric cooperativity, which are vital for maintaining cellular
homeostasis.10−16
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The dynamic nature of enzyme tunnels presents a significant
methodological challenge. Most tunnels are regulated by one
or more molecular gates2,9 that transition between open and
closed conformations, resulting in transient tunnels that are
difficult to capture using static structural approaches.17

Consequently, molecular dynamics (MD) simulations have
emerged as the gold standard for tunnel investigation,4,9

although they come with notable limitations. Conventional all-
atom (AA)-MD simulations, while providing atomic-level
detail, are computationally prohibitive when sampling the
microsecond-to-millisecond time scales18 over which many
biologically relevant tunnel dynamics occur.19,20 The necessity
to study slow biological processes has driven the development
of enhanced sampling techniques such as metadynamics21 and
umbrella sampling,22 which accelerate the exploration of
conformational space. However, these methods typically
require carefully selected collective variables (CVs), which
are especially challenging to define for the complex networks of
gated transient tunnels. While our previous work demonstrated
that Gaussian accelerated MD simulations20,23 can effectively
sample rare tunnel conformations without requiring predefined
CVs,20 the method still demands system-specific parameter-
ization, limiting its broad applicability to diverse enzyme
systems. This persistent gap between computational feasibility
and biologically relevant time scales underscores the need for
alternative approaches that balance accuracy with computa-
tional efficiency.
Coarse-grained molecular dynamics (CG-MD) offers a

promising solution by systematically reducing molecular
complexity through grouping atoms into representative
“beads.”24 This reduction in degrees of freedom provides a
substantial computational advantage, with CG-MD simulations
typically running 10−100 times faster than their AA counter-
parts.24−26 This speed enhancement enables the exploration of
conformational dynamics over longer time scales, potentially
capturing rare tunnel-opening events inaccessible to conven-
tional methods. CG approaches offer flexibility in molecular
detail, ranging from highly simplified single-bead-per-residue
models to near-atomistic representations where multiple beads
capture distinct chemical characteristics of particular functional
groups.25 For this investigation of enzyme tunnel dynamics, we
selected two well-established CG models with complementary
strengths: SIRAH,27 which maintains an unbiased approach to
protein dynamics, and Martini,28 which provides force fields
with different optional structural restraints.
The Martini CG force field is one of the most rigorously

validated and widely applied physics-based CG approaches in
biomolecular simulation.28 The latest Martini 3.0 implementa-
tion uses a mapping scheme in which each CG bead represents
2−4 atoms,29 striking a balance between computational
efficiency and chemical accuracy. Notably, Martini 3.0
introduces significant improvements in modeling protein
cavities and protein−ligand interactions through rebalanced
cross-interactions and optimized bonded parameters. These
refinements better represent molecular volume, shape, and
packing,29 which are also critical for accurate tunnel geometry.
Such improvements enable better predictions of binding
thermodynamics and kinetics.29−34 However, Martini 3.0 can
still lack the fine structural detail needed for high chemical
specificity, particularly in representing pocket−ligand inter-
actions, differentiating enantiomers, and modeling binding
directionality.29 To maintain proper protein folding in CG
simulations, Martini incorporates artificial stabilization through

two distinct approaches: Elastic network models (Elastic)35 or
Go̅ models (Go̅).36 The Elastic model uses a network of
harmonic restraints between backbone beads within a specified
cutoff distance, effectively preserving the initial protein
structure but limiting major conformational changes.35 In
contrast, Go̅ models combine two concepts to capture more
efficiently the key native contacts: (i) a contact map uses
atomic overlaps of heavy atoms to capture contacts beyond the
standard Elastic cutoff more selectively and (ii) then applying
chemically based selection of stabilizing contacts denoted as
the restricted chemical structural units, often reducing the
number of applied restraints by a factor of two in contrast to
the Elastic model,37 thereby allowing more flexibility in
conformational sampling while maintaining overall structural
integrity.38 In this view, evaluating both approaches could help
assess how different levels of conformational bias affect the
accurate modeling of enzyme tunnel dynamics.
The SIRAH force field represents a distinct approach to CG

that prioritizes structural fidelity through strategic bead
placement derived directly from atomistic coordinates.27

Unlike many CG models that use center-of-mass mapping,
SIRAH places protein backbone beads at the actual atomic
positions of N, O, and Cα atoms, preserving geometric
relationships with AA dihedral angles. This design offers
potential advantages for modeling intricate structural features
such as enzyme tunnels by maintaining more accurate
backbone geometries. SIRAH’s mapping scheme also applies
a context-dependent resolution, where functional groups
critical for specific molecular interactions receive more detailed
representation�polar and aromatic moieties involved in
hydrogen bonding or π-stacking are modeled with higher
granularity, while hydrophobic regions are more aggressively
coarse-grained.27 Unlike Martini, SIRAH enables the calcu-
lation of long-range electrostatics through the particle Mesh
Ewald method39,40 and typically operates without imposing
artificial restraints to stabilize protein structures, potentially
allowing for more natural conformational exploration. This
feature makes SIRAH particularly attractive for tunnel studies
because it may better capture spontaneous conformational
transitions involved in tunnel gating. However, it also
introduces challenges, particularly in larger proteins, where
maintaining secondary structure over extended simulations can
become problematic.41 These strengths and limitations make
SIRAH a valuable counterpart to Martini for evaluating CG
approaches to enzyme tunnel characterization, providing
complementary insights into the trade-offs between structural
stability and conformational flexibility.
Despite the widespread application of Martini and SIRAH in

diverse protein systems,26 their suitability for characterizing the
spatiotemporal dynamics of transport tunnels in enzymes
remains largely unexplored. This gap represents a significant
opportunity, which this study aims to address. We investigate
three fundamental questions critical to validating CG models
for tunnel analysis: (i) How effectively can CG-MD
simulations detect the presence of tunnels and capture their
dynamics despite inherent limitations associated with reduced
molecular resolution, such as the absence of directional
hydrogen bonds? (ii) Can CG-MD simulations detect subtle
changes in tunnel properties resulting from targeted muta-
tions? (iii) How do structural biasing schemes in CG models
influence the sampling of transient tunnel conformations? To
answer these questions, we selected haloalkane dehalogenases
as model systems (Figure 1), given their well-characterized
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buried active sites connected to the solvent by multiple tunnels
with varying dynamics. Their catalytic mechanisms are highly
dependent on tunnel properties.42,43 In particular, the
haloalkane dehalogenase LinB and its engineered variants
offer a gradual series of tunnel modifications with well-
documented functional outcomes. The wild-type enzyme
(LinB-Wt) features a predominant p1 tunnel complemented
by less frequent p2, p3, and side tunnels (ST).20 Two
engineered variants illustrate contrasting tunnel behaviors:
LinB-Closed, with reduced p1 accessibility and decreased
catalytic efficiency, and LinB-Open, with a newly accessible p3
tunnel that significantly enhances catalytic performance.44

We conducted comprehensive comparisons between tunnel
ensembles identified in the AA simulations and those obtained
from three CG methods: Martini Go̅, Martini Elastic, and
SIRAH. By quantitatively analyzing tunnel properties�
including bottleneck radius, length, curvature, and occurrence
frequencies�we established metrics for evaluating how
effectively each CG approach captures essential tunnel features.
To ensure broader relevance beyond a single enzyme family,
we extended our analysis to a diverse set of enzymes spanning
three major EC classes (oxidoreductases, transferases, and
hydrolases) and representing distinct structural architectures
(all-α, all-β, and α/β folds). This systematic validation across
functionally and structurally diverse enzymes provides a robust
assessment of CG methods for high-throughput tunnel
analysis. Our results demonstrate that carefully selected CG
methods can accurately capture key features of enzyme tunnels
while offering substantial computational efficiency gains. We

identified specific strengths and limitations for each approach,
with the Martini-Go̅ model showing particular effectiveness in
capturing tunnel dynamics and subtle mutation-induced
changes. Importantly, we establish that CG simulations can
reliably identify functionally relevant tunnels and their
ensemble properties across a wide range of enzyme classes,
enabling more efficient enzyme engineering and drug design
efforts to target these critical structural features. This work
provides a foundation for high-throughput computational
screening of tunnel properties in large enzyme data sets,
opening new avenues for exploring the relationship between
tunnel dynamics and enzyme function in systems previously
inaccessible to AA-MD simulation approaches.

■ METHODS

System Setup and AA-MD Simulations

All initial LinB variant structures�LinB-Wt (PDB code:
1mj5), LinB-Closed (PDB code: 4wdq), and LinB-Open (PDB
ID: 5lka)�were protonated at pH 8.5 to match the conditions
of experimental assays,44 with a salt concentration of 0.1 M
using the H++ server.45 Using the tleap module of AMBER18,
proteins were positioned at the center of a truncated
octahedral box with a 10 Å distance between the solute and
the edge of the box and solvated with the three-charge, four-
point rigid OPC water model.46 Next, the systems were
neutralized with counterions (Na+ and Cl−) to a final
concentration of 0.1 M. Energy minimization was performed
using 500 steps of steepest descent, followed by 500 steps of

Figure 1. Representations of the level of granularity in the LinB-Wt enzyme: A) whole protein, B) catalytic pentads, and C) two key gating residues
located at the mouth of the main p1 tunnel.
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conjugate gradient in 5 rounds with decreasing harmonic
restraints, utilizing the PMEMD47 module of AMBER1848

with the ff14SB force field.49 Restraints were applied as
follows: 500 kcal/mol/Å2 on all heavy atoms, then 500, 125,
25, and 0 kcal/mol/Å2 on backbone atoms only. Next, the
systems were equilibrated for 2 ns by gradually heating to 310
K under constant volume using the Langevin thermostat50 with
a collision frequency of 1.0 ps−1 and harmonic restraints of 5.0
kcal/mol/Å2 on all enzyme atoms. Periodic boundary
conditions (PBC) were applied, and the particle mesh Ewald
(PME) method39,40 was employed for electrostatic interactions
beyond a 10 Å cutoff, using default parameters with automatic
selection of charge grid density (producing ∼1.0 Å grid
spacing), fourth-order B-spline interpolation, and a direct sum
tolerance of 10−5. A 4 fs time step was used, enabled by the
SHAKE algorithm51 and hydrogen mass repartitioning
(HMR).52 Considering the usage of HMR could result in
altered time scales of studied processes,53,54 its usage might be
suboptimal if the rates of tunnel gating would be studied.
However, the average properties of tunnel ensembles should
not be markedly affected, as illustrated by the recent
comparison of water transport via tunnels of haloalkane
dehalogenase DhaA, using two data sets (with HMR and
without HMR), 50 × 100 ns of adaptive sampling simulations
each.55

Subsequently, a 200 ns unrestrained NPT simulation was
performed using PMEMD.CUDA with the Monte Carlo
barostat56 and Berendsen thermostat,57 storing frames every
20 ps. The thermostat was chosen for its ability to preserve the
intrinsic dynamics and transport properties of the system,
closely resembling NVE simulations while still maintaining
temperature control.58 Clustering analysis was executed with
the average-linkage hierarchical agglomerative algorithm using
cpptraj59 on the 200 ns trajectory for each system. The
requested number of clusters was set to five with a secondary
cutoff of 4.5 Å to identify the five most diverse conformations.
For each cluster, the centroid frame was selected as its
representative. These representative conformations served as
seed structures for five independent 5 μs unrestrained NPT
simulations, with frames stored every 200 ps for all three LinB
variants.
The analogous simulation protocol was applied across the

EC data set composed of the following nine enzymes: EC1
(PDB IDs: 1jfb,60 1gp4,61 and 3bur62), EC2 (PDB IDs:
1m15,63 1oyg,64 and 1q2065), and EC3 (PDB IDs: 2oup,66

1dim,67 and 1cvl68) with the following deviations due to the
different nature of protein inputs as well as some updates in
simulation methods, which become available within the project
timeline.
EC1 Proteins

1jfb60 (nitric oxide reductase, EC 1.7.1.14). The original PDB
structure with HEM protoporphyrin IX containing Fe was first
cleaned by stripping the nonprotein atoms. Additionally,
residue CYP352 was renamed CYS, and the structure was
protonated. After protonation, residue CYS352 was renamed
again to CYP352, and the bond between the sulfur of CYP352
and the Fe ion of the HEME group was created. The
parameters for the HEME group and CYP residue were
obtained from Shahrokh et al.69 1gp461 (anthocyanidin
synthase, EC 1.14.15.1). The PDB structure contains
selenomethionines instead of methionines, so all residues
were converted to methionine. The Fe2+ cofactor was adopted

from the analogous 1gp5 structure with lower resolution.
3bur62 (delta(4)-3-ketosteroid 5-beta-reductase, EC 1.3.1.3).
This structure contains an NADPH cofactor that was present
during protonation of the structure. The parameters for
NADPH were obtained from the AMBER web repository
(http://amber.manchester.ac.uk/). These three structures
were protonated at the following pH to match the conditions
of experimental assays: 7.2 (1jfb),70 7.2 (1gp4),61 and 6.0
(3bur),62 using the H++ web server with a salt concentration
of 0.1 M, and internal and external dielectric constants of 4 and
80, respectively.
EC2 Proteins

1m1563 (arginine kinase, EC 2.7.3.3). All ligands were
removed from the structure, as they are not cofactors. 1oyg64

(levansucrase, EC 2.4.1.10). The Ca2+ ion was considered a
cofactor, pentabipyramidally coordinated with a water
molecule and the carbonyl oxygen of Leu308 at the apices,
and with Asp339 Oδ1 and Oδ2, Asn310 Oδ1, Asp241 Oδ1, and
Gln272 Oε1 at the equatorial positions. These interactions
were represented as distance restraints during the simulation.
The structure was protonated with the Ca2+ ion and a
coordinating water molecule present. 1q2065 (cholesterol
sulfotransferase, EC 2.8.2.2). All ligands were removed from
the structure because they are substrates, not cofactors
(substrate donor product PAP and acceptor substrate
pregnenolone). These three structures were protonated at
the following pH to match the conditions of experimental
assays: 8.0 (1m15),71 6.0 (1oyg),72 and 4.0 (1q20),73 using the
H++ web server with a salt concentration of 0.1 M, and
internal and external dielectric constants of 4 and 80,
respectively.
EC3 Proteins

2oup66 (PDE10A [3′,5′-cyclic-nucleotide phosphodiesterase],
EC 3.1.4.17) and 1dim67 (sialidase, EC 3.2.1.18) required no
special modifications. 1cvl68 (bacterial lipase, EC 3.1.1.3). This
structure contains a Ca2+ ion, which is coordinated by four
oxygen atoms from the protein and two water molecules. This
Ca2+ ion was retained in the system during protonation. These
three structures were protonated at the following pH levels to
match the conditions of experimental assays: 7.5 (2oup),66 7.0
(1dim),74 and 4.0 (1cvl),75 using the H++ web server with a
salt concentration of 0.1 M, and internal and external dielectric
constants of 10 and 80, respectively.
For system building, after retrieval and protonation of the

structures, water molecules were introduced around the
protein using a tandem approach with the three-dimensional
molecular theory of solvation (3D-RISM)76 and the Placevent
algorithm.77 3D-RISM-predicted and crystallographic waters
were combined, retaining only water molecules located at least
2.0 Å from the protein and giving preference to crystallo-
graphic waters validated using the EDIA scorer program.78 The
systems were further processed using the Tleap module of
AMBER20. Proteins were positioned at the center of a periodic
truncated octahedral box with a 10 Å distance between the
solute and the edge of the box and solvated with the three-
charge, four-point rigid OPC water model.46 Systems were
neutralized with Na+ and Cl− ions to achieve a salt
concentration of 0.1 M. The parameters of the systems were
prepared using the ff19SB force field,79 applying the HMR
procedure to the solute atoms to enable a 4 fs time step during
simulations.52 AMBER22 software was used to perform these
simulations. A single unrestrained NPT simulation was carried
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out for 2 μs for each enzyme with frames stored every 200 ps.
The cofactors (Fe2+ and Ca2+) were restrained using distance
restraints within the enzyme, but no restraint was applied to
the HEME and NADP cofactors.
System Setup and CG-MD Simulations Using SIRAH

To set up the SIRAH CG models, the five most diverse
structures obtained through cluster analysis in AA simulations
were used as starting seed structures. These atomic seed
structures were then mapped to the SIRAH CG model using
SIRAH Tools80 and the SIRAH 2.0 force field. For solvation, a
pre-equilibrated truncated octahedral box of CG WT4 water
molecules with a 10 Å distance between the solute and the
edge of the box was used. The WT4 molecules were randomly
replaced by Na+ and Cl− CG ions to achieve an ionic strength
of 0.1 M, and counterions were added to the system following
the method described by Machado et al.81 System
minimization was performed using 5,000 steps of steepest
descent followed by 5,000 steps of conjugate gradient in five
rounds with decreasing harmonic restraints, utilizing the
PMEMD.CUDA module of AMBER18. A restraint of 500
kcal/mol/Å2 was applied to heavy atoms, followed by 500, 125,
25, and 0 kcal/mol/Å2 on backbone GN and GO beads.
Additionally, an in-house-developed restraint protocol (Figure
S1, Table S1) was applied to the dihedral angles of residues in
α-helices (4 kcal/mol/Å2) and the distances between H-bond-
forming atoms of residues in β-sheets (20 kcal/mol/Å2) to
maintain structural stability. These restrained residues were
selected using secondary structure analysis with the cpptraj
module’s secstruct function on the respective input structures.
The structures were equilibrated for 2 ns, gradually heating to
310 K, followed by 5 ns of NVT and 10 ns of NPT
equilibration. PBC was applied, and the PME method was
employed for electrostatic interactions beyond a 10 Å cutoff,
using default parameters with automatic selection of charge
grid density (producing ∼1.0 Å grid spacing), fourth-order B-
spline interpolation, and a direct sum tolerance of 10−5. Finally,
a 20 fs time step was used to perform 5 μs of unrestrained
production simulation at constant pressure and temperature
using a Langevin thermostat with a collision frequency of 50
ps−1 and a Berendsen barostat. The parameters were adopted
from Machado et al.27 The same simulation protocol was
applied to seven enzymes: EC1 (PDB ID: 1gp4), EC2 (PDB
IDs: 1m15, 1oyg, and 1q20), and EC3 (PDB IDs: 2oup, 1dim,
and 1cvl). Updated AMBER22 software was used for
performing these simulations. A single unrestrained NPT
simulation was conducted for 2 μs for each enzyme with
frames stored every 200 ps. Due to the unavailability of a small-
molecule library in SIRAH, cofactors such as HEME and
NADP were absent. Therefore, enzymes 1jfb and 3bur were
not simulated using SIRAH and were excluded from the
analysis. Additionally, the cofactors Fe2+ (replaced by Ca2+ due
to the lack of Fe2+ parameters in SIRAH)82 and Ca2+ were
restrained using distance restraints within the enzyme.
System Setup and CG-MD Simulations Using Martini

For the CG Martini system setup, the seed structures were
retained as obtained from the clustering analysis of AA
simulations. These structures were converted to the CG model
by the martinize2 tool.83 Next, they were solvated with a
truncated octahedral box of Martini CG water molecules with
a 10 Å distance between the solute and the edge of the box. All
calculations were performed using GROMACS version 2023.3.
To maintain the native structure of the CG model, the Elastic

network and Go̅Martini models were applied with default
settings (Table S1), which are optimized for the description of
globular proteins with the Martini force field 3.0.35,36,38 The
bonded parameters of both the Elastic network and Go̅Martini
3 were kept the same to compare their structural propensities.
Martini force field version 3.029 was used. For the Go̅Martini 3
model, the contact map was first obtained from the web server
Go̅ContactMap.84,85 For the Go̅ contact map, the distance
cutoff between Cα−Cα was kept within the range of 0.3−1.1
nm. The strength of the Go̅ potentials was set to a default value
of 9.414 kJ/mol. Secondary structures were assigned based on
the AA structure using the DSSP module,86 and the martinize2
tool was used to switch on the Elastic network with a bond
force constant of 700 kJ·mol−1·nm2. The lower and upper
elastic bond cutoffs were kept at their default values of 0.5 and
0.9 nm, respectively. Cutoff values ranging from 0.8 to 1.0 nm
were shown to provide sufficient agreement with AA
simulations.35

The simulation protocol was kept the same for the Elastic
and Go̅ models. Energy minimization was performed using
400,000 steps of steepest descent. The systems were then
NVT-equilibrated under position restraints for 20 ns, gradually
heated to 310 K under constant volume using the V-rescale
thermostat87 with a 10 fs time step. The PBC was set to the
default xyz, with full PBC applied in all three dimensions. The
radius for the neighbor list (rlist) was set to 1.4 nm, and the
cutoff scheme was set to Verlet. The nonbonded cutoffs,
electrostatic (rcoulomb) and van der Waals (rvdw) interaction
cutoffs, were both set to 1.2 nm. NVT equilibration was
followed by position-restrained NPT equilibration for 20 ns
with a 10 fs time step and pressure control using the C-rescale
barostat.88 Finally, a 5 μs unrestrained production simulation
was run using a 20 fs time step with the Parrinello−Rahman
barostat89 and V-rescale thermostat.
The same simulation protocol was applied across nine

enzymes: EC1 (PDB IDs: 1jfb, 1gp4, and 3bur), EC2 (PDB
IDs: 1m15, 1oyg, and 1q20), and EC3 (PDB IDs: 2oup, 1dim,
and 1cvl) to capture the diversity of enzyme classes. An
unrestrained NPT simulation was performed for 2 μs for each
enzyme with frames stored every 200 ps. The CG
representations of HEME and NADP were adopted using
Martini 2.0 beads,90 which were updated to Martini 3.0 beads
for the simulations. Due to the larger time step, positional
restraints were applied to HEME (1jfb) and NADP (3bur) to
keep the cofactors in place, which is necessary for enzyme
function. Additionally, the cofactors Fe2+ (replaced by Ca2+,
which is represented by an S-type bead82 due to the
unavailability of Fe2+) and Ca2+ were restrained using distance
restraints within the enzyme.
Protein Stability Analysis

To confirm the stability of the enzymes explored through AA
and CG-MD simulations, root mean square deviation (RMSD)
and root mean square fluctuation (RMSF) were calculated
with the reference set as the initial structure, considering all
atoms of the protein. RMSD was calculated for all protein
residues. The radius of gyration (Rg) and solvent-accessible
surface area (SASA) were also calculated to confirm whether
the protein remained intact throughout the simulation. These
analyses were performed using cpptraj and gmx91 tools for
AMBER and GROMACS simulations, respectively. The
exception was the SASA calculation for AMBER simulations
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that were performed with MDTraj 1.9.9 software to
incorporate appropriate SIRAH bead radii.92

Tunnel Ensemble Analysis

Tunnels were analyzed using CAVER 3.2.0 software,17 which
identifies pathways in proteins by constructing a Voronoi
diagram (VD) of their atomic structure.93 The edges and
vertices of such a VD contain information about the
surrounding empty space within the protein. Next, the edges
smaller than the user-defined probe radius (0.9 Å here) are
removed, and the simplified VD is searched for continuous
tunnels from the starting point (defined here by three catalytic
residues N38, D109, and H272; numbering corresponds to the
crystal structure) to the protein surface using Dijkstra’s
algorithm.94 Tunnels from each trajectory frame are clustered
using the average-linkage agglomerative clustering method with
a clustering cutoff of 3.0 and a frame reweighting coefficient of
2.0 to identify corresponding tunnel ensembles.95 The
bottleneck residues were identified as those having their
surfaces closer to the surface of the tunnel bottleneck sphere
than 3 Å. To calculate CG tunnels with SIRAH and Martini
beads, the CAVER amino acid library was extended with the
beads’ names and their van der Waals radii. A divide-and-
conquer approach96 was used for efficient processing of
massive tunnel data sets by splitting the tunnel calculations
into 5−10 batches. For AA simulations, the CAVER filtering
cutoff was set to 5 in 25,000 frames to preserve rare tunnels,
while for CG methods, it was set to 250 out of 25,000 frames
due to the higher frequency of tunnel detection. The
reclustering algorithm55 was later used to ensure only tunnels
with consistent entrances remained in any cluster. HDBSCAN
was applied to the tunnel end points, with the following
parameters: cluster_selection_epsilon of 1.5, allow_sin-
gle_cluster set to True, and both min_samples and
min_cluster_size set to 5. The recreated tunnels were
considered independent tunnel clusters, while those identified
as noise were discarded.
To establish correspondence between tunnel networks

found in individual AA and CG simulations of all LinB
variants, we performed comparative analysis using Trans-
portTools 0.9.3 software,97 where the tunnel clusters from
individual simulations produced by all investigated methods
were clustered into uniform “superclusters” with the average-
linkage method using a cutoff of 1.5, based on the average
distances between the tunnel cluster surfaces measured at
regular distances along their lengths. These superclusters are
then ranked by their priority scores, which combine tunnel
occurrences in the simulations with their average geometrical
throughput. Reference structures for tunnel network align-
ments were obtained using the backmapping protocol for
Martini using the backwards.py script.98 For SIRAH, reference
structures were obtained using the backmapping module of the
SIRAH tools.80 Only superclusters that were detected in at
least 5 simulations across all identified methods were retained.
In cases in which multiple branches of a given tunnel were
identified, the major branch preferred across all simulations
was considered for analysis. The superclusters corresponding
to the already known and verified tunnels (p1, p2, p3, and ST)
were identified visually based on the previously defined
localization of these tunnels in the LinB structure.20,99,100

The same procedure was followed for enzymes from the three
respective EC classes, and separate TransportTools compara-
tive analyses were performed for each protein variant. The

Martini backwards.py script98 was also used to perform
backmapping of Elastic simulations for the analysis of extra
tunnels present in CG results.
The occurrence frequencies of bottleneck residues for

known transport pathways (p1, p2, and p3) of three LinB
variants were obtained from TransportTools outputs and
averaged to obtain mean occurrence frequencies. Using these
data, the performance of CG methods in bottleneck residue
detection was assessed by top-K overlap, i.e., the fraction of
top-K bottleneck residues from AA simulations found in top-K
bottleneck residues from respective CG methods for K = 5, 10,
15, and 20. The proficiency of CG methods in ranking tunnel
importances was assessed in three LinB variants and 9 EC
enzyme cases using 125,000 and 10,000 simulation snapshots
per system, respectively. Only tunnels occurring in at least 10%
of snapshots were considered. The priority scores of tunnels
calculated by TransportTools were compared between AA and
CG simulations using two distinct metrics: (i) Pearson
correlation�linear correlation of tunnel priority scores
between AA and CG. Higher correlations indicate better
preservation of relative importance magnitudes; (ii) Average
precision (AP)�evaluated ranking quality by calculating
precision at each position where a relevant tunnel (from AA)
appeared in the CG ranking. For each relevant tunnel found at
position i, precision@i = (relevant tunnels found so far)/i. The
AP was computed as the mean of these precision values across
all relevant positions. This metric heavily penalizes relevant
tunnels retrieved with low rankings, emphasizing early
identification of important ones. The Pearson correlation
measures agreement in importance scoring between methods,
while AP assesses positional ranking quality throughout the
tunnel list.
Statistical Analysis of Tunnel Properties
Comparisons of tunnel properties (occurrence, bottleneck
radius, and length) between AA and CG methods were
performed using the Python SciPy library.101 Data normality
was assessed using the Shapiro−Wilk test,102 and variance
homogeneity was tested using Levene’s test.103 Then, the
nonparametric Kruskal−Wallis tests were performed,104

followed by post hoc Mann−Whitney U test,105 using the
Bonferroni correction to control for family-wise error rates.106

■ RESULTS AND DISCUSSION

CG Models of Three LinB Variants Remain Stable during
Simulations
Prior to analyzing transport tunnels in CG-MD simulations, we
first assessed the structural integrity of the simulated systems.
Although Martini CG methods incorporate restraints, we
thoroughly evaluated protein stability to ensure reliable
conformational sampling. Notably, the default SIRAH model,
which lacks an established restraint protocol, exhibited
significant loss of secondary structure elements during
preliminary simulations (Figure S2), as previously reported
for other larger proteins.41 To address this limitation, we
developed a targeted restraint strategy that selectively applies
hydrogen bond constraints to β-sheets and dihedral angle
restraints to α-helices (Figure S1). Implementing this protocol
resulted in substantial improvements in structural stability
across all simulations (Figures S2−S3), reducing the coil
content by approximately 10% while maintaining the integrity
of α-helical and β-sheet elements. By using this restraint
protocol, we were able to produce simulations with the SIRAH
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model that were stable enough to serve as the input for tunnel
analyses, expanding the repertoire of CG approaches in our
comparison.
To confirm the global stability of proteins in our biased CG-

MD simulations, we compared the RMSD profiles of LinB-Wt
with those from the AA simulations (Figure 2A). This analysis
revealed a hierarchical pattern of conformational stability
across the different CG models, with the Martini Elastic model
exhibiting the closest alignment to the AA simulations,
followed by the Go̅ and SIRAH models. This trend correlated
directly with the extent of the restraint networks applied
(Table S1). Here, it is worth noting that the stability of LinB-
Wt produced with restrained SIRAH simulations (RMSD
predominantly between 5−6 Å) was near to those observed for
shorter (1 μs) simulations of more compact and markedly
smaller proteins (RMSD ≤ 4.8 Å),27 indicating that while the
restraint protocol delivered baseline protein stability, it would
likely still benefit from further optimization. Importantly, when
considering the dynamics of whole LinB-Wt or its two domains
(Figures 2B and S4), the Elastic model enforced conforma-
tional rigidity nearly analogous to that of AA simulations, while
both the Go̅ and SIRAH models allowed for more extensive
protein motion, offering complementary insights into tunnel
behavior under different mobility regimes. These patterns were
consistently observed in both the LinB-Closed and LinB-Open
variants (Figures S5−S9).
Also, the geometry of the catalytic pentad (Figure 1B),

critical for enzyme function, remained largely preserved by the
CG methods (Figure S10). The highest fidelity of the pentad
structure was observed in the Elastic and Go̅ model, exhibiting
an average whole-residue RMSD ≤ 3 Å and backbone RMSD
≤ 1 Å, in line with AA simulations. In the case of the SIRAH
model, the pentad structure exhibited larger deviations
(average whole-residue RMSD ≤ 5 Å), which could be traced

to the backbone mobility of residue H272. Unlike other
catalytic residues, this residue is located on an unrestrained
loop closer to the protein surface. In two SIRAH simulations,
this loop eventually adopted a distinct conformation,
perturbing the position of this histidine, which could not be
entirely prevented with the current restraint protocol.
Furthermore, both Rg and SASA remained stable across all
LinB variants. The Elastic model yielded more compact
structures, while SIRAH simulations showed an average Rg
increase of about 1 Å (5%) compared to that of AA (Figures
S11−S13). While all CG models showed larger SASA values in
line with their larger porosity (Figures S14−S16), the most
notable increase was observed with SIRAH, consistent with the
highest RMSD and Rg values observed for this model, in
agreement with previously reported tendencies.27 Overall,
these analyses validated the AA and CG-MD simulations,
confirming their suitability for subsequent detailed tunnel
analyses (Figure 2, Figures S4−S16).
Exploration of Tunnels Using CG Models in Comparison to
the AA Model

After establishing the stability of all simulations, we proceeded
with a quantitative comparison of tunnel networks identified in
CG-MD versus AA simulations using the comparative module
from the TransportTools package,97 focusing only on tunnel
ensembles with more than 10% occurrence along the
simulations that were sampled in at least 3 independent
simulations.
Most importantly, our results revealed that all tested CG

methods successfully identified both the main and three
transient tunnels known in LinB-Wt (Figure 3A, Table S2),
demonstrating the fundamental ability of CG approaches to
identify those experimentally validated tunnels, despite their
reduced molecular resolution. However, we also noticed that

Figure 2. Stability and dynamics of LinB-Wt simulated with the investigated models. A) RMSD of the full protein in five replicates fitted to their
respective seed structures clustered from the initial AA simulations. B) Average RMSF of residues in the cap and core domains. The box plots show
the median (middle line in the box), with the box representing the interquartile range (from the 25th to the 75th percentile), indicating the spread
of the middle 50% of the data. The whiskers extending from the box represent 1.5 times the interquartile range. Outliers are shown with open
circles.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.5c01727
J. Chem. Theory Comput. 2026, 22, 135−150

141

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5c01727/suppl_file/ct5c01727_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5c01727/suppl_file/ct5c01727_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5c01727/suppl_file/ct5c01727_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5c01727/suppl_file/ct5c01727_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5c01727/suppl_file/ct5c01727_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5c01727/suppl_file/ct5c01727_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5c01727/suppl_file/ct5c01727_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5c01727/suppl_file/ct5c01727_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5c01727/suppl_file/ct5c01727_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c01727?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c01727?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c01727?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c01727?fig=fig2&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.5c01727?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


the rarest of these tunnels, ST, has been insufficiently explored
in AA simulations, unlike with most CG methods. This is in
agreement with the previous observation that efficient
exploration of the ST tunnel requires the use of enhanced
sampling AA simulations.20 The lack of reference data from AA
simulations disallowed the accurate quantitative analysis of ST
tunnel properties. Along these lines, we noted that CG
simulations consistently revealed a more expansive tunnel
landscape, detecting numerous additional transient tunnels and
tunnel branches not observed in AA simulations (Figure 3B,
Table S2). To disentangle whether these additional tunnels
arose from the inherent granularity of CG representations or
enhanced conformational sampling, we reconstructed atomistic
structures from CG coordinates obtained through Elastic
simulations of LinB-Wt with backmapping and analyzed the
resulting tunnel networks in the backmapped ensemble. We
observed that the occurrences of even the most prevalent
additional tunnels were markedly reduced after backmapping,
from up to 40% to below 20%, but were not completely absent
(Figure S17). This result indicates that the additional tunnels
primarily represent geometrically legitimate rarer tunnels or
their branches, accessed through the enhanced sampling

efficiency of CG-MD simulations rather than artifacts due to
the coarseness of CG beads. Such exploration of a broader
conformational landscape of tunnel networks suggests the
potential benefit of CG methods in identifying candidate
tunnels for further in-depth exploration that conventional AA
simulations may miss. Considering the lower resolution of CG-
MD simulations, the functional relevance of these candidate
tunnels could only be confirmed with extensive AA
simulations, or better yet, by probing their explicit utilization
by relevant small molecules.19,20

Next, we analyzed tunnel occurrence rates (Figure 3C),
which are frequently used as indicators for assessing the
functional relevance of tunnels in enzymatic systems.107 First,
from a qualitative point of inference, testing if CG methods can
distinguish the primary p1 tunnel, known to be nearly
permanently open in LinB-Wt,44 from the other transient
tunnels based on their occurrences and their ranking. In this
respect, the Go̅ model performed the best in maintaining a
clear separation between permanent and transient tunnels and
preserving their relative prioritization analogous to that in AA
simulations (Figure 3C). In contrast, the Elastic model
exhibited a significant limitation by markedly overestimating

Figure 3. Comparison of tunnel structure and occurrence in the LinB-Wt. A) Representation of four known, previously validated tunnels obtained
through individual methods, the major p1 tunnel, followed by transient tunnels p2 and p3, and finally, a very rare ST tunnel. B) Additional tunnels
captured by each method (applied cutoff to keep only tunnels seen in at least 10% of the total simulation time and at least three simulations). C)
Properties of these tunnels were captured using different methods. The box plot shows the median (middle line in the box), with the box
representing the interquartile range (from the 25th to the 75th percentile), indicating the spread of the middle 50% of the data. The whiskers
extending from the box represent 1.5 times the interquartile range. Outliers are shown with open circles. The asterisks denote statistically significant
differences from AA simulations (corrected P-value <0.016667). Note that properties of the ST tunnel cannot be quantitatively contrasted due to
the limited sampling of this rare tunnel in AA simulations.20 For details of statistical analysis, see Table S3.
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the relevance of both p2 and p3 tunnels. A detailed
investigation revealed that this discrepancy arose from
fundamentally different sampling patterns: AA simulations
distributed tunnel events across multiple distinct branches,
whereas the constrained dynamics of the Elastic model
artificially concentrated occurrences within a single dominant
branch (Figures S18−S19). This consolidation effect blurred
the critical distinction between persistent and transient
pathways, compromising the functional relevance of tunnel
ranking in this model. Such behavior is consistent with the
well-documented tendency of Elastic network models to
overstabilize initial backbone conformations, imposing artificial
rigidity that limits conformational exploration�an issue
previously noted in protein−protein interaction studies.108−110
Intriguingly, this overstabilization effect showed context-
dependent behavior across the LinB variants. While the
enhanced p3 tunnel occurrence persisted in LinB-Closed, it
was absent in LinB-Open (Figure S20, Table S4), where
mutations replacing bulky gating residues with smaller side
chains fundamentally altered the tunnel’s branching poten-
tial.44 Conversely, the SIRAH model lacked discrimination
between the main p1 tunnel and transient alternatives in LinB-
Wt due to its uniquely underrepresented p1 occurrence
(Figure 3C). Notably, this effect was absent in LinB variants
with partially occluded p1 tunnels due to the L177W mutation
(Figure S20). Next, we evaluated the overall quantitative
ranking of tunnels based on their priority scores, which reflect
their prevalence as well as their geometric throughputs (Figure
S21). For all CG methods, we observed a moderate correlation
of tunnel ranking with the AA results (Pearson coefficients
0.46−0.51). More clear differences were observed when AP
was considered: Elastic model showed good ranking precision,
the Go̅ model retained moderate performance, while the weak
outcomes of SIRAH could be linked to its inability to properly
prioritize the p1 tunnel in LinB-Wt. Such values indicate that
while CG methods can provide valuable insights into tunnel
ranking, their outputs need to be carefully considered and
further validated. Overall, these analyses suggest that Go̅
restraints strike a better balance between stability and
conformational flexibility of the tunnels, making this method
the most effective in recognizing major tunnels from auxiliary
ones and allowing further investigations on the key tunnels.

However, when the quantitative ranking of all tunnels is
important, the Elastic model represents a preferential choice,
despite its drawback of overestimating certain transient tunnels
in some LinB variants.
Finally, we analyzed to what degree the key structural

properties of the detected tunnel ensembles, such as their
length, bottleneck radius, and composition of bottleneck-
forming residues, as determined from AA simulations, were
preserved in CG-MD simulations. Considering the major p1
tunnel, our analysis showed remarkable agreement across all
CG models in all LinB variants (Figures 3C and S20). The
only minor discrepancies were detected for the length of this
tunnel in LinB-Wt, which was about 1 Å shorter with the Go̅
method and 3.6 Å longer with the Elastic method (relative
errors of 9% and 31%, respectively). Here, we would also like
to note the narrower bottleneck of the p1 tunnel observed with
SIRAH (by 0.5 Å), which, however, was not statistically
significant due to its rather large variance. This high degree of
structural correspondence for major tunnels establishes CG
methods as useful platforms for preliminary tunnel mapping,
offering geometrically accurate starting points for more
detailed investigations into tunnel utilization by substrate and
product molecules using more advanced computational
approaches.19,20 Considering transient p2 and p3 tunnels
(Figures 3C and S20), the CG methods mostly reached
relative errors in their bottleneck radii ≤20%, i.e., minor
differences within 0.2 Å. The only marked exception was the
considerably overestimated radii of the p3 tunnel in LinB-Wt
and LinBClosed with the Elastic model (by circa 0.4 Å, with
relative errors of 34−41%). The deviations in the length of
these tunnels did not surpass those observed for the major p1
tunnel, except for the notably longer p3 tunnel with the SIRAH
method. Given the appreciable agreement in tunnel geo-
metries, we evaluated the performance of CG methods in
detecting bottleneck residues, which represent the major
targets for tunnel engineering.8 We observed 40−79% overlap
between top-5, top-10, top-15, and top-20 most frequent
bottleneck residues identified from AA simulations and all CG
methods (Figure S22), constituting valuable insights given that
LinB proteins comprise about 300 residues. The Elastic
method was the most accurate in this respect, providing 64%
agreement even for a very strict task of finding the top 5

Figure 4. Comparison of the effect of mutations on tunnel occurrence delineated by different methods. Tunnel p1 and p3 from the AA, Go̅ model,
Elastic model, and SIRAH model in LinB-Wt, LinB-Closed, and LinB-Open. The box plot shows the median (middle line in the box), with the box
representing the interquartile range (from the 25th to the 75th percentile), indicating the spread of the middle 50% of the data. The whiskers
extending from the box represent 1.5 times the interquartile range. Outliers are shown with open circles.
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bottleneck residues. Considering broader screening for 10−20
bottleneck residues, all CG methods correctly found most of
the key bottleneck residues in such a region.
Sensitivity of CG-MD Simulations to Mutation-Induced
Alterations in Tunnel Dynamics

Beyond characterizing native tunnel dynamics, we performed a
more stringent test of CG methods by evaluating their ability
to detect subtle changes in tunnel dynamics upon mutations, a
key capability for enzyme engineering applications. For this
purpose, we conducted a comparative analysis of p1 and p3
tunnels across LinB-Wt and two engineered variants with
distinct mutational effects on tunnel architecture.20,44

The primary p1 transport tunnel exhibits reduced accessi-
bility in both the LinB-Open and LinB-Closed variants due to
the L177W mutation at its entrance, which partially occludes
the tunnel. In contrast, the LinB-Open variant features an
engineered enhancement of the p3 tunnel through a triple
mutation (W140A + F143L + I211L) targeting key bottleneck
residues. This design successfully reconfigured the p3 tunnel to
nearly match the occurrence rates of the native p2 tunnel,
creating an additional transport route. Our analysis revealed
striking differences in how accurately each CG approach
captured these mutational effects (Figure 4). As our reference
standard, AA simulations, along with the Go̅ model,
demonstrated comparable sensitivities, accurately capturing
both mutational effects. The Elastic model showed partial
success, correctly recapitulating the p1 tunnel constriction but
failing to capture the enhancement of the p3 accessibility. This
limitation stems from the previously noted overestimation of
the p3 occurrence in both the LinB-Wt and LinB-Closed
variants, which obscures the relative increase in the engineered
LinB-Open variant. Most notably, the SIRAH model failed to
capture both mutational effects despite its adequate perform-
ance in native-state characterization. This limitation is likely
due to the interplay between its CG representation and our
applied secondary-structure-based restraint protocol, which
may overly constrain the local conformational adaptations
needed to manifest mutation-induced tunnel perturbations.
This underscores the importance of optimizing restraint
schemes when applying CG methods to mutational analysis
and suggests that SIRAH may require alternative stabilization
strategies to enable more effective analyses.
Case Study: Evaluating CG Methods across Diverse
Enzymatic Systems

To evaluate the broader applicability of CG methods beyond a
single enzyme family, we expanded our investigation to include
a diverse set of enzymatic systems, encompassing both
structural and functional variability. We selected nine
representative enzymes spanning three major EC classes:
oxidoreductases (EC1), transferases (EC2), and hydrolases
(EC3). Within each functional class, we included enzymes with
distinct structural architectures: all-α, all-β, and α/β folds. The
EC1 class of enzymes catalyzes redox reactions111 that involve
the transfer of electrons from a donor to an acceptor. These
enzymes frequently utilize cofactors, such as NAD+/NADH or
FAD/FADH2 to facilitate electron transfer. They are vital in
processes such as detoxification and respiration, where they
play key roles in energy production through electron transfer
during metabolic pathways. In this study, we focused on three
enzymes with buried active sites from this class�nitric oxide
reductase with a HEME cofactor (PDB ID: 1jfb; all-α),
anthocyanidin synthase (PDB ID: 1gp4; all-β), and delta(4)-3-

ketosteroid 5-beta-reductase with an NADP cofactor (PDB ID:
3bur; α/β). Notably, SIRAH simulations could only be
performed on anthocyanidin synthase (1gp4) due to
limitations in the force field’s cofactor parameter library,
which lacks representations for the HEME and NADP
cofactors used in the other two enzymes. Consequently,
SIRAH analysis was restricted to a single all-β protein in this
EC class. The EC2 class of enzymes catalyzes the transfer of
functional groups from one molecule to another.111 These
enzymes are essential for biosynthesis and metabolic regulation
and are involved in processes such as phosphorylation and
glycosylation. In this study, we examined three enzymes with
buried active sites specific to this class�arginine kinase (PDB
ID: 1m15; all-α), Bacillus subtilis levansucrase (PDB ID: 1oyg;
all-β), and human cholesterol sulfotransferase SULT2B1b
(PDB ID: 1q20; α/β). Finally, we evaluated the CG methods
with the EC3 class of enzymes, which catalyze the hydrolytic
breakdown of various bonds such as peptide or ester bonds.
These enzymes are crucial in digestive processes, breaking
down macromolecules such as proteins, fats, and nucleic acids
into smaller components, aiding in their metabolism and
recycling. We analyzed three enzymes with buried active sites
from this class�phosphodiesterase 10 (PDB ID: 2oup; all-α),
Salmonella typhimurium LT2 neuraminidase (PDB ID: 1dim;
all-β), and bacterial lipase (PDB ID: 1cvl; α/β). This strategic
selection of enzymatic systems, all featuring catalytically
essential, buried active sites with diverse tunnel networks,
provided a robust evaluation framework for CG methods
under varying protein topologies, sizes, and dynamic character-
istics. Encouragingly, the stability and dynamics of all proteins
simulated with all four methods followed the same trends
observed for LinB enzymes (Figures S23 and S32), supporting
the generalizability of the applied CG protocols and indicating
their robust performance in comparative tunnel analysis
independent of protein architecture. Of note, unlike with
LinB variants, AA simulations of several enzymes included in
this data set revealed much larger fluctuations in particular
regions, mostly formed by loops that were to some extent
approximated with the Go̅ model but were not accessible to
simulations with Elastic and SIRAH models (Figures S23−
S32).
Regarding the captured tunnel landscapes, our comprehen-

sive analysis of these nine diverse enzymes reveals several
generalizable patterns in the CG method performance. Most
notably, all tested CG methods successfully captured the most
prevalent tunnels identified in reference AA simulations, with
particularly strong correspondence for high-occurrence tun-
nels, which are likely to carry the greatest functional relevance
(Figures S33−S36). Consistent with our findings with LinB
enzymes, CG methods identified additional tunnels and tunnel
branches beyond those captured in AA simulations, predom-
inantly representing lower-occurrence pathways (Figure S36).
Moreover, the CG methods failed to capture only a small
subset of the low-frequency tunnels identified by AA methods
(Figure S36). This asymmetric pattern suggests that CG
methods have the capacity to expand the detectable tunnel
landscape, a feature that could be advantageous when aiming
to map a comprehensive range of potential transport tunnels,
particularly the rare and transient ones. To quantify the
correspondence between CG and AA tunnel geometries, we
conducted correlation analyses comparing tunnel bottleneck
radii and lengths across all models (Figures S37−S44). These
geometric characteristics of tunnel ensembles showed sub-
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stantial agreement between AA and CG simulations (Figure
5A), despite the considerable diversity of our enzymatic data
set, which includes tunnels with varying lengths and bottleneck
dimensions. This pattern parallels our findings with LinB
variants, suggesting that CG methods can capture the
structural features of tunnel ensembles, even though they
exhibit method-specific biases in representing tunnel dynamics.
This reinforces the conclusion that CG approaches can reliably
map the geometric properties of transport pathways, even
when their predicted occurrence frequencies require careful
interpretation. Intriguingly, we observed stronger correlations
among CG methods (Figure 5A), suggesting that distinct
structural biases might still alter the sampling of tunnel
ensembles in an analogous manner. Finally, we assessed the
ranking of tunnels based on their priority scores on this diverse
data set (Figure 5B). Similarly to LinB variants, we observed a
moderate correlation of tunnel ranking with the AA results for
the Elastic and Go̅ models. In contrast, with the SIRAH model,
the extended data set showed only weak correlation with
tunnel prioritization. However, we observed a notable
improvement in the AP in tunnel ranking across all CG
methods (0.68−0.78).
Overall, the observed ranking performance across varied

protein architectures strongly supports the applicability of CG
approaches for the initial enzyme tunnel discovery and
characterization. In particular, the Go̅ model was the most
proficient, in line with its above-discussed ability to reflect
larger fluctuations found in AA simulations of EC data set
enzymes. This consistent performance advantage in capturing

dynamic characteristics aligns with our observations in LinB
variants, reinforcing the conclusion that Go̅-based restraints
achieve the best balance between structural stability and
conformational flexibility, making them particularly suited for
tunnel analysis, while avoiding more pronounced failures in
separating primary and transient tunnels, which were observed
with the other two methods on the LinB data set. When
evaluating the geometries of tunnel ensembles, the Elastic
method exhibited the best correlation with both bottleneck
radii and lengths. Such performance patterns observed across
nine enzymes with diverse structural architectures and catalytic
functions strongly support our findings from the LinB variants,
establishing a solid foundation for selecting appropriate CG
approaches based on the specific characteristics of interest in
tunnel investigations.

■ CONCLUSIONS
This study represents the first comprehensive evaluation of CG
methods for characterizing enzyme transport tunnels, demon-
strating that selected CG approaches can accurately capture
tunnel dynamics with substantial computational efficiency
compared with AA simulations. Our benchmarking across
three EC classes and diverse protein architectures establishes
that the Martini-Go̅ model provides the best trade-off in
reproducing both the structural and dynamic characteristics of
enzyme tunnels, including the subtle effects of mutations on
tunnel networks. Moreover, all benchmarked CG methods
consistently showed good performance in detecting and
structurally characterizing all known functional tunnels, in

Figure 5. Correspondence of tunnel properties and their prioritization between AA and CG methods in the studied enzymes from EC1−EC3
classes. A) Heatmaps with Pearson correlation coefficients between geometrical properties of tunnels present simultaneously in AA and each CG
method across the whole data set. Data on the statistical significance of the observed correlations are available in Table S5. B) Performance of CG
methods in ranking tunnels according to tunnel priority scores obtained with AA simulations.
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agreement with AA simulations. While CG simulations
identified additional tunnels not observed in AA simulations,
these extra tunnels typically exhibited low occurrences, which
did not interfere with the identification of functionally relevant
pathways. Importantly, backmapping analyses revealed that
most of these additional tunnels represent legitimate rare
tunnel variants rather than artifacts of the CG representation.
Except for the Elastic model, the investigated CG methods

could most often distinguish highly important known
permanent tunnels from auxiliary transient tunnels in three
LinB systems, and all CG methods exhibited high AP on the
diverse data set of EC enzymes, suggesting their utility for
tunnel prioritization. Also, CG methods were able to
recapitulate key structural properties of corresponding tunnel
ensembles, i.e., their bottleneck radii and lengths, as well as
provide guidance in the detection of most of the key
bottleneck-forming residues, at which the Elastic model
excelled. Very promising results were achieved with the Go̅
model, which successfully captured mutation-induced alter-
ations in tunnel dynamics in the LinB variants. Importantly,
CG methods provided significant speedup for simulations and
their analyses compared to AA methods, notably reducing
sampling time while accessing more diverse tunnel networks.
Furthermore, as we observed the different trade-offs between

the applicability of stabilizing networks used in the Martini
approach (Elastic or Go̅), it would be interesting to consider
their further fine-tuning to optimize correspondence with
insights from AA data.30 While the generation of extensive AA
simulations to optimize such stabilizing networks would
undermine CG models’ viability as a high-throughput screen-
ing tool for tunnel networks in diverse protein systems, we
assume that even shorter AA simulations could be used for
partial optimization, as was recently demonstrated with the
optimization of an elastic network using much smaller AA
models of microtubules.112 Alternatively, AlphaFold confi-
dence scores were successfully evaluated on 28 different
proteins as a means to develop optimized elastic network
parameters, eliminating the limiting requirement for AA
simulations.113 Finally, in this context, it will also be of interest
to test the performance of the OLIVES approach,114 a recent
variant of Go̅ Martini that more directly mimics hydrogen
bonding networks that stabilize protein structure, similar to the
approach used here for stabilizing SIRAH simulations.
Taken together, CG models, especially the Martini Go̅

model, contain a promising approach for effectively investigat-
ing tunnels in proteins, opening new possibilities for
identifying tunnels in large protein systems and massive data
sets.
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