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1. INTRODUCTION

An observation based on long-standing experience is that a plastic
body deformed under conditions which could result in a quasi-static, macro-
scopically uniform deformation process, in certain circumstances begins to
deform in a quite different way. The term instability is commonly used in
such cases though more in an intuitive than in a specified sense. Typical
examples of so-understood instability are the buckling, bulging and neck-
ing phenomena as '"geometric" instabilities, snap-through phenomena as '"dy-
namic'" instabilities, and shear band localization of deformation as a "lo-
cal' instability. Similar phenomena may naturally appear in the course of
non-uniform deformations. :

The different forms of instability in plastic solids have been inves-
tigated in the literature by using various theoretical approaches, The ba-
sic tool in analysis of '"geometric' instabilities is nowadays the bifurca-
tion theory due to Hill [1:4], supplemented by studies of post-bifurcation
behaviour and imperfection sensitivity (cf. [5:8]). Appearing of uncontrol-
led, dynamic deformations is usually attributed to an instability of equi-
libriumand investigated on the basis of an energy-type criterion of insta-
bility of equilibrium, as e.g. those in [1,9,10]. The localization of de-
formation, either in thin metal sheets or within a three-dimensional body,
is usually examined by considering a possible bifurcation within a band
[11,12] or by studying the growth of initial imperfections as in Marci-
niak’s approach [13] (cf. [14+17]). In many cases, an intuitive instabili-
Lty criterion is formulated for the particular problem considered, as in
[18,19].

None of the approaches mentioned above allows to investigate all the
"geometric", "dynamic" and "local" instabilities in a unified way. In this
paper we explore a possibility that the observed distinct forms of plastic
instability are merely different symptoms of instability of the fundamen-
tal deformation process in the energy sense. Such approach, based on a
single energy~type postulate of stability of a quasi-static deformation
process, has been proposed recently by the author [20+22]. In the assumed
definition of stability the persistent disturbances are considered for
which an energy measure is adopted. For our present purposes, we use a
simplified and less restrictive version of the postulate, starting from




a stability criterion which is a consequence of the basic stability defi-
nition and not from the definition itself. To make the paper self-contained,
the stability criterion is introduced here as an independent hypothesis.

In the criterion it is assumed that a sufficiently small deformation incre-
ment in a stable fundamental process requires less energy to be supplied
from external sources to the system consisting of the body and loading de-
vice than any other kinematically admissible deformation increment. The de-
formations are caused by varying loading conditions; in particular, if the
loading conditions do not vary in time then the criterion of stability of

a deformation process reduces to the familiar concept of stability of equi-
librium in the energy sense. The criterion is proposed here for loadings
which are conservative in an overall sense, generalizing in this way the
previous criteria [21,22] formulated for the surface tractions which were
conservative at each surface point separately.

In formulating the stability postulate, the mechanical properties of
the material are assumed to be time-independent but are otherwise arbitra-
ry. However, the postulate itself imposes certain symmetry restrictions on
the general form of constitutive relations (which will be studied else-
where). Implications of the assumed stability criterion will be examined
below assuming a class of nonlinear constitutive rate equations which ad-
mit a potential provided they are expressed in terms of rates of work-con-
jugate stress and strain measures [23,4]. This class of constitutive rela-
tions contains the rate equations for conventional elastic-plastic solids
obeying the normality flow rule as a special case. Existence of potential
assures that the incremental moduli have the needed principal symmetry
property. The evolution equations for the moduli are left unspecified
though their form is also expected to be restricted by the stability re-
quirement.

It is not the aim of the present paper to analyze particular examples,
rather, to provide a synthesis of the known results by specifying possibly
general circumstances under which the proposed energy criterion yields the
known criteria of plastic instability.

2. DEFINITIONS AND ASSUMPTIONS

2.1. Notation

We are concerned with isothermal, quasi-static deformations of a con-
tinuous body of time-independent material which in a fixed reference con-
figuration occupied a space domain V bounded by a piecewise-regular sur-
face 5. dE and da are infinitesimal elements of volume and of surface area,
respectively, in the reference configuration in which space or surface in-
tegrations will be performed. The position vector of a material element in
the reference or current configuration is denoted by E or x, respectively.
All vector or temsor components are for simplicity taken relative to a
fixed rectangular basis and denoted by Latin subscripts which range from
1 to 3. A natural time does not appear at all throughout the paper and its
role plays a scalar parameter t which is called time for simplicity. A de-
formation process is described by the equation x = x(g,t). For any local
quantity ¢, the derivatives
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and likewise the higher-order ones, are assumed to be at least piecewise
continuous functions of (E,t). A field defined on V will be distinguished
from its value at g by a superimposed tilda, when needed.

u=x-§, v=X=241 and F = 9v/df denote the displacement, velocity
and veloc1ty gradlent in the reference . configuration, respectively. The
deformation and stress are measured by the deformation gradient tensor F =
ax/ag and the nominal stress tensor s, respectively, which form a work-con-
jugate pair in the sense that the deformation work in the body is equal to
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with the summation convention for repeated indices. s is related to the
symmetric Cauchy stress g by the formula Fjj 8jk = det(F) Oik- We assume
that u is a continuous function of (E,t), F varies continuously in time
while - v is a continuous function of place.

2.2. Constitutive relations

A general assumption is made that the mechanical properties of the
material do not depend in any way on a natural time. Starting from the Sec-
tion 3 we will assume that the constitutive relations for the material can
be expressed in the general rate form proposed by Hill [1,2]
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no matter what is their original (objective) form (for the formulae rela-
ting (2) to the constitutive rate equations written in terms of objective
work-conjugate measures, see [4]). U is a continuous, continuously differ-

entiable and piecewise-continuously twice differentiable function of F de-
pendent also on the deformation history. Since the material is time- 1nde—

pendent, the potential U is homogeneous of degree two and can be thus writ-
ten in the form (2),. A value of U will be denoted equivalently as U(F)
U(v i) = Ulv]. The homogeneous relationship (2) between § and F can also
be wr1tten by the Euler theorem, as
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are continuous at E so that the incremental moduli tensor E(E) is well de-
fined. The notation C(F) indicates the dependence of the moduli on the ac-
tual rate of strain,_p;ésent in any model of elastic-plastic response. The
dependence is homogeneous of degree zero and in general only piecewise-con-
tinuous, for instance, piecewise constant when the relation (3) is piece-
wise-linear. We will denote E(E) equivalently as C[v]. In general, the



body may be inhomogeneous so that U and C are tacitly assumed below to de-
pend also expticitly on E (in a piecewise smooth manner).

2.3. Loading device

We consider the body placed in a loading device which applies body
forces and surface tractions and constraints surface displacements in a
manner dependent on a scalar loading parameter A varying in time. The sur-
face tractions are allowed to be configuration-dependent and may even be
functionals (dependent on A) of displacement field on the whole body sur-
face. However, the surface loading is assumed to be conservative in the
following overall sense (cf. [3,24]): For each fixed value of A, the total
work done by the applied surface tractions vanishes for all closed virtual
displacement paths which are compatible with geometric constraints and re-
store the material surface points to their starting positions. If we de-
note by T the nominal surface tractions (per unit reference area) then
this assumption is written as

f $ Tj duj da = 0 , A = const . (5)
S

As examples of such loadings, we can mention (i) the tractions acting on
the contact surface with a deformable hyperelastic continuum, (ii) the
loading by uniform pressure on a surface part of fixed perimeter,(iii) the
loading by smoothly distributed springs, or (iv) the dead loading. At a
certain £ and fixed A, T is (i) a functional of the surface Hisplacement
field, (ii) a function of the displacement and its surface gradient at E,
(iii) a function of the displacement at £, or (iv) independent of another
factors, respectively. Surface displacement may be constrained by contact
with a rigid tool, however, if slipping on the tool-material!interface is
allowed then it must occur without friction. The nominal body forces b
(per unit reference volume) are taken for simplicity to depend only on E
and A, though conservative configuration-dependent body forces could be
considered as well.

From the above assumptions it follows that the total work done by the
body forces and surface tractions in a virtual motion compatible with ge-
ometric constraints and leading from &' to 4? at fixed A (the right hand
side expression in (6)) is path-independent. (This work is path-dependent
if X is varying during the motion). Hence, for each A we may define the
potential energy of the loading device Q as a functional defined on a
class of admissible displacement fields 4 such that
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Formally, Q is defined in this way to within an additive function of A
which may be chosen arbitrarily with no influence on the stability crite-
ria discussed below. The choice may be done once the loading device is
specified in order to give the term "potential energy" a physical meaning.
Note that if X is varying along a deformation path then the increment of
the value of Q is still path-independent but is no longer equal to the
work done by the body forces and surface tractions with negative sign.



2.4. General stability criterion

For a class of kinematically admissible deformation processes, intro-
duce the energy functional E defined by

E=W+ 0 . (?)

In general, E is a functional of the whole deformation history due to the
path-dependence of the deformation work W. With an appropriate specifica-
tion of Q (cf. the remark following the formula (6)), the increment of the
value of E in a quasi-static deformation process can be interpreted as the
amount of energy which has to be supplied in that process from external
sources to the system consisting of the body and the loading device.

We are concerned with stability of an idealized, isothermal, quasi-
-static deformation process, called the fundamental process, which is in-
tended to describe sufficiently slow deformations of a real body subject
to varying loading. The value of any quantity in the fundamental process
will be distinguished by the superscript " ° '". At every stage of the de-
formation along the fundamental path, we consider a class of kinematically
admissible branching paths. Note that a branching path need not satisfy
here the conditions of continuing equilibrium; when it does then the term
"bifurcation" will be used. We will consider only such deformation paths
along which the increment 6E of the value of the energy functional (7)
from that at the branching point can be developed into a Taylor serles
with respect to a small time increment 6t at least to the second order,
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where E and E are the first and second time derivatives of E taken along

a branching path at the instant of branching. We postulate now the follow~
ing stability criterion (cf. [21,22]). i
Criterion 1. The fundamental process is stable only if

8E > 6E° - (9)

for all kinematically admissible branching paths and for sufficiently
small 6t.

Note that this criterion gives only necessary condition for stabili-
ty. If (9) does not hold for some branching mode then the fundamental pro-
cess is unstable in the energy sense, and it is conjectured that this cor-
responds to some observable form of instability.

Suppose now that the stresses, surface tractions and body forces vary
continuously in time in any deformation process. This assumption is gener-
ally not satisfied for rigid-plastic solids or for unilateral constraints,
therefore both are excluded from now on. Denote by the prefix A the dif-
ference of any corresponding quantities in the branching and fundamental
processes at the instant of branching. From (1), (6) and (7) we have

E - E%= AF - 0
o = ISy 2y
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for all AV compatible with the kinematical constraints. Since we have ex-

cluded unilateral constraints, from (8) and the Criterion 1 it follows

that the expression (10) vanishes in a stable fundamental process for all



admissible AV. This is just the virtual work principle which is satisfied
a fortiori if the fundamental process corresponds to a quasi-static solu-
tion to the problem. From (8) and the Criterion 1 we obtain the following
Criterion 2. The fundamental process is stable only if

AE >0 . (11)

for all kinematically admissible branching paths.

3. MINIMUM PRINCIPLE FOR VELOCITIES

To find an explicit form of (11), we specify now the surface data in
an incremental, linearized form. The material body surface is split into
two complementary parts, S, and Sp. On the part S, the displacement incre-
ments 6u are given functions of A. On the part Sy the first-order expres-
sion for the increment 6T of the nominal traction from its starting value
T° is assumed to consist, as in [3,4], of two parts

8T 6161 fl6u] (12)
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The first term on the right hand side of (12) represents the part of the
traction increment which is independent of the deformation increment, and
the second term is the deformation-sensitive part. Both terms may depend
on £ and A. f[ﬂ] is assumed to be a linear homogeneous function of a space
vector w and its surface gradient at the surface point considered ( f[w]
could depend in the same way also on higher order surface gradients of 1 w
with no influence on the following considerations). The assumption (5) of
conservative loadlng impliess Hill's '"self-adjointness" condition (3,4]

S {fj[_\f] v"j - f
ST
where V' and v®are any pair of continuous and piecewise-continuously dif-
ferentiable vector fields whose dlfference vanishes over S,
Identifying the displacement fields G* and @' in the expression (6)
with those on the branching and fundamental paths and using (12) and (13),
we obtain the second-order formula

1 2 .
j[i ] vj} da = 0 , (13)
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All quantities in (l4), and likewise their differences denoted by A, are
calculated at an instant following the instant of branching. Hence, at the
instant of branching when AG = 0 we have

- A= f (2 bj ﬁvj . bj Avj) ag + [ {2 T? + fj[qi])ﬁvj + Tg 6vj}da. (15)
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In calculating the second time derivative of AW, we take into account
the possibility of a velocity-gradient discontinuity across a moving sur-
face whose image Sp in the reference configuration moves with a normal
speed V- By using the transport theorem, we obtain
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where [+ ] denotes a jump across Sp with the usual sign convention. Since
V is and remains continuous, the standard Compatibility conditions require

that there is a jump in accelerations v across S such that
11 vy v o= -1 %.ﬂ n. , (17
,i7 'n i

where n is the (appropriately directed) unit normal to SD. By substltutlng
(17) to (16) and using the equilibrium conditions for s’and the divergence
theorem, we obtain that at the instant of branching there is

N:I:A{{sij v,y g} + [, m'rj dg + [ T AGJ. da . (18)
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Finally, by combining (15) and (18) and using (2), (12) and (13), we arrive
at the result

> 8 - all9] (19)
where
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is a functional defined on the class of continuous and piecewise-continu-
ously differentiable velocity fields ¥ taking the values prescribed over
S, at the instant of branching. For convenience, from now on W will denote
an arbitrary continuous and piecewise-continuously differentiable vector
field on V which vanishes over S_. Each velocity field admissible in (20)
has now the form ¥°+ ¥ . By substituting (19) in the Criterion 2, we ob-
tain the following minimum principle for velocities.

Criterion 3. The fundamental process is stable only if

Jvl > J[¥% for all v = V'+ w . (21)

This is an extension of the criterion derived in [21] to a wider class of
loadings and with velocity gradient discontinuities taken into account.
The Criterion 3 reduces the problem of '"detecting' instabilities to estab-
lishing the circumstances under which the fundamental velocity field ¥°
fails to minimize the value of the functional (20).

The functional (20) coincides with that considered by Hill [3,4]. As
shown by-Hill, its first weak (Gateaux) variation vanishes at ¥ = ¥° if
and only if v° is a solution to the actual first-order rate boundary value
problem. This variational principle appears here as a necessary condition
for (21) and thus for stability of the fundamental deformation process.

The minimum principle (21) (with strict inequality) was proved origi-
nally by Hill [3] under the additional assumption that a condition suffi-
cient for uniqueness of the solution is satisfied. On the contrary, (21)
has been derived here from the postulated stability Criterion 1 and holds
for any solution ¥°, unique or not, which corresponds to a stable deforma-
tion process. -



4. DISCUSSION

Along a typical path of deformation, the condition (21) (or (11),equi-
valently) will be satisfied with strict inequality for all non-zero W up
to a certain critical stage beyond which the functional (20) becomes inZ ~
definite. If instability did not take place earlier for another reason
((11) is only necessary for stability) then the critical stage marks the
onset of instability of the fundamental deformation path. Suppose that
this is the case. Now, it is esential in what way the functional (20) be-
comes indefinite and what properties it has at the critical stage since
this strongly influences the post-critical behaviour of the body. Three
typical cases are discussed below which are related to the distinct observ-
able forms of plastic instability mentioned in the Section 1.

4.1. "Geometric'" instabilities

Suppose that at the critical stage (21) still holds but with equality
for some v # ¥ . Then v*, likewise ¥, renders the functional (20) a mini-
mum and thus also a sta?ionary value. From the variational principle men-
tioned above it follows that ¥* is another solution to the first-order
rate boundary value problem, that is, at the critical stage we have bifur-
cation in velocities. Hence, in this case the search for the onset of in-
stability in the sense of the energy criterion is reduced to a search for
the corresponding bifurcation point. If the secondary post-bifurcation
path is stable then it may replace the fundamental path beyond the criti-
cal point, leading in that way to an observable '"geometric'" instability.

In general, a bifurcation point may precede the considered critical
stage with no consequence for stability of the fundamental path. We spec-
ify below the circumstances under which such cases are excluded so that
the primary bifurcation takes place exactly at the critical stage. Suppose
first that along the fundamental deformation path the potential U has con-
tinuous second derivatives with respect to E_at ff, except possibly on cer-
tain surfaces, e.g. on the elastic-plastic interface. In other words, let
the incremental moduli tensor C° relating §° to F° (cf. (3) and (4)) be
well defined almost everywhere in V. In that case the second weak vari-
ation of the functional (20) at ¥ = % exists and is equal to

2 1 g
6°IL% ;7] = 5 =5 J[T + 49] = I°[%] , (22)
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where ¥ is a scalar and
1 L
] o~ o= - —
I°[w] = 7{ @ijkl ¥ii Y9k g - 3 j; fj[ﬁ] f da (23)

i
is a quadratic functional defined on the class of ® as above.

The proof follows at once from the standard theorem of the calculus
of variations applied separately to each subdomain in V in which the need-
ed regularity conditions are satisfied, provided that in each subdomain
the moduli tensor C[v’+ yw] depends continuously on 4 in an interval of 4
containing 0 and independent of place. If this is not the case then we can
separate a region R(§) in V such that C[v*+ yw] is a continuous function
of ¥ in V\R(§) for |y|< 4 and apply the theorem in V\R(§). By the assump-
tion introduced above and the assumed regularity of U, the volume of R(¥)



can be taken to tend to zero as ¥ = 0 and in the limit we obtain (22).

Non-negativeness of the second variation is necessary for a mimimum.
Hence, when the moduli E? are well defined then the Criterion 3 yields the
Criterion 4. The fundamental process is stable only if

1’lg]l >0 ' for all w . (24)

Suppose now that the moduli E? define the incrementally linear '"com-
parison solid" [1,2,4] such that

-4 0
aS, s AFji 2 ikl ai«‘ji f“u( for all AF (25)

where Aé_: é % & Af = f - F° and s is related to F by the constitutive
equation (2). The condition (25) is a weakened form of the "relative con-
vexity" property [2,4] which requires (25) to hold also if E? is replaced
by an arbitrary velocity gradient. For instance, (25) is satisfied for the
elastic-plastic solids with piecewise-linear incremental response subject
to the normality flow rule, either at a regular point or at a vertex on
the yield surface, provided that the moduli E“ in the plastic zone corre-
spond to the "fully" plastic branch [1,5,4].

From (25) by the same argument as in [4] we obtain that a bifurcation
in velocities is excluded and (21) is satisfled as long as the functional
I° is positive definite (i.e. I°[W] >0 if & 4 0). In usual circumctances
examined so far in many papers (cf. [5:8]) this is so along the fundamen-
tal deformation péth up to the stage when the primary bifurcation takes
place. The corresﬁondlng eigenmode W¥ = f* - ¥v° renders the functional I°
the zero statlonary value. In general, beyond this stage the functional I°
becomes indefinite; the Criterion 4 now shows that the instant of the pri-
mary bifurcation coincides with the onset of instability of the fundamen-
tal path in the energy sense. In those circumstances, the onset of buckl-
ing or necking found by using Hill’s bifurcation theory results also from
the Criteria 3 or % being now equivalent to each other. This is a general-
ization of the previous result [22] obtained for the conventional elastic-
-plastic solids with a smooth yield surface and for less general loading
conditions. The Criterion 2 gives additionally an energy interpretation of
the primary bifurcation as well as a reason for rejecting the fundamental
post-bifurcation path as being unstable in the energy sense. The secondary
post-bifurcation path may be stable; if there are more post-bifurcation
paths then the stable path must minimize the increment &E of the energy
functional (7), developed into a series up to the order needed.

4.2. "Dynamic'" instabilities

To show that the Criterion 2 (or 3) can also be used to find the on-
set of uncontrolled dynamic deformations, we derive from it the following
Criterion 5. The fundamental process is stable only if

1w] = [ ulw] dE - % f fj[g] v, da >0 for all w . (26)

v ST

In proof, consider the quantity (J[¥°+ w] - J[G°])/12 and put Yy = ®
while W is held fixed. By using homogeneity and continuity of U and £, we
obtain in the limit I[w]. Thus, if I[W] is negative then J[¥°+ W] does
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not satisfy (21) for ¥ large enough. Hence, I[E] 2 0 is necessary for sta-
bility, and the Criterion 5 has been proved.

Alternatively, the condition (26) can be obtained as a necessary con-
dition for the stability of equilibrium, defined as the stability of the
degenerate deformation process in which an equilibrium configuration of
the body does not vary in time. The corresponding loading conditions can-
not depend on time so that we must have X = 0 what implies E =0 in V and
4 = 0 on S;. Then (21) reduces simply to (26) (cf. [21,22]). Under these
conditions, I[Gg] is the second-order expression for the amount of energy
which has to be supplied to the system (body and loading device) along a
direct virtual quasi-static deformation path leading from the equilibrium
state to a neighbouring configuration defined by the displacement increment
6 (cf. (8), (10), (19) and the remark following (7)). Relation to the fam-
iliar energy criteria of stability of equilibrium (cf. [1,9]) is apparent,
however, (26) is here necessary for stability rather than sufficient.

If (26) is not satisfied then there are certain modes of departure
from the equilibrium state along which the energy is released from the sys-
tem and may, at least in principle, be inverted into the kinetic energy
since the modes require no quasi-statically applied increment of the load-
ing parameter ). Then, the system may start spontaneously to move dynami-
cally; in that sense the Criterion 5 is a criterion for "dynamic" instabil-
ities.

Consider now the stage on the deformation path at which there is an
eigenmode W¥# 0 which renders the functional I in (26) the stationary value
necessarily equal to zero. Evidently, 3* is a solution to the first-order
rate boundary value problem obtained for X = 04 If the functional I is
positive definite before this stage then it becomes usually indefinite be-
yond this stage. Now, observe that that stage is necessarily reached when
the loading parameter A attains its analytic extremum value versus a typi-
cal displacement on the fundamental deformation path. For, x = 0 and v°# 0
at the extremum point so that the fundamental mode v° itself constitutes
the eigenmode. This is a generalization of the classical maximum load cri-
terion which is obtained here in the special case when the given loads
vary monotonically with A.

4.3. "Local" instabilities

All the criteria discussed above involve an integral over the body
volume. For such global criteria to be satisfied, a prerequisite is that
certain local conditions hold. The local conditions discussed below in-
volve the material mechanical properties at a single point only and are
independent of the boundary conditions corresponding to the fundamental
deformation process.

Our starting point is again the Criterion 3 as equivalent to the Cri-
terion 2. Observe first that in a stable process the volume integral in
(20) must be minimized by v° within the class of all continuous and piece-
wise-continuously differentiable velocity fields which coincide with E”
over the whole body surface S. Now, the theorem due to Graves [25] gives
a local necessary condition for this (the condition (27) below) so that
we obtain the following criterion for '"local" instabilities.

Criterion 6. The fundamental process is stable only if at every point in V

) - 0 - &0
U(vj,i + 8 n;) U(vj i) *{; 85 ™ 2 0 for all g, n 27)

1
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This criterion was derived in [22] (under less general assumptions) by con-
sidering a kinematically admissible mode of localization of deformation
within a disc-like region whose thickness grew from zero at the initial in-
stant of localization. It has been shown that if (27) does not hold then a
localization mode of this type can be found which corresponds to the in-
crement 6E of the energy functional less that 6E° by a third-order term.

Suppose now that (27) is satisfied in the body along the fundamental
deformation path up to the critical stage and then ceases to hold, imply-
ing instability of the fundamental deformation process. Suppose also that
(27) still holds at the critical stage, but with equality for some non-
-zero vectors 5_, n*. Then the left hand side expression in (27) attains
the minimum (zero) value for these g*, n* and, consequently, its partial
derivatives with respect to gJ vanish. This y1e1ds

- - .0 * -
sij Sij) n} 0 (28)

at the critical stage, where sf is related by the constitutive equation
(2) to the velocity gradient (vi,i + 31 ni). s can be envisaged as the
stress-rate within a vanishingly thin band of orientation n* at the in-
itial instant of localization since the velocity gradient within such bands
is just of such a form. Now, (28) is the condition of continuing equilib-
rium across the band, that is, the condition for bifurcation within the
band [12]. Note that the term "bifurcation" is in this context used in a
local sense only and not necessarily in the sense 6f an exact bifurcation
in a finite body. The condition (28), re-derived hére from the general
stability criterion, has been widely used in the 1#terature (cf. [12,
14:17]) as a bifurcation criterion for the onset of the shear band localiz-
ation. It has been usually used for piecewise-linear constitutive rate
equations which not necessarily admit a potential but under the assumption
that the moduli inside and outside the band are the same.

The above considerations allow to interpret the Criterion 6 as the
energy criterion for localization of deformation within narrow regions
inside the body.

Consider a material point at which the moduli C° are well defined. By
substituting g in place of g in (27) and putting y - 0 or y = =, we ob-
tain that the inequalities

C n

AY;
o

D_'Ik]. gJ i gl nk for all é, n , (29)

U(sjni)

v

0 for all g, n , (30)

respectively, are necessary for the local stability. (29) is the known el-
lipticity condition, associated with the criterion det(C}; kl“ n ) =0
which follows from (28) if the moduli within the band are equal to C° [12].
The condition (30) can alternatively be obtained directly by applylng
Graves  theorem to (26) and is thus necessary also for stability of equi-
librium. Hence, violation of (30) may lead to a dynamic localization pro-
cess associated with an "internal snap-through" within the body. In this
context it is perhaps worthwile to mention that (30) is necessary and suf-
ficient for the speed of all dynamic acceleration waves propagating into
the material being at rest to be real. For, from the wave propagation con-
dition (cf. [26]) and (2), it follows that the expression in (30) with
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|§| & 'E' =1 1is proportional to the square of wave speed.

Now, consider as a special case the conventional elastic-plastic
solid for which the moduli C take constant values in each of two half-
-Spaces obtained by dissection of the strain-rate space by the hyperplane
tangent to the smooth yield surface in strain space. Then (29) is implied
by (30) since each velocity gradient corresponds to the moduli C° provided
its sign is appropriately chosen. Consequently, in the conventional elas-
tic-plasic solids the loss of ellipticity by the plastic moduli results in
loss of the 'stability of equilibrium in the energy sense. In that case, a

quasi-static study of post-bifurcation behaviour may be of no physical
meaning.
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