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 A B S T R A C T

In this paper, we revisit a classical multiwell phase-field model in the context of 𝛽–𝜔 phase 
transformations in titanium alloys. We propose a novel model by adjusting the algebraic part of 
the traditional interfacial free energy in a way that allows for a relaxation of the standard well-
posedness constraints on surface tensions in the total-spreading case. The proposed adjustment 
effectively prevents the formation of a mixed 𝜔–𝜔 state in the resulting phase-field continuum 
model, aligning with the crystallographic impossibility of such a configuration in reality. We 
further introduce a chemical energy mixing function that preserves the local stability of purely 
two-phase 𝛽–𝜔 configurations, preventing the spontaneous appearance of additional phases. 
We illustrate the advantages of the novel model through numerical simulations in one, two and 
three spatial dimensions and outline a pathway toward a more realistic model of 𝛽–𝜔 transition 
model in titanium alloys.

. Introduction

.1. Motivation

In materials science, one is often faced with a problem of secondary phase precipitation within a primary matrix. Usually, 
he secondary phase is found in several orientations called variants, all of them being chemically equivalent. Their number and 
rrangement generally depend on the crystal symmetries of both the matrix and the precipitate. The individual variants may interact 
ot only with the matrix but also among themselves, especially at the end of the process, when they start touching each other. 
herefore, multi-phase models are required to investigate such systems.
A particular example (and our primary motivation) are titanium alloys, where a so-called 𝜔 phase (hexagonal) can form within 

he 𝛽 matrix (cubic), in 4 variants (Banerjee & Mukhopadhyay, 2007); the same applies for zirconium alloys as well. A unique 
roperty of the 𝜔 phase is that its interface with the 𝛽 phase is not atomically sharp, but rather diffuse, i.e., the 𝛽–𝜔 interface spans 
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across several atomic layers (∼1 nm) (Devaraj et al., 2012; Šmilauerová et al., 2017; Zheng et al., 2016). This makes the phase-field 
modeling approach, in which interfaces are considered to be diffuse rather than sharp, particularly suitable for the description of 
the microstructure containing this phase. Physically, the finite thickness of the 𝛽–𝜔 interfaces is associated with a gradual collapse 
of {111} planes, which is the actual mechanism of the 𝛽–𝜔 transformation.

Another special property of the 𝛽–𝜔 system is that (unlike in typical martensitic transformations), the direct 𝜔–𝜔 interface is 
incompatible at the atomic level and the (hypothetical) 𝜔–𝜔 interfaces would have very high interfacial energy. As a result, direct 
𝜔–𝜔 interfaces are not observed and 𝜔 particles are separated by the parent 𝛽 phase. This situation is referred to as total spreading.

In the ‘‘Ti and Zr community’’, two types of the 𝜔 phase are distinguished: at first, a so-called athermal 𝜔 forms via a diffusionless 
process, resulting in nano-scale particles up to 5 nm in size (Šmilauerová et al., 2017). Upon heating, diffusion activates and 𝜔
particles grow simultaneously with the elemental partitioning. This is usually referred to as isothermal 𝜔 and the particle size can 
reach hundreds of nm, depending on the heat treatment. In this paper, we will deal solely with the scenario typical for the athermal
𝜔, i.e., one formed by the diffusionless process during quenching.

1.2. Phase-field models for multi-component systems

The phase-field method is a well-established and versatile computational technique used, among other applications, to simulate 
microstructure evolution in materials (Chen, 2002; Moelans et al., 2008; Singer-Loginova & Singer, 2008; Steinbach, 2009; Wang 
& Li, 2010), see also the seminal works (Allen & Cahn, 1979; Cahn & Hilliard, 1958), including the mathematical (Caginalp, 1986) 
and thermodynamic (Heida et al., 2012a, 2012b; Penrose & Fife, 1990) foundations. The method is based on the fundamental 
concept of a diffuse interface between material phases. Consequently, this region is treated as having a finite thickness, within 
which there is a continuous, smooth change in physical properties. To this end, an independent scalar field, called the phase field or 
order parameter, is introduced into the model. This field takes constant values within individual phases, and its continuous change 
determines the location of the interface between phases. At the same time, the gradient of the phase field is used to introduce the 
energy of (diffuse) interfaces. The transformation of the phase field is governed by the evolution equation (e.g., the time-dependent 
Ginzburg–Landau equation for a non-conserved order parameter), which results from the minimization of the total free energy of 
the system. The substantial versatility of the phase-field method stems from its flexible structure, which may be combined with 
virtually any physics. This feature has enabled its extensive use in various fields, including solidification (Kobayashi, 1993; Ode 
et al., 2001), solid-state transformations (Chen, 2002; Levitas & Preston, 2002; Tůma et al., 2021; Ubachs et al., 2004; Wang & 
Khachaturyan, 1997), fracture (Ambati et al., 2014; Bourdin et al., 2000), ferroelectric (Choudhury et al., 2005; Guin & Kochmann, 
2023; Li et al., 2001) and magnetic domain evolution (Zhang & Chen, 2005), biological applications (Biben et al., 2005; Du et al., 
2006), and many more.

Standard phase-field method models perform well with two-phase systems where the use of a single order parameter is sufficient. 
In reality, however, the evolution of the microstructure of many materials involves more than two phases, which necessitated an 
extension to the existing approach. One of the earliest attempts to address this challenge was made by Chen and Yang (1994) and 
later by Fan and Chen (1997), who used a continuum diffuse-interface field model to simulate grain growth, employing a large 
set of independent order parameters governed by the Ginzburg–Landau equations to describe various grain orientations. At the 
same time, a pioneering contribution established the multiphase-field method (Steinbach & Pezzolla, 1999; Steinbach et al., 1996). 
In this formulation, the sum-to-unity constraint was imposed on the phase fields, thereby giving their values a possible physical 
interpretation as volume fractions at any point in the domain. The first paper (Steinbach et al., 1996) extended the standard double-
well potential for multiphase cases, while the subsequent work (Steinbach & Pezzolla, 1999) introduced a multi-obstacle potential, 
the two most common forms of interfacial energy used to this day. The importance of considering triple points and higher-order 
interactions (multiple junctions) was also emphasized, stressing the need for their proper treatment to ensure model consistency.

1.3. Phase-field models for the 𝛽–𝜔 transformation

To the best of our knowledge, there is only a limited number of papers modeling the 𝛽–𝜔 transformation using the phase-field 
method. Notably, there are papers dealing with the Zr-Nb alloy (Tang et al., 2012; Yeddu & Lookman, 2015). One of the objectives 
of these studies was to simulate the experimentally observed ellipsoidal shape of the individual 𝜔 particles, which was achieved by 
incorporating anisotropy in both elasticity and interfacial energy. However, these models suffer from several drawbacks. First, they 
allow direct contact between two 𝜔 variants, which is not physically admissible, as discussed above. And second, supercritical 𝜔
nuclei were randomly distributed at the start of the simulation, which is fine for the study of the particle shape, but not desirable 
for the study of the early formation kinetics. A model for isothermal 𝜔 (i.e., formed by a diffusional mechanism) in Zr-Nb alloy was 
also proposed by Tang et al. (2012), but the direct contact between 𝜔 particles was not completely prevented.

Recently, a phase-field model for the 𝛽–𝜔 transformation in Ti-19V alloy, taking also diffusion into account, has been 
proposed (Gao et al., 2025). Therefore, the model is capable of simulating the evolution of isothermal 𝜔 (formed during annealing). 
The model shows no direct contact between different 𝜔 variants, but only due to the presence of the V-enriched layer between them 
(i.e., the contact is not prevented per se). Again, explicit nucleation was used with seeds that were 12 nm in diameter. Particles of 
this size are well beyond the typical sizes observed for the athermal 𝜔 (< 5 nm), making the model not useful to simulate the early 
stages of 𝜔 formation.

To describe the phase energy landscape, all of the studies mentioned above use the models with Landau-type polynomials. 
The coefficients of the polynomial were determined by fitting the available thermodynamic (CALPHAD) data for the selected 
2 
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temperatures. This model was introduced by Cook (1975) for Zr-Nb system, describing the phase transformation as first-order and 
suggesting that the plane collapse is not complete in equilibrium. However, more recent ab-initio DFT simulations of the Ti-Nb 
system (Ehemann & Wilkins, 2017) suggested that the athermal 𝜔 transformation is rather of a second-order, having no energy 
barrier between 𝛽 and 𝜔, and that the energy minimum is for fully collapsed 𝜔.

1.4. Aim and novelty of the paper

As discussed above, the existing phase-field models are not capable of describing the total-spreading case and thus cannot properly 
model the phenomena relevant, for instance, for the 𝛽–𝜔 transformation in titanium alloys. The aim of this work is thus to develop 
a model that would prevent direct contact between two 𝜔 variants for arbitrarily large driving forces. In this paper, we deliberately 
limit ourselves to the driving forces originating solely from the chemical energy, as this simplified setting suffices to capture the 
main phenomena and to devise the corresponding features of the free energy of the system. Extension to a more complete model 
including elastic interactions and diffusion is the subject of ongoing work and will be published separately.

To achieve the general goal formulated above, we propose two enhancements of the classical multiwell free energy function. We 
modify the algebraic part of the interfacial energy by adding a new ‘‘double-ditch’’ term that effectively prevents formation of mixed 
𝜔–𝜔 states. Secondly, we introduce a chemical energy mixing function, the ‘‘elliptic mixing’’, which preserves the local stability of 
purely two-phase 𝛽–𝜔 configurations, thus preventing undesired appearance of additional phases. The above enhancements are 
accompanied by a detailed discussion of the total-spreading case, an aspect that seems insufficiently recognized to date.

As a side result, we provide a general and simple derivation of the constraints on the gradient part (capillary matrix) of the 
interfacial energy of a constrained system. For the problem at hand, we also show, apparently for the first time, the equivalence of 
the diagonal and off-diagonal forms of the capillary and mobility matrices upon enforcing the sum-to-unity constraint.

The paper is organized as follows. The general variational framework is briefly introduced in Section 2. In Section 3, the classical 
phase-field model is specified, and the governing equations are formulated in the reduced form which exploits the sum-to-unity 
constraint. In Section 4, the condition of evolutionary consistency (EC) is formulated and examined for the reference model, and 
the resulting conditions on the interfacial energy parameters are derived. The chemical energy with the corresponding simple mixing 
function are introduced into the model in Section 5. In Section 6, the total-spreading case is discussed and the free energy is 
augmented with the double-ditch term as a means of separating the 𝜔 variants. In Section 7, the elliptic mixing of chemical energy 
is introduced, which is consistent with the EC condition. A rich set of numerical simulations illustrating the features of the model 
is reported in Section 8. Finally, a discussion of selected aspects and features of the model is provided in Section 9.

1.5. Notation and interpretation remarks

Due to our motivation to model a specific system, we will use the standard nomenclature of Ti alloys. The matrix/parent phase 
will be denoted as 𝛽 and corresponding variables will be indexed either with 𝛽, or with the index 0 (e.g. the phase-field variable 
𝜂0). Analogically, the 𝑖th variant of the precipitate/secondary phases will be denoted as 𝜔𝑖 or indexed by the corresponding index 
(e.g., variable 𝜂𝑖). Despite the convention used in the paper, the problem analysis is valid for many other systems containing multiple 
secondary phases within a single matrix.

2. General setup: variational formulation

We aim to develop a general thermo-mechano-chemically driven phase-field model for the 𝛽–𝜔 phase transformation in titanium 
alloys. To highlight the novel features of the model, in this paper, we focus exclusively on its phase-field component, other aspects, 
like elasticity and diffusion, are not discussed.

To this end, we adopt the general variational framework of standard dissipative solids (Biot, 1965; Halphen & Nguyen, 1975; 
Miehe, 2011; Onsager, 1931; Ziegler, 1963) in a setting adopted for multiphase materials (Chen & Yang, 1994; Steinbach et al., 
1996). We consider a multiphase material that can exist in 𝑁 + 1 distinct phases, each represented by a phase-field variable 𝜂𝑖
playing the role of an order parameter, 

𝜂𝑖 ≥ 0, 𝑖 = 0,… , 𝑁,
𝑁
∑

𝑖=0
𝜂𝑖 = 1. (1)

In the context of the 𝛽–𝜔 transformation, each order parameter 𝜂𝑖 (𝑖 ≥ 1) can be related to the degree of the collapse of the {111} 
planes of the corresponding 𝜔𝑖 variant.

For convenience, we collect all order parameters in a composition vector 𝜼 and introduce the following auxiliary vectors of length 
𝑁 + 1, 

𝜼 = (𝜂0,… , 𝜂𝑁 )T, 𝟏 = (1,… , 1)T, 𝐞𝑖 = (0,… , 0, 1, 0,… , 0)T, (2)

such that 𝟏 =
∑𝑁

𝑖=0 𝐞𝑖.
The evolution of the system is governed by two functionals: the dissipation (pseudo-)potential , which characterizes how the 

system dissipates energy, and the Helmholtz free energy  , which describes how energy is stored in the material. The dissipation 
3 
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potential is a function of the rates 𝜂̇𝑖, while the Helmholtz free energy depends on the 𝜂𝑖’s and their spatial gradients. The evolution 
of each phase is then postulated to follow a gradient flow (also known as a Ginzburg–Landau equation), given by 

𝛿(𝜼̇)
𝛿𝜼̇

+
𝛿 (𝜼)
𝛿𝜼

= 𝟎, (3)

where the symbol 𝛿 denotes the functional (Gâteaux) derivative,
𝛿
𝛿𝜼

= 𝜕𝐹
𝜕𝜼

− ∇ ⋅
𝜕𝐹
𝜕∇𝜼

,  = ∫𝛺
𝐹 (𝜼,∇𝜼) d𝑋, (4)

𝛿
𝛿𝜼̇

= 𝜕𝐷
𝜕𝜼̇

,  = ∫𝛺
𝐷(𝜼̇) d𝑋. (5)

Here, 𝐹  denotes the free energy density, 𝛺 is the domain occupied by the body, and ∇ denotes the spatial gradient so that ∇𝜼 is a 
matrix of dimension 𝑁 × 𝑑 (𝑑 denoting the spatial dimension), i.e., ∇𝜼 = (∇𝜂0,… ,∇𝜂𝑁 )T. Depending on the specific choices of 
and  , one obtains particular forms of the governing equations. We now proceed to outline these model-specific assumptions.

3. Model assumptions and simplifications

In line with standard assumptions in phase-field theory, we assume that each order parameter 𝜂𝑖 is a continuous function of both 
time and spatial coordinates. The Helmholtz free energy is decomposed into a bulk component bulk and an interfacial component 
int , such that 

 = bulk + int . (6)

In this work, the bulk energy bulk is taken to be the chemical free energy chem, although it can be readily extended to include 
additional contributions such as thermal or elastic energy. These contributions collectively determine which phase is energetically 
preferred under given conditions.

3.1. Interfacial energy: general structure

For the interfacial energy int , two classical forms are widely used and accepted within the phase-field modeling community: 
the double-well potential and the double-obstacle potential (Ohno & Matsuura, 2010; Steinbach, 2009). In this work, we adopt the 
double-well potential, primarily for numerical convenience.

In the case of two phases, we have 𝜂1 = 𝜂 and 𝜂0 = 1 − 𝜂 from the sum-to-unity constraint (1)3, and the double-well interfacial 
energy is given by 

int = ∫𝛺
𝐹int (𝜂,∇𝜂) d𝑋, 𝐹int = 𝛾

(

3𝓁
2
|∇𝜂|2 + 6

𝓁
𝜂2(1 − 𝜂)2

)

. (7)

Here, 𝐹int denotes the interfacial energy density (per unit volume), 𝓁 is the interface thickness parameter, and 𝛾 is a material 
parameter characterizing the interfacial energy (per unit area), also called the surface tension. The first term inside the parentheses 
accounts for the gradient energy (assumed here isotropic), while the second (algebraic) term corresponds to the local bulk (or 
potential) energy contribution.

When generalized to 𝑁 + 1 phases, the interfacial energy density (7) is considered in the following multiwell form: 

𝐹int =
𝑁
∑

𝑖=0

(

𝜅𝑖|∇𝜂𝑖|
2 + 𝜀𝑖𝜂

2
𝑖 (1 − 𝜂𝑖)2

)

= ∇𝜼 ⋅H∇𝜼 + 𝐹 alg
int (𝜼), (8)

where H is the capillary matrix, H = diag(𝜅0,… , 𝜅𝑁 ), and 𝐹 alg
int  denotes the algebraic part of the interfacial energy, 𝐹

alg
int =

∑𝑁
𝑖=0 𝜀𝑖𝜂

2
𝑖 (1− 𝜂𝑖)2. The symbol ⋅ represents the full contraction of two tensors resulting in a scalar.1 The above form of the interfacial 

energy, although not the most general (as it represents a diagonal closure), possesses several desirable properties. Most notably, it 
reduces transparently to the standard two-phase formulation for any purely two-phase state. We refer to this property as:
Algebraic Consistency (AC). (also referred to as the ‘‘P1’’ condition by Boyer and Lapuerta (2006)): The interfacial energy function 
𝐹int (𝜼,∇𝜼) reduces to the two-phase expression (7) for any composition vector of the form

𝜼 = 𝜂𝑖𝐞𝑖 + (1 − 𝜂𝑖)𝐞𝑗 , ∇𝜼 = ∇𝜂𝑖(𝐞𝑖 − 𝐞𝑗 ), 0 ≤ 𝑖 ≠ 𝑗 ≤ 𝑁, 𝜂𝑖 ∈ (0, 1),

with appropriately chosen parameters 𝓁 and 𝛾.
This property allows the parameters 𝜅𝑖 and 𝜀𝑖 to be directly interpreted in terms of the physical surface tensions 𝛾𝑖𝑗 and diffuse 

interface thicknesses 𝓁𝑖𝑗 between phase pairs 𝑖 and 𝑗.2

1 Two matrices ∇𝜶,∇𝜷 are contracted in the following way

∇𝜶 ⋅ ∇𝜷 =
𝑑
∑

𝑗=1

𝑁
∑

𝑖=0

𝜕𝛼𝑖
𝜕𝑥𝑗

𝜕𝛽𝑖
𝜕𝑥𝑗

, i.e. ∇𝜼 ⋅H∇𝜼 =
𝑑
∑

𝑘=1

𝑁
∑

𝑚=0

𝑁
∑

𝑛=0
H𝑚𝑛

𝜕𝜂𝑚
𝜕𝑥𝑘

𝜕𝜂𝑛
𝜕𝑥𝑘

.
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In line with the specific application under consideration, we further assume that only two types of interfaces are present in 
our system: 𝛽–𝜔𝑖 interfaces and 𝜔𝑖–𝜔𝑗 interfaces, characterized by the surface tensions 𝛾𝛽𝜔 and 𝛾𝜔𝜔, and corresponding interface 
thicknesses 𝓁𝛽𝜔 and 𝓁𝜔𝜔, respectively. As discussed in the Introduction, the direct 𝜔𝑖–𝜔𝑗 interfaces are in fact not allowed, and the 
model will be modified to meet this requirement.

3.1.1. Identification of 𝜅𝑖 and 𝜀𝑖
We now provide an explicit identification of the parameters 𝜅𝑖 and 𝜀𝑖 in terms of interfacial surface tensions and diffuse interface 

thicknesses. This is done by inspecting the expression (8) for purely two-phase states (for each pairwise interaction), and comparing 
it with the standard two-phase form (7).

For clarity, we first illustrate the procedure in the three-phase case (i.e., 𝑁 = 2 in Eq. (8)):

• Consider a mixed two-phase state involving 𝛽 and 𝜔1. Set 𝜂2 = 0 and define 𝜂0 = 1 − 𝜂1. Substituting into (8) yields:
𝐹int = (𝜅0 + 𝜅1)|∇𝜂1|

2 + (𝜀0 + 𝜀1)𝜂21 (1 − 𝜂1)2.

By comparing with the standard two-phase form: 

𝐹int = 𝛾𝛽𝜔

(3𝓁𝛽𝜔
2

|∇𝜂1|
2 + 6

𝓁𝛽𝜔
𝜂21 (1 − 𝜂1)2

)

, (9)

we obtain the relations:

𝜅0 + 𝜅1 =
3𝛾𝛽𝜔𝓁𝛽𝜔

2
, 𝜀0 + 𝜀1 =

6𝛾𝛽𝜔
𝓁𝛽𝜔

.

• Similarly, for a 𝛽–𝜔2 mixture, setting 𝜂1 = 0 and 𝜂0 = 1 − 𝜂2 gives:

𝜅0 + 𝜅2 =
3𝛾𝛽𝜔𝓁𝛽𝜔

2
, 𝜀0 + 𝜀2 =

6𝛾𝛽𝜔
𝓁𝛽𝜔

.

• For the 𝜔1–𝜔2 interface, we fix 𝜂0 = 0 and define 𝜂2 = 1 − 𝜂1, which yields:

𝜅1 + 𝜅2 =
3𝛾𝜔𝜔𝓁𝜔𝜔

2
, 𝜀1 + 𝜀2 =

6𝛾𝜔𝜔
𝓁𝜔𝜔

.

This results in a linear system of six equations in six unknowns (𝜅0, 𝜅1, 𝜅2, 𝜀0, 𝜀1, 𝜀2) with a unique solution. This procedure 
generalizes straightforwardly to the case of 𝑁 + 1 phases (𝛽, 𝜔1, … , 𝜔𝑁 ), and under the same modeling assumptions yields the 
unique solution: 

𝜅𝛽 = 𝜅0 =
3
4
(2𝓁𝛽𝜔𝛾𝛽𝜔 − 𝓁𝜔𝜔𝛾𝜔𝜔), 𝜅𝜔 = 𝜅1 = ⋯ = 𝜅𝑁 = 3

4
𝓁𝜔𝜔𝛾𝜔𝜔, (10)

𝜀𝛽 = 𝜀0 = 3
(2𝛾𝛽𝜔

𝓁𝛽𝜔
−

𝛾𝜔𝜔
𝓁𝜔𝜔

)

, 𝜀𝜔 = 𝜀1 = ⋯ = 𝜀𝑁 = 3
𝛾𝜔𝜔
𝓁𝜔𝜔

, (11)

with a new notation (𝜅𝛽 , 𝜅𝜔, 𝜀𝛽 , 𝜀𝜔) introduced for the parameters 𝜅𝑖 and 𝜀𝑖.

3.2. Dissipation potential

We consider a particularly simple form of the dissipation potential, given in a diagonal form: 

 = ∫𝛺
𝐷(𝜼̇) d𝑋, 𝐷 =

𝑁
∑

𝑖=0

𝜂̇2𝑖
2𝑚𝑖

= 1
2
𝜼̇ ⋅M 𝜼̇, (12)

where 𝑚𝑖 > 0 denotes the mobility parameter associated with phase 𝑖, and M is the mobility matrix, M = diag(1∕𝑚0,… , 1∕𝑚𝑁 ). 
Referring to the special case considered here – with 𝑁 equivalent 𝜔 variants – effectively there are two, possibly distinct mobility 
parameters 𝑚𝛽 and 𝑚𝜔, such that 𝑚0 = 𝑚𝛽 and 𝑚𝑖 = 𝑚𝜔 for 𝑖 = 1,… , 𝑁 .

As with the gradient part of the energy functional, it is shown in Appendix  A that, upon enforcing the sum-to-unity constraint (1)3, 
the general form of the dissipation potential with non-diagonal terms in the mobility matrix M is equivalent to the simple diagonal 
form in Eq. (12).

2 We note that, for a more general ansatz
𝐹int =

∑

0≤𝑖<𝑗≤𝑁

(

𝜅𝑖𝑗∇𝜂𝑖 ⋅ ∇𝜂𝑗 + 𝜀𝑖𝑗𝜂
2
𝑖 𝜂

2
𝑗

)

,

which includes off-diagonal terms both in the algebraic and gradient parts of energy, it is shown in Appendix A that, in the setting of our model, the gradient 
part is, in fact, equivalent to the chosen diagonal form. On the other hand, the off-diagonal form of the algebraic part of the energy was rejected by Boyer and 
Lapuerta (2006) as being incompatible with the assumptions of algebraic and dynamic (evolutionary) consistency.
5 
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3.3. Ensuring the sum-to-unity constraint: reduced dissipation and energy functionals

Having defined the energy functional (8) and the dissipation potential (12), we must ensure that the constraint ∑𝑁
𝑖=0 𝜂𝑖 = 1, see 

Eq. (1)3, is preserved by the evolution Eq. (3). There are at least two standard approaches to enforce this condition. The first is to
directly use the constraint to eliminate one of the 𝜂𝑖 variables. The second is to impose the constraint using a Lagrange multiplier method. 
In this work, we adopt the former approach; however, it can be shown that the alternative method using a Lagrange multiplier leads 
to an equivalent evolution. The main advantage of the elimination method is a reduction in the number of variables. Its primary 
drawback is the loss of the diagonal structure of the dissipation and energy functionals.

By expressing the order parameter of phase 0 via the sum-to-unity constraint as 𝜂0 = 1 −
∑𝑁

𝑖=1 𝜂𝑖, and substituting this into the 
energy and dissipation functionals (8) and (12), we obtain the following reduced-form expressions: 

𝐷̂( ̇̂𝜼) = 1
2
̇̂𝜼 ⋅ M̂ ̇̂𝜼, 𝐹int (𝜼̂,∇𝜼̂) = ∇𝜼̂ ⋅ Ĥ∇𝜼̂ + 𝐹 alg

int (𝜼̂), (13)

where we have introduced the reduced (condensed) vector of order parameters, 𝜼̂, along with the corresponding auxiliary vectors 
𝟏̂ and 𝐞̂𝑖, now of the length 𝑁 , cf. Eq. (2), 

𝜼̂ = (𝜂1,… , 𝜂𝑁 )T, 𝟏̂ = (1,… , 1)T, 𝐞̂𝑖 = (0,… , 0, 1, 0,… , 0)T. (14)

The reduced mobility and capillary matrices have the following form, 
M̂ = 𝑚−1

𝜔 Î + 𝑚−1
𝛽 𝟏̂⊗ 𝟏̂, Ĥ = 𝜅𝜔 Î + 𝜅𝛽 𝟏̂⊗ 𝟏̂, (15)

where Î = diag(𝟏̂) is a 𝑁 ×𝑁 unit matrix, and 𝟏̂⊗ 𝟏̂ is a 𝑁 ×𝑁 matrix with all components equal to one. The reduced form of the 
algebraic part of the interfacial energy, 𝐹 alg

int , is obtained simply by substituting 𝜼 = 𝜼(𝜼̂) in the corresponding term in Eq. (8), thus 
𝐹 alg
int (𝜼̂) = 𝐹 alg

int (𝜼(𝜼̂)).
The evolution of 𝜼̂ is governed by the reduced evolution equation: 

𝛿̂( ̇̂𝜼)
𝛿 ̇̂𝜼

+
𝛿̂ (𝜼̂)
𝛿𝜼̂

= 𝟎, (16)

where the reduced functionals ̂ and ̂ are the volume integrals of the local potentials 𝐹  and 𝐷̂, in analogy to Eqs. (7) and (12).

3.4. Structural requirements on the energy and dissipation functionals

We now impose the structural constraints that the reduced functionals ̂ and ̂ must satisfy. Specifically, we assert the following:

• The reduced dissipation matrix M̂ must be positive semidefinite in order to comply with the second law of thermodynamics. 
Indeed, the dissipation rate 𝜉 on the manifold ∑𝑁

𝑖=0 𝜂𝑖 = 1 is given by

𝜉 =
𝑁
∑

𝑖=1

𝜕𝐷̂
𝜕𝜂̇𝑖

𝜂̇𝑖 = ̇̂𝜼 ⋅ M̂ ̇̂𝜼,

so the non-negativity of 𝜉 for arbitrary processes, as required by the second law, is equivalent to the positive semidefiniteness 
of M̂.3

• Similarly, the capillary matrix Ĥ must be positive definite. Negative eigenvalues would allow the total energy to decrease 
indefinitely through appropriately tailored interfaces, a scenario that is not physically admissible. Zero eigenvalues would 
imply that certain gradient directions contribute no energy, so variations along those directions would not be penalized. This 
would prevent control over the interface structure. Positive definiteness ensures that the energy is bounded from below and 
that all gradient contributions are properly controlled, see also (Boyer & Lapuerta, 2006). This condition is further discussed 
later.

3.5. Governing equations

The reduced Ginzburg–Landau evolution equation (16) can now be recast in the following form 

M̂ ̇̂𝜼 = Ĥ𝛥𝜼̂ + 𝐟 (𝜼̂), 𝐟 (𝜼̂) = − 𝜕𝐹
𝜕𝜼̂

= 𝐟chem(𝜼̂) + 𝐟int(𝜼̂), (17)

where 𝛥 denotes the Laplacian operator, the chemical driving force 𝐟chem = −𝜕𝐹chem∕𝜕𝜼̂ is now left unspecified, and the driving force 
corresponding to the algebraic part of the double-well interfacial energy (8) reads 

𝐟int(𝜼̂) = −
𝜕𝐹 algint
𝜕𝜼̂

= 2𝜀𝛽𝜂0(1 − 𝜂0)(1 − 2𝜂0)
|

|

|𝜂0=1−
∑𝑁

𝑖=1 𝜂𝑖
𝟏̂ −

𝑁
∑

𝑖=1
2𝜀𝜔𝜂𝑖(1 − 𝜂𝑖)(1 − 2𝜂𝑖)𝐞̂𝑖. (18)

3 This is guaranteed for 𝑚 > 0 and 𝑚 > 0, but also for a somewhat non-intuitive case of 𝑚 > 0 and 𝑚 ≤ −𝑁𝑚 .
𝜔 𝛽 𝜔 𝛽 𝜔
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Multiplying Eq. (17) by M̂−1 from the left yields 
̇̂𝜼 = M̂−1Ĥ𝛥𝜼̂ + M̂−1𝐟 (𝜼̂), (19)

a preferable and insightful form of the evolutionary system that allows us to impose an additional important requirement on our 
model, the evolutionary consistency of two-phase states.

4. Requirement of evolutionary consistency of the two-phase states

In this section, we first consider a special case when the chemical driving force vanishes, 𝐟chem = 𝟎, so that 𝐟 = 𝐟int . Accordingly, 
the evolution is driven solely by the interfacial energy. As the next step, the chemical driving force is considered in Section 5.

In addition to the AC requirement (consistency with two-phase systems), it is natural to impose its dynamic counterpart—referred 
to as the ‘‘P2’’ requirement by Boyer and Lapuerta (2006). Specifically, it is reasonable to assume that if a certain phase is absent 
initially, it should not spontaneously appear in the absence of external thermal, mechanical, or chemical forcing.

In the context of multi-phase systems, this leads to a complex set of constraints. Therefore, for the purposes of this study, we 
adopt a simplified (weaker) version of this assumption, formulated specifically for arbitrary two-phase mixed states:
Evolutionary Consistency (EC). If the multi-phase system reduces (locally) to a purely two-phase mixed state, none of the absent phases 
should emerge spontaneously, i.e., without additional thermodynamic driving.

This requirement pertains strictly to the interfacial contribution of the free energy; the ‘‘absence of external forcing’’ refers to 
the absence of energetic preference for specific phases by the bulk part of the energy. It is important to note that this dynamical 
condition thus does not apply under arbitrary thermodynamic forcing. For instance, elastic interactions may introduce an additional 
driving force if the stress fields of a newly nucleated variant partially compensate existing ones. In such cases, EC may no longer 
hold, and an initially two-phase system may evolve into a more complex multi-phase configuration.

On the other hand, in the context of our 𝛽–𝜔 system, as the 𝜔 variants are chemically equivalent, the persistence of EC under 
purely chemical forcing will guide us in constructing a suitable chemical mixing term in Section 7.

4.1. Characterization and implications of the EC condition

Let us provide an explicit characterization of the EC condition in the setting of our model. The evolution equations for the reduced 
set of phase variables are given by Eq. (19). To evaluate whether the EC condition is satisfied, we first consider the two-component 
𝛽–𝜔 states, i.e., the case where 𝜂𝑘 ≠ 0, 𝜂0 = 1 − 𝜂𝑘, while all other variants of 𝜔 are set to zero, i.e., 𝜼̂ = 𝜂𝑘𝐞̂𝑘. The EC condition is 
satisfied if only the 𝑘th 𝜔 variant remains present and all other variants remain absent, i.e., if (see Eq. (19)) 

𝛥𝜂𝑘 M̂−1Ĥ 𝐞̂𝑘 + M̂−1𝐟int (𝜂𝑘𝐞̂𝑘) ∼ 𝐞̂𝑘, 𝑘 = 1,… , 𝑁. (20)

Recall that 𝐟 = 𝐟int . Since the first term involves spatial derivatives of the field 𝜂𝑘, while the other is purely algebraic, it must hold 
separately:

M̂−1Ĥ 𝐞̂𝑘 ∼ 𝐞̂𝑘, (21)

M̂−1𝐟int (𝜂𝑘𝐞̂𝑘) ∼ 𝐞̂𝑘, (22)

for 𝑘 = 1,… , 𝑁 . Alternatively, for the two-component 𝜔–𝜔 states, i.e., for composition vector 𝜼̂ = 𝜂𝑘𝐞̂𝑘 + (1 − 𝜂𝑘)𝐞̂𝑙 (𝑙 ≠ 𝑘), the EC 
condition asserts that 

𝛥𝜂𝑘 M̂−1Ĥ (𝐞̂𝑘 − 𝐞̂𝑙) + M̂−1𝐟int
(

𝜂𝑘𝐞̂𝑘 + (1−𝜂𝑘)𝐞̂𝑙
)

∼ 𝐞̂𝑘 − 𝐞̂𝑙 , 𝑘, 𝑙 = 1,… , 𝑁 (𝑘 ≠ 𝑙) . (23)

As in the previous case, this implies two conditions:
M̂−1Ĥ (𝐞̂𝑘 − 𝐞̂𝑙) ∼ 𝐞̂𝑘 − 𝐞̂𝑙 , (24)

M̂−1𝐟int (𝜂𝑘𝐞̂𝑘 + (1−𝜂𝑘)𝐞̂𝑙) ∼ 𝐞̂𝑘 − 𝐞̂𝑙 . (25)

While condition (24) follows from condition (21), the second condition (25) must be verified separately. Let us now inspect in detail 
the implications of all these requirements.

4.2. EC implication for the choice of mobilities

The first condition (21) implies that 
Ĥ = diag(𝑀1

𝜅 ,… ,𝑀𝑁
𝜅 ) M̂. (26)

The special structure of Ĥ and M̂ given in Eq. (15) moreover implies that all 𝑀 𝑖
𝜅 must be equal. Consequently, consistency with 

two-phase systems requires the relation 
Ĥ = 𝑀 M̂, (27)
𝜅

7 
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for some positive (to ensure positive definiteness) scalar 𝑀𝜅 . This is a surprising requirement because it states that the matrix of 
mobilities M̂, characterizing the dissipation potential, must be linked to the matrix of energetic capillary coefficients Ĥ. Let us 
note that exactly this requirement has been introduced by Boyer and Lapuerta (2006) as a special choice of mobilities that allows 
enforcement of the sum-to-unity constraint in a three-phase Cahn–Hilliard model via a purely algebraic Lagrange multiplier.

This is not physically justifiable in general, however, in our specific setting, Eq. (27) is equivalent to (see Eq. (15)) 
𝑚𝛽 = 𝑀𝜅𝜅

−1
𝛽 , 𝑚𝜔 = 𝑀𝜅𝜅

−1
𝜔 , (28)

and we argue in the Discussion Section 9 that such a condition is not restrictive as it leaves enough freedom for an arbitrary choice 
of the so-called effective mobility of the 𝛽–𝜔 interfaces.

4.3. EC implications for the energy coefficients

Let us inspect the second condition (22). We need an explicit expression for the inverse matrix M̂−1 = 𝑀𝜅Ĥ−1. As the matrix Ĥ
is a rank-one perturbation of a diagonal matrix, it can be easily inverted using the Sherman–Morrison formula as follows 

Ĥ−1 = 1
𝜅𝜔

Î − 1
𝜅𝜔(𝑁 + 𝜅𝜔∕𝜅𝛽 )

𝟏̂⊗ 𝟏̂. (29)

Since 
𝐟 (𝜂𝑘𝐞̂𝑘) = −2𝜂𝑘(1 − 𝜂𝑘)(1 − 2𝜂𝑘)

(

𝜀𝛽 𝟏̂ + 𝜀𝜔𝐞̂𝑘
)

, (30)

it suffices to evaluate 

M̂−1
(

𝜀𝛽 𝟏̂ + 𝜀𝜔𝐞̂𝑘
)

= 𝑀𝜅
𝜀𝜔
𝜅𝜔

𝐞̂𝑘 +
𝑀𝜅

𝑁 + 𝜅𝜔∕𝜅𝛽

( 𝜀𝛽
𝜅𝛽

−
𝜀𝜔
𝜅𝜔

)

𝟏̂. (31)

In order for the last term to be proportional to 𝐞̂𝑘 as desired, and for this condition to be satisfied for an arbitrary 𝛽–𝜔𝑘 pair, it must 
hold 

𝜀𝛽
𝜅𝛽

−
𝜀𝜔
𝜅𝜔

= 0. (32)

Upon using relations between 𝜀𝑖, 𝜅𝑖 and 𝓁𝛽𝜔,𝓁𝜔𝜔, 𝛾𝛽𝜔, 𝛾𝜔𝜔, Eq. (11), we get that the EC condition for the 𝛽–𝜔 states is satisfied only 
if the thickness parameters are the same, i.e., 

𝓁𝛽𝜔 = 𝓁𝜔𝜔. (33)

This requirement of equality of interfacial thicknesses is another unexpected implication of the evolutionary consistency condition, 
and its consequences are investigated in the following section.

Before doing so, let us verify that condition (25) for the two-component 𝜔–𝜔 states is satisfied for the considered energy functional 
(8). Since it holds 

𝐟 (𝜂𝑘𝐞̂𝑘 + (1−𝜂𝑘)𝐞̂𝑙) = −2𝜀𝜔𝜂𝑘(1 − 𝜂𝑘)(1 − 2𝜂𝑘)(𝐞̂𝑘 − 𝐞̂𝑙), (34)

it suffices to observe that 
M̂−1 (𝐞̂𝑘 − 𝐞̂𝑙

)

= 𝑀𝜅𝜅
−1
𝜔 (𝐞̂𝑘 − 𝐞̂𝑙) , (35)

implying that Eq. (25) holds.

4.4. Implication: inequality constraint on interfacial energies

The requirement of equality of interfacial thicknesses (33) translates via the assumption of positive definiteness of the reduced 
capillary matrix Ĥ into a certain algebraic inequality constraint on the values of interfacial energies. In particular, it is demonstrated 
in Appendix  B, that matrix Ĥ given by Eq. (15)2, with 𝜅𝛽 and 𝜅𝜔 satisfying Eq. (10) is positive definite if and only if the following 
relation between the interfacial energies holds 

𝛾𝜔𝜔 < 2𝑁
𝑁 − 1

𝛾𝛽𝜔. (36)

For 𝑁 = 2, this condition yields 𝛾𝜔𝜔 < 4𝛾𝛽𝜔, equivalent in our setting to the condition articulated by Boyer and Lapuerta (2006) 
(Eq. (11) therein). For 𝑁 = 4 (the case of our primary interest), condition (36) gives 𝛾𝜔𝜔 < 8

3 𝛾𝛽𝜔. This implies that the interfacial 
energy between two 𝜔 variants can be at most 8/3 times larger than the interfacial energy between the 𝛽 phase and a single variant 
of 𝜔. For further details, see Appendix  B.

The consequences of the above inequalities are serious in cases when either physical setting or numerical reasoning requires to 
strongly penalize energetically the emergence of 𝜔–𝜔 interfaces, i.e., in cases, when it is desirable to make 𝛾𝜔𝜔 very large compared 
to 𝛾𝛽𝜔 energies. From a physical point of view, this situation is relevant in the so-called total spreading situation, when one of the 
coefficients 𝜅  in Eq. (8), see also Eq. (10), is negative (in our particular case, this concerns 𝜅 = 𝜅 , see Section 6).
𝑖 0 𝛽
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5. Chemical energy

Up to this point, the model has accounted solely for the interfacial energy. However, in many cases, including in titanium alloys 
exhibiting the parental phase 𝛽 and four variants of the 𝜔 phase, phase stability is influenced by both temperature and the local 
concentration of molybdenum. Under appropriate conditions, certain phases may become energetically favorable, introducing a 
chemical driving force that promotes their formation. It is important to note that all four 𝜔 variants are chemically equivalent, and 
thus the chemical free energy does not distinguish between them.

Generally, the chemical energy of the system is given by 

chem = ∫𝛺
𝐹chem d𝑋, 𝐹chem = ℎmix𝛥𝐺, (37)

where the chemical energy density 𝐹chem is given by the Gibbs energy difference between the two pure phases 𝛥𝐺 = 𝐺𝜔 − 𝐺𝛽 and 
by a suitable mixing function ℎmix, ensuring smooth interpolation between them. We assume here that 𝛥𝐺 is spatially homogeneous 
and constant in time, which is sufficient for the purpose of this work. In a more general setting, this assumption can be relaxed.

5.1. Two-phase system

In the case of two phases (one 𝜔 variant and the 𝛽 phase), the system is described by a single order parameter 𝜂1, with 
𝜂0 = 1− 𝜂1 due to the sum-to-unity constraint. The chemical mixing is modeled using a smooth interpolation function 𝜑(𝜂1), defined 
as (see (Wang et al., 1993)): 

𝜑(𝜂1) =

⎧

⎪

⎨

⎪

⎩

0 𝜂1 < 0,
3𝜂21 − 2𝜂31 𝜂1 ∈ [0, 1],
1 𝜂1 > 1,

(38)

This cubic polynomial satisfies 𝜑(0) = 0 in the pure 𝛽 phase and 𝜑(1) = 1 in the pure 𝜔 phase, with zero derivatives at both ends. 
As a result, the chemical driving force vanishes in the pure phases, ensuring local equilibrium. The capping outside [0, 1] prevents 
unphysical energy contributions. Alternative interpolation functions with similar properties, such as 𝜑(𝜂1) = 𝜂31 (6𝜂

2
1 − 15𝜂1 + 10), can 

also be used (Moelans et al., 2008).
Finally, the function is symmetric with respect to the two phases: 

𝜑(𝜂1) = 𝜑(1 − 𝜂0) = 1 − 𝜑(𝜂0), (39)

reflecting their equivalent roles in the two-phase system. Thus, the chemical energy reads 

𝐹 (2)
chem = ℎ(2)mix𝛥𝐺, ℎ(2)mix = 𝜑(𝜂1), (40)

with the superscript ‘‘(2)’’ indicating the two-phase system.

5.2. (𝑁+1)-phase system

Although the chemical energy 𝐹 (2)
chem was originally designed for two-phase systems, its structure can be naturally extended to 

model multi-variant systems consisting of a parent 𝛽 phase and 𝑁 chemically equivalent 𝜔 variants. In this setting, the order 
parameter 𝜂0 represents the 𝛽 phase, while 𝜂1,… , 𝜂𝑁  describe the individual 𝜔 variants. All order parameters are subject to the 
standard sum-to-unity constraint.

Crucially, the 𝜔 variants are assumed to be chemically equivalent. Accordingly, the chemical energy should depend only on the 
total amount of the 𝜔 phase and not on the particular variant. This assumption must be reflected in the structure of the mixing 
function, which treats all 𝜔 variants symmetrically.

Consider thus the chemical energy and the corresponding mixing function for the (𝑁+1)-phase model in the following form, 

𝐹 (𝑁+1)
chem = 𝛥𝐺ℎ(𝑁+1)

mix , ℎ(𝑁+1)
mix = 1 − 𝜑(𝜂0). (41)

This mixing function vanishes in the pure 𝛽 phase (𝜂0 = 1) and equals one in any pure (or mixed) 𝜔 configuration (𝜂0 = 0). It 
does not distinguish between individual 𝜔 variants, which is appropriate given their chemical equivalence. It satisfies the algebraic 
consistency trivially, however, this formulation does not satisfy the evolutionary consistency (EC) condition, a point that will be 
discussed in detail in Section 7.

Before introducing a chemical energy that fulfills the EC condition, it is instructive to explore how the phase behavior changes 
when the chemical driving force becomes dominant. In particular, we investigate the competition between chemical and interfacial 
energies in the so-called total spreading case, where the system energetically favors separation of distinct 𝜔 variants by an intervening 
𝛽 phase. This regime highlights the limitations of standard mixing approaches and motivates the development of a more consistent 
formulation, especially when 𝛥𝐺 < 0.
9 
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Fig. 1. The influence of chemical energy forcing on the multiwell potential in the reference total-spreading regime. The magenta lines indicate 
approximate least-energy paths between the two 𝜔 states. (a) For 𝛥𝐺 = 0, the lowest-energy configuration is represented by the two-phase states 
𝜔1–𝛽 and 𝜔2–𝛽. (b) For 𝛥𝐺 = −0.007GPa, the energetically preferred path traverses the central region of the simplex, allowing for a mixed 
three-phase 𝜔1–𝛽–𝜔2 state. (c) For an even larger chemical driving force, 𝛥𝐺 = −0.02GPa, the nearly direct 𝜔1–𝜔2 path becomes energetically 
favored, despite being non-physical. In all cases, the chemical energy (41) has been used. Here and henceforth, the units of 𝛾𝛽𝜔, 𝛾𝜔𝜔, 𝛥𝐺 are 
J/m2, J/m2, GPa, see (42).

6. Total spreading case

In this paper, we aim to develop a model capable of describing a material in which two different variants of the 𝜔 phase cannot 
coexist directly; they must always be separated by a 𝛽 phase. This situation is commonly referred to as the total-spreading case. It 
arises when the interfacial energy between the 𝛽 phase and any variant of 𝜔 is at least twice as small as the interfacial energy 
between two 𝜔 variants, making it energetically favorable to insert a 𝛽 phase between them (i.e., to form two 𝛽–𝜔 interfaces). 
However, this characterization of the total spreading case holds only in the absence of other driving forces, such as chemical ones.

In the following, we include the chemical contribution, focusing on the regime that favors the precipitation of 𝜔 phases, 
i.e., where the chemical energy difference 𝛥𝐺 = 𝐺𝜔 − 𝐺𝛽 is non-positive. Within this regime, we distinguish between the case 
where the chemical driving force is absent (𝛥𝐺 = 0) and the case where it is present (𝛥𝐺 < 0).

From now on, we employ ternary plots of the energy landscape (algebraic part of the free energy, here, corresponding to 𝑁 = 2) 
to illustrate the key features of the model (Fig.  1). The top vertex of the triangle corresponds to the pure 𝛽 phase, while the two lower 
corners represent the two variants of the 𝜔 phase. The physically admissible simplex (𝜂𝑖 ∈ [0, 1]) is outlined with a thick black line. 
Ternary plots are chosen for their simplicity—in the actual case of 𝑁 = 4, the corresponding topology is a 5-cell, a four-dimensional 
object that is difficult to visualize.

In the following illustrative examples, the material parameters (𝛾𝛽𝜔, 𝛥𝐺, 𝓁𝛽𝜔) take realistic values for the 𝛽–𝜔 transition in Ti 
alloys, as specified in Section 8. Units, if omitted, are 

[𝓁𝛽𝜔] = [𝓁𝜔𝜔] = nm, [𝛥𝐺] = [𝜆] = nN∕nm2 = J∕mm3 = GPa, [𝛾𝛽𝜔] = [𝛾𝜔𝜔] = nN∕nm = J∕m2. (42)

The case 𝛥𝐺 = 0 (no chemical driving force) is shown in Fig.  1a, where total spreading is ensured by a sufficiently high energy 
barrier between 𝜔1 and 𝜔2 (𝛾𝜔𝜔 > 2𝛾𝛽𝜔). In this case, the least-energy path in the energy landscape between the two 𝜔 variants 
avoids the 𝜔–𝜔 edge and instead passes through the 𝛽 phase, as indicated by the magenta line. This suggests that the energetically 
favorable configuration begins in one of the 𝜔 variants, transitions through a mixed 𝛽–𝜔 state into a pure 𝛽 configuration, and then 
proceeds to form the other 𝜔 phase through a 𝛽–𝜔 mixed state, eventually reaching the pure second variant of 𝜔.

The least-energy paths serve as rough approximations – neglecting the gradient (capillary) contribution to the energy – of 
the composition profile (expressed in terms of the order parameters) across a hypothetical 𝜔1–𝜔2 interface. In reality, the full 
transformation from 𝜔1 to 𝛽 should occur first, followed by the conversion from 𝛽 to 𝜔2. In the standard model, this behavior 
is observed only in the absence of chemical energy, 𝛥𝐺 = 0, see Fig.  1a.

When a negative chemical energy difference is introduced (Fig.  1b), the energy of the two 𝜔 vertices decreases, and the least-
energy path traverses a saddle point within the interior of the triangle. This point corresponds to a ternary state of 𝜔1–𝛽–𝜔2
coexistence, which we want to rule out as crystallographically inadmissible.

For even lower values of 𝛥𝐺 (Fig.  1c), with the least-energy path becoming the 𝜔–𝜔 edge, a direct 𝜔1–𝜔2 interface forms 
(physically inadmissible), as the chemical energy contribution outweighs the interfacial energy cost. Note that 𝛥𝐺 ≈ −0.02GPa 
is a typical value for the 𝛽–𝜔 transformation at room temperature (Yan & Olson, 2016).

Based on this insight, one can argue that the most natural way to enforce the total-spreading situation would be to sufficiently 
increase 𝛾𝜔𝜔 to counteract the possible chemical energy forcing. However, this eventually conflicts with the positive definiteness 
condition (36) and therefore is not an admissible strategy for strongly negative 𝛥𝐺. To overcome this limitation, a different approach 
is proposed in the next section.
10 
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6.1. Double-ditch model

We propose a modification of the model that is capable of describing the total spreading case, by augmenting suitably the 
algebraic part of the free energy analogously to (Boyer & Lapuerta, 2006). In our case, the idea is to relax the EC condition in the 
following sense: we still require it to hold for 𝛽–𝜔 mixed states (interfaces), but we relax – even explicitly violate – it for the 𝜔–𝜔
interfaces. Consequently, if an 𝜔–𝜔 mixed state is taken as an initial condition, the 𝛽 phase will spontaneously appear, separating the 
𝜔 variants. All this is achieved by augmenting the algebraic part of the energy functional with what we nickname a ‘‘double-ditch’’ 
term, in the following manner: 

𝐹 ∗
int =

𝑁
∑

𝑖=0

(

𝜅𝑖|∇𝜂𝑖|
2 + 𝜀𝑖𝜂

2
𝑖 (1 − 𝜂𝑖)2

)

+ 𝜆
∑

1≤𝑖<𝑗≤𝑁
𝜂2𝑖 𝜂

2
𝑗

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
double ditch

. (43)

Here, 𝜆 > 0 is a coefficient that determines the magnitude of the double-ditch augmentation.
Note that the double-ditch augmentation in Eq. (43) extends the original diagonal form of the algebraic part of the interfacial 

energy (8) with the off-diagonal terms (see Footnote 2), though added here in a selective manner, i.e., only for the 𝜔–𝜔 pairs 
(𝑖, 𝑗 ≥ 1).

The double-ditch term clearly does not affect the two-phase 𝛽–𝜔 states, as it vanishes for these configurations. For all other 
states, it is positive and acts as an additional energetic barrier with maxima along the 𝜔–𝜔 interfaces, thereby shifting the energetic 
preference toward configurations that include an intermediate 𝛽 phase.

Let us now investigate the impact of double-ditch augmentation of the energy functional on the fulfillment of the EC condition. 
Let us calculate an algebraic part of the thermodynamic driving force (see Eq. (17)) corresponding to energy (43)

𝐟∗int(𝜼̂) = −
𝜕𝐹 ∗alg

int
𝜕𝜼̂

= 𝐟int(𝜼̂) − 2𝜆
𝑁
∑

𝑖=1
𝜂𝑖𝐞̂𝑖

( 𝑁
∑

𝑗=1,𝑗≠𝑖
𝜂2𝑗

)

, (44)

with 𝐟int(𝜼̂) given by Eq. (18). Since the gradient part of the free energy is unaffected by the augmentation, EC conditions (21) and 
(24) remain satisfied. Concerning analogues of conditions (22) and (25), we obtain by direct calculation:

𝐟∗(𝜂𝑘𝐞̂𝑘) = 𝐟 (𝜂𝑘𝐞̂𝑘), (45)

𝐟∗(𝜂𝑘𝐞̂𝑘 + (1−𝜂𝑘)𝐞̂𝑙) = 𝐟 (𝜂𝑘𝐞̂𝑘 + (1−𝜂𝑘)𝐞̂𝑙) − 2𝜆𝜂𝑘(1−𝜂𝑘)(𝐞̂𝑘 − 𝜂𝑘(𝐞̂𝑘 − 𝐞̂𝑙)). (46)

Consequently, the EC condition for the 𝛽–𝜔 states remains valid for the augmented energy functional, since (under the same 
conditions (33)) we get 

M̂−1𝐟∗int (𝜂𝑘𝐞̂𝑘) ∼ 𝐞̂𝑘. (47)

But the EC condition for the 𝜔–𝜔 states becomes now violated since Eq. (46) implies 
M̂−1𝐟∗int (𝜂𝑘𝐞̂𝑘 + (1−𝜂𝑘)𝐞̂𝑙) ≁ 𝐞̂𝑘 − 𝐞̂𝑙 . (48)

To summarize, the double-ditch augmentation of the energy functional satisfies the EC condition (or equivalently the ‘‘P2’’ 
condition as introduced by Boyer and Lapuerta (2006)) for the two-component 𝛽–𝜔 states, but violates it for the two-component 
𝜔–𝜔 states. While Boyer and Lapuerta (2006) rejected the off-diagonal (i.e., our double-ditch) terms in the algebraic part of the free 
energy, here, in the context of our target application, such a violation is a desirable feature since we require these unphysical 𝜔–𝜔
states to be unstable.

6.2. Interpretation of the double-ditch augmentation for a three-phase model

Let us now demonstrate the performance of the model with double-ditch augmentation and provide its deeper interpretation in 
the simplest, i.e., three-phase setting (𝑁 = 2). In this setting, the interfacial energy density is given by 

𝐹 ∗
int =

2
∑

𝑖=0

(

𝜅𝑖|∇𝜂𝑖|
2 + 𝜀𝑖𝜂

2
𝑖 (1 − 𝜂𝑖)2

)

+ 𝜆𝜂21𝜂
2
2 , (49)

where the double-ditch term 𝜆𝜂21𝜂22 penalizes the mixed 𝜔1–𝜔2 states by introducing a potential barrier that reaches its maximum 
along the 𝜔1–𝜔2 edge. This augmentation energetically favors configurations in which an interstitial 𝛽 phase separates the adjacent 
𝜔 variants, see Fig.  2.

Let us now document the main advantage of the double-ditch augmentation by showing that it enables us to effectively increase 
the interfacial energy between different 𝜔 variants arbitrarily. Importantly, since the augmentation is purely algebraic, it does not 
interfere with the (positive definiteness) condition of the capillary matrix given in Eq. (36). As we shall see, in this sense, the 
double-ditch term circumvents the intrinsic limitations of the standard model. The only (beneficial) trade-off is the loss of the EC 
condition for mixed 𝜔–𝜔 states.
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Fig. 2. The impact of the double-ditch augmentation on the multiwell potential with nonzero chemical energy for 𝑁 = 2. The magenta lines 
indicate the approximate least-energy paths, as in Fig.  1. (a) In the reference model with 𝜆 = 0, a direct 𝜔1–𝜔2 interface forms. (b) For 𝜆 = 0.2GPa, 
the direct interface is penalized, and the path is pushed toward a ternary mixed state involving 𝛽. (c) For a stronger augmentation, 𝜆 = 5GPa, 
the interface is forced to pass through a nearly pure 𝛽 state.

So let us consider the augmented energy (49) in the 𝜔1–𝜔2 mixed state (i.e., for 𝜂0 = 0 and 𝜂2 = 1 − 𝜂1), and using the fact that 
𝜅𝜔 = 𝜅1 = 𝜅2 and 𝜀𝜔 = 𝜀1 = 𝜀2 we get the corresponding two-phase energy in the form

𝐹 ∗
int = 2𝜅𝜔|∇𝜂1|

2 + (2𝜀𝜔 + 𝜆)𝜂21 (1 − 𝜂1)2.

We can now interpret it in terms of effective surface tension 𝛾eff𝜔𝜔 and effective interface thickness 𝓁eff
𝜔𝜔 as follows. By comparing this 

result with the corresponding two-phase formula, see Eq. (7)1, 

𝐹 ∗
int = 𝛾eff𝜔𝜔

( 3𝓁eff
𝜔𝜔
2

|∇𝜂1|
2 + 6

𝓁eff
𝜔𝜔

𝜂21 (1 − 𝜂1)2
)

, (50)

we obtain, after expressing the effective parameters, the following formulas 

𝛾eff𝜔𝜔 =
√

2𝜅𝜔(2𝜀𝜔 + 𝜆)
9

= 𝛾𝜔𝜔

√

1 + 𝜆
2𝜀𝜔

, 𝓁eff
𝜔𝜔 =

√

8𝜅𝜔
2𝜀𝜔 + 𝜆

=
𝓁𝜔𝜔

√

1 + 𝜆
2𝜀𝜔

. (51)

These formulas provide the desired interpretation of the augmentation: by increasing the value of the parameter 𝜆, we scale up 
the effective surface tension between the two 𝜔 phases, while simultaneously reducing the effective interface thickness between 
them. Crucially, this modification is introduced solely through the algebraic part of the interfacial free energy, meaning that the 
positive definiteness requirement of the capillary matrix, Eq. (36), remains unaffected.

Thus, starting with a choice of parameters 𝜅𝛽 and 𝜅𝜔 such that the positive definiteness assumption on the capillary matrix 
holds, and then augmenting the free energy by the double-ditch term, we can arbitrarily exceed the limitations inherently present 
in the standard (EC) model for total spreading cases, as expressed in Eq. (36). Specifically, we can make the (effective) interfacial 
energy between the selected 𝜔 variants arbitrarily large. Through this mechanism, our model effectively prevents the formation of 
mixed 𝜔–𝜔 states, since an appropriately chosen value of 𝜆 penalizes such configurations to any desired degree. Importantly, this 
augmentation leaves the energy of physically admissible mixed 𝛽–𝜔 states unchanged and it does not violate the EC condition for 
these states, as the term and its partial derivatives are zero-valued here.

To summarize: By augmenting the interfacial energy with double-ditch terms using a sufficiently large 𝜆, we effectively eliminate 
the existence of mixed 𝜔–𝜔 states under arbitrary chemical forcing, without affecting the physically admissible 𝛽–𝜔 configurations or 
compromising their EC stability.

7. Evolutionary consistent chemical mixing

In our particular application, all the variants of the 𝜔 phase are chemically equivalent. It is thus natural to extend the EC condition 
for the physically relevant 𝛽–𝜔 states also to the chemical part of the bulk free energy. To motivate this extension, consider a ternary 
system (𝑁 = 2) and a configuration in which only 𝛽 and 𝜔1 are present and the chemical energy promotes further precipitation of 
the 𝜔 phase. Since all 𝜔 variants are chemically equivalent, no particular variant is energetically favored. Thus, precipitation of 𝜔1
reduces the chemical energy just as effectively as 𝜔2. However, the appearance of 𝜔2 introduces an interfacial interaction with 𝜔1, 
contributing additional (non-negative) interfacial energy. This penalty would not occur if more 𝜔1 formed instead. Consequently, 
the combined interfacial and chemical energy functional must reflect this assumption to enforce this behavior.

Thus, in addition to the EC condition for the interfacial energy (22), we impose an analogous condition on the chemical energy 
density 𝐹chem. In particular, we shall assert that (in an analogy with Eq. (30)) the chemical energy satisfies 

𝜕𝐹chem (𝜂𝑘𝐞̂𝑘) = 𝛥𝐺
𝜕ℎmix (𝜂𝑘𝐞̂𝑘) ∼ 𝜀𝛽 𝟏̂ + 𝜀𝜔𝐞̂𝑘, (52)
𝜕𝜼̂ 𝜕𝜼̂
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which ensures compliance with the EC condition of the total (interfacial + chemical) energy.
Notably, the simple mixing (41) violates this condition. Indeed, the corresponding driving force has the following form: 

𝐟 (𝑁+1)
chem = −

𝜕𝐹 (𝑁+1)
chem
𝜕𝜼̂

= 𝛥𝐺𝜑′(𝜂0) 𝟏̂, (53)

which is clearly incompatible with the form in Eq. (52) required for evolutionary consistency. In the following, we first document that 
this inconsistency can be mitigated by a sufficiently strong double-ditch augmentation. We then introduce a novel chemical mixing 
formulation – referred to as ‘‘elliptic mixing’’ – which inherently satisfies the required condition and overcomes the limitations of 
the simple model.

7.1. Simple mixing regularized by double-ditch potential

As shown above, the simple (𝑁 + 1)-phase mixing function ℎ(𝑁+1)
mix  does not satisfy the EC condition. Specifically, the chemical 

driving force may point outward from the edge of the Gibbs simplex, leading the solution toward non-physical configurations in 
which multiple 𝜔 variants coexist (i.e., more than one 𝜂𝑖 > 0). Since the double-ditch augmentation of the interfacial energy, 
introduced in Section 6.1, penalizes exactly the occurrence of such mixed states, it represents a natural candidate for regularization 
of the simple mixing model. Indeed, as documented in the numerical experiments in Section 8, by selecting a sufficiently large 
regularization parameter 𝜆, the system is guided back toward physically meaningful configurations near the simplex edge with an 
accuracy sufficient in many practical situations.

The main drawback of this approach lies in the choice of 𝜆: it is no longer directly tied to the physical interfacial energy 𝛾eff𝜔𝜔 , but 
instead becomes a numerical tuning parameter dictated by simulation stability and accuracy. Furthermore, large values of 𝜆 may 
lead to slower convergence in numerical solvers.

7.2. Elliptic mixing

As a potential remedy to the EC inconsistency of the simple mixing model, we introduce one particular alternative formulation 
of chemical mixing that satisfies the EC condition, here referred to as elliptic mixing : 

ℎellipticmix (𝜼̂) = 𝜑(𝜂eff ), 𝜂eff (𝜼̂) =

√

√

√

√

√

𝑁
∑

𝑖=1
𝜂2𝑖 + 2

𝜀𝛽
𝜀𝛽 + 𝜀𝜔

𝑁
∑

𝑗>𝑖≥1
𝜂𝑖𝜂𝑗 . (54)

This mixing is called elliptic, since the function 𝜂eff = const. defines a surface of a rotational ellipsoid centered at 𝜂0 = 1 and with 
the axis of rotation parallel to the 𝜂1 = ⋯ = 𝜂𝑁  line in the 𝑁-dimensional 𝜼̂ space. For 𝑁 = 2, the function is plotted in Fig.  3a.

Compliance with the AC condition is trivial by a simple substitution ℎellipticmix
(

𝜂𝑘𝐞̂𝑘
)

= 𝜑(𝜂eff ) = 𝜑(𝜂𝑘).
The EC compliance can be shown by taking the partial derivatives, 

𝜕ℎellipticmix
𝜕𝜼̂

(𝜼̂) = 𝜑′(𝜂eff )
𝜕𝜂eff
𝜕𝜼̂

(𝜼̂) =
𝜑′(𝜂eff )

𝜂eff
(

𝜀𝛽 + 𝜀𝜔
)

[

𝜀𝛽 𝟏̂
𝑁
∑

𝑖=1
𝜂𝑖 + 𝜀𝜔𝜼̂

]

, (55)

and substituting 𝜼̂ = 𝜂𝑘𝐞̂𝑘, 
𝜕ℎellipticmix

𝜕𝜼̂
(

𝜂𝑘𝐞̂𝑘
)

=
𝜑′(𝜂eff )

𝜂eff
(

𝜀𝛽 + 𝜀𝜔
)

(

𝜂𝑘𝜀𝛽 𝟏̂𝑘 + 𝜂𝑘𝜀𝜔𝐞̂𝑘
)

∼ 𝜀𝛽 𝟏̂ + 𝜀𝜔𝐞̂𝑘 , (56)

which is the form derived in Eq. (30).
However, this function has an undesirable property, which can be immediately seen from the illustration in Fig.  3b. As the 

function 𝐹 elliptic
chem = 𝜑(𝜂eff )𝛥𝐺 is decreasing for 𝛥𝐺 < 0 and 𝜂0 > 1, non-physical minima may appear in conjunction with the multiwell 

potential in the 𝜂0 > 1 region.
Therefore, we suggest adding a penalization ℎpen as 

ℎpen =

{

𝑎
(

1 − 𝜂0
)2 sgn (𝛥𝐺) for 𝜂0 > 1,

0 otherwise.
(57)

It can be shown that 𝑎 > 3 prevents the formation of minima, we used 𝑎 = 4 to have a safe margin. Multiplying by sgn(𝛥𝐺) is 
necessary to ensure that the penalization ℎpen𝛥𝐺 is always positive. The elliptic chemical energy can therefore be written as 

𝐹 elliptic
chem =

(

ℎellipticmix + ℎpen
)

𝛥𝐺. (58)

The proposed elliptic mixing satisfies the EC condition; however, it introduces a subtle inconsistency: the chemical energy is no 
longer constant for 𝜂0 = 0 (at the 𝜔-only subspace), and thus the expressions (51) for the interfacial parameters 𝛾eff𝜔𝜔 and 𝓁eff

𝜔𝜔 are 
no longer exactly valid. Nevertheless, this inconsistency leads to only a minor deviation in the interfacial energy. In all practical 
simulations, this approximation is acceptable and does not compromise the predictive power of the model. A more detailed numerical 
analysis is presented in Appendix  C.
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Fig. 3. Illustrations of the chemical energy mixing functions for two 𝜔 variants. (a) Elliptic mixing ℎelliptic
mix  in ternary plot. (b) The free energy 

𝐹 = 𝐹int +𝐹 elliptic
chem  with and without the correction by ℎpen: the profile of 𝐹  along the 𝛽–𝜔1 edge showing the presence of a non-physical minimum 

in the region 𝜂1 < 0.

Furthermore, since the 𝜔–𝜔 interface is not observed experimentally, no direct data for 𝛾𝜔𝜔 are available. Our only modeling 
requirement is that the effective interfacial energy is sufficiently large to suppress the formation of such an interface, which is ensured 
by the double-ditch term. Therefore, minor deviations from 𝛾eff𝜔𝜔 due to elliptical mixing do not affect the qualitative behavior of the 
model.

8. Numerical simulations

8.1. Finite-element implementation

The numerical implementation of the model is carried out using the Firedrake finite element library (Rathgeber et al., 2016). 
The computational domain is discretized uniformly: into line segments in 1D, quadrilaterals in 2D, and tetrahedra in 3D. The phase 
order parameters 𝜂𝑖 are approximated using continuous, piecewise linear (1D), bi-linear (2D), or linear (3D) Lagrange elements.

Time integration is performed using the implicit backward Euler method, which ensures stability even for stiff problems. At each 
time step, the governing Eqs. (16) are obtained by computing variational derivatives of the total energy functional, which includes 
both the free energy 𝐹  and the dissipation potential 𝐷. These derivatives are computed via automatic differentiation provided by 
Firedrake.

The resulting non-linear system is solved by Newton’s method. To improve robustness, a line search strategy is employed, 
specifically the L2 line search implemented in the SNES interface of the PETSc library. The Jacobian matrix required in each Newton 
step is again obtained via automatic differentiation. The Newton solver uses strict convergence criteria, with relative and absolute 
tolerances set to 1 × 10−11 and 5 × 10−10, respectively. The maximum number of Newton iterations per time step is limited to 12.

To control temporal resolution and computational cost, the time step size is adjusted adaptively. We monitor the number of 
Newton iterations required for convergence at each time step. If the number of iterations is below a target threshold (typically 7), 
the time step is increased; if it exceeds the threshold, the time step is reduced. The threshold values were determined empirically 
based on numerical experiments.

For solving the linear systems that arise within each Newton step, different strategies are applied depending on the spatial 
dimension. In 1D simulations, the system is small enough to permit the use of a direct solver (MUMPS). In 2D and 3D, iterative 
methods become necessary. As a preconditioner, we employ the BoomerAMG algebraic multigrid method from the Hypre package. 
The preconditioner uses classical interpolation, a standard technique in Ruge–Stüben AMG that constructs prolongation operators 
based on strong connections in the matrix. We use a maximum of 10 multigrid levels.

The multigrid preconditioner uses symmetric Gauss–Seidel method as the smoother for serial runs and Jacobi-based methods in 
parallel settings, both of which are the default options in BoomerAMG. This combination provides scalable and efficient performance 
for large and moderately ill-conditioned systems.

8.2. Specification of model parameters

Below, we present simulation results in one, two, and three spatial dimensions, all computed under a prescribed spatially homo-
geneous chemical driving force 𝛥𝐺. Two distinct models for the chemical energy are employed: the simple mixing formulation (41), 
and the elliptic mixing model (58). The standard (𝑁+1)-phase chemical energy model does not satisfy the EC condition, but it 
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Fig. 4. Initial condition for the 1D numerical experiment (𝑁 = 2) illustrating the effect of chemical energy: the phase-field variables 𝜂0 (black), 
𝜂1 (red), and 𝜂2 (green) are plotted over the domain. The right panel displays the corresponding composition points in the ternary diagram 
(magenta bullets).

is straightforward to implement. In contrast, the elliptic mixing model satisfies the EC condition, although its implementation is 
somewhat more involved.

All simulations are computed for the following model parameters: 

𝑀𝜅 = 1nm2∕s, 𝛾𝛽𝜔 = 0.01 J/m2, 𝛾𝜔𝜔 = 0.022 J/m2, 𝓁𝛽𝜔 = 𝓁𝜔𝜔 = 1nm, 0 ≥ 𝛥𝐺 ≥ −0.02GPa. (59)

The above values of model parameters 𝛾𝛽𝜔, 𝛥𝐺, and 𝓁𝛽𝜔 are considered realistic for the 𝛽–𝜔 transformation in Ti alloys, at least 
concerning the order of magnitude (Devaraj et al., 2012; Ehemann & Wilkins, 2017; Šmilauerová et al., 2017; Tang et al., 2012; 
Yan & Olson, 2016).

To satisfy the EC condition, the mobility parameters are adopted according to Eq. (27) so that 𝑚𝛽 = 𝑀𝜅∕𝜅𝛽 and 𝑚𝜔 = 𝑀𝜅∕𝜅𝜔. 
Parameter 𝑀𝜅 has been simply set equal to 1 nm2∕s with no reference to a physically realistic time scale, thus specifying arbitrary 
units of time.

8.3. Ternary (𝑁=2) 1D setting

We begin with one-dimensional numerical experiments for a ternary system composed of one parent 𝛽 phase and two variants 
of the 𝜔 phase. The computational domain is the interval [−25 nm, 25 nm], discretized using a uniform mesh with spacing ℎ = 0.1 nm. 
Homogeneous Neumann boundary conditions are applied at both ends of the domain: 

𝜕𝜂𝑖
𝜕𝑥

= 0 at 𝑥 = ±25 nm. (60)

This type of boundary condition does not impose any restriction with respect to the spatial dimension; periodic boundary conditions 
are used in higher-dimensional simulations to represent a domain surrounded by a similar material.

We structure this section as follows. First, we numerically demonstrate a key limitation of the standard model, namely its inability 
to achieve proper phase separation under sufficiently strong chemical driving. Next, we highlight the importance of the EC condition 
by violating the interfacial thickness equality constraint (33) and examining the consequences. Finally, we provide a comparative 
study of the two chemical mixing strategies – simple and elliptic – for various magnitudes of double-ditch regularization.

8.3.1. Lack of phase separation within the standard model
We first demonstrate that the standard double-well model fails to enforce separation of the 𝜔 variants by the 𝛽 phase when the 

chemical driving force is sufficiently strong. The initial condition is shown in Fig.  4, and we use 𝛥𝐺 = −0.02GPa, 𝛾𝛽𝜔 = 0.01 J/m2, 
and 𝛾𝜔𝜔 = 0.022 J/m2. In this case, the ratio between interfacial energies is not high enough to counteract the strong thermodynamic 
(chemical) preference for the 𝜔 phase. As a result, the two 𝜔 variants tend to coalesce, rather than being separated by a 𝛽 layer, as 
documented in Fig.  5. Despite the presence of interfacial energy penalties, the chemical driving force dominates, leading to direct 
contact between the 𝜔 variants. This confirms that the standard double-well model alone is insufficient to enforce separation under 
large 𝛥𝐺.

A natural remedy might be to penalize the contact between the 𝜔 variants more strongly by increasing the ratio 𝛾𝜔𝜔∕𝛾𝛽𝜔. However, 
when 𝓁𝛽𝜔 = 𝓁𝜔𝜔, the positive definiteness of the capillary matrix Ĥ imposes a strict bound: 𝛾𝜔𝜔 < 4𝛾𝛽𝜔 for 𝑁 = 2, see (36). This 
bound limits our ability to enforce separation through energetic penalization. The restriction is severe: for example, if we attempt 
to simulate a case with 𝛾𝜔𝜔 = 5𝛾𝛽𝜔, the Newton solver fails to converge, and the finite element simulation crashes.

In a more general setting where 𝓁𝜔𝜔 ≠ 𝓁𝛽𝜔, the positive definiteness of the capillary matrix Ĥ requires a modified condition (see 
Appendix  B), which seemingly allows the ratio of interfacial energies to be increased arbitrarily. However, as we now demonstrate, 
relaxing the equality of thicknesses leads to a violation of the EC condition and causes the simulation to produce unphysical results.
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Fig. 5. Steady-state solution for 𝛥𝐺 = −0.02GPa, 𝛾𝛽𝜔 = 0.01 J/m2, and 𝛾𝜔𝜔 = 0.022 J/m2 using simple mixing. Phase fields 𝜂0 (black), 𝜂1 (red), 
and 𝜂2 (green) are plotted across the domain. The ternary diagram on the right shows the corresponding composition points (magenta bullets). 
The strong chemical driving force causes the two 𝜔 variants to remain in direct contact, without an intermediate 𝛽 phase. A video of the full 
simulation is available in the Supplementary material (see Movie M1).

8.3.2. Documenting the importance of the EC condition for 𝛽–𝜔 interfaces
We now illustrate the practical significance of the EC condition. As discussed in Section 4, a somewhat counterintuitive but 

necessary requirement for EC in our model is the equality of interfacial thicknesses, i.e., 𝓁𝛽𝜔 = 𝓁𝜔𝜔. To investigate the role of this 
condition, we intentionally violate it, thus violating the EC condition, and observe the consequences.

We use the same initial condition as in the previous case (see Fig.  4), but increase the interfacial energy 𝛾𝜔𝜔 by a factor of ten: 

𝛾𝛽𝜔 = 0.01 J/m2, 𝛾𝜔𝜔 = 0.22 J/m2, (61)

and compensate for this increase by proportionally scaling the corresponding interfacial thicknesses: 
𝓁𝛽𝜔 = 1nm, 𝓁𝜔𝜔 = 0.1nm. (62)

The simulation results are shown in Fig.  6. The top panel captures an early stage of the evolution at 𝑡∗ = 0.014, where the order 
parameters temporarily drop below zero, violating the physical constraint 𝜂𝑖 ∈ [0, 1]. This behavior highlights the importance of the 
EC condition in maintaining physically admissible solutions—its violation permits the system to diverge to non-physical regions of 
the energy landscape, including local minima outside the Gibbs simplex.

As the evolution proceeds, the system reaches a steady state at 𝑡∗ = 10000 (bottom panel), which is spatially homogeneous and 
corresponds to a mixed composition strictly inside the simplex, lacking any pure-phase regions. The associated ternary diagrams 
(right-hand panels) confirm that the solution remains confined to an unseparated (mixed) state in composition space throughout 
the entire evolution.

These results demonstrate that failure to satisfy the EC condition can lead not only to transient violations of physical bounds 
(e.g., 𝜂𝑖 < 0), but also to incorrect steady states characterized by the absence of proper phase separation.

While the effects of violating the EC condition may appear modest under weak chemical driving forces, we find its enforcement 
important for robust and physically consistent modeling of the considered process, particularly in regimes characterized by strong 
chemical driving or complex interfacial interactions. As shown in the next section, in some practically important cases, a moderate 
violation of EC resulting from simple chemical mixing can be compensated by sufficiently strong double-ditch augmentation of the 
energy functional.

8.3.3. Comparing double-ditch model with simple vs. elliptic chemical mixing
We will now compare the performance of the double-ditch augmented model in the two considered variants of chemical mixing 

– elliptic (satisfying EC) and simple (violating EC) – in a number of setups and using several error measures. We will show, in 
particular, that the lack of EC compliance of the simple mixing model can be partially compensated by strong enough double-ditch 
regularization.

EC condition compliance. We consider a one-dimensional test case, 𝑁 = 2, with an initial condition consisting of a two-phase mixture 
of the 𝛽 phase and the variant 𝜔1. The third phase, 𝜔2, is initially absent and should not appear during the simulation if the chemical 
energy formulation satisfies the EC condition. The initial condition is shown in Fig.  7. The initial condition includes a perturbation 
by a small-amplitude uniform noise. Note that 𝜂2 is identically set to zero in the whole domain. The chemical energy is constant 
with a relatively large magnitude, 𝛥𝐺 = −0.02GPa, see e.g. Fig.  2.

We simulate the problem using two different chemical energy formulations: the simple mixing, which does not satisfy the EC 
condition, and the elliptic mixing, which is constructed to fulfill it. For both formulations, we vary the double-ditch parameter 
𝜆 ∈ {0, 0.2, 5, 100}GPa. To quantify the violation of the EC condition, we compute the average presence of 𝜔2 over time, measured 
by 

1
|𝜂2| d𝑥, (63)
|𝛺|
∫𝛺
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Fig. 6. Effect of violating the EC condition for 𝛽–𝜔 interfaces. Results correspond to 𝛥𝐺 = −0.02GPa, 𝛾𝛽𝜔 = 0.01 J/m2, 𝛾𝜔𝜔 = 0.22 J/m2, with 
interfacial thicknesses 𝓁𝛽𝜔 = 1nm and 𝓁𝜔𝜔 = 0.1nm, using simple chemical mixing. The top panel shows an intermediate state at 𝑡∗ = 0.014, 
where the order parameters 𝜂𝑖 temporarily fall outside the physical range. The bottom panel shows the steady-state solution at 𝑡∗ = 10000, which 
is spatially uniform and corresponds to a fully mixed composition. In both cases, the ternary diagrams on the right display the corresponding 
composition points (magenta bullets). A video of the full simulation is available in the Supplementary material (see Movie M2).

Fig. 7. Initial condition for the verification of the EC condition: the black curve represents 𝜂0 and the red curve 𝜂1. Only the 𝛽 phase and the 
variant 𝜔1 are present; the variant 𝜔2 is absent and should remain so.

Fig. 8. Temporal evolution of the average EC violation, measured as 1
|𝛺|

∫𝛺 |𝜂2| d𝑥. The elliptic mixing shows a negligible violation during the 
initial stage caused by numerical round-off errors. For the simple mixing, the violation decreases with increasing regularization parameter 𝜆.
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Fig. 9. Ternary plots at time 𝑡∗ = 0.5 for different values of the double-ditch parameter 𝜆, comparing elliptic mixing (top row) and simple mixing 
(bottom row). For the elliptic mixing, all points remain on the 𝛽–𝜔1 edge, satisfying the EC condition. For the simple mixing, the deviation from 
the edge diminishes with increasing 𝜆. Videos of the selected full simulation are available in the Supplementary material (see Movies M3a and 
M3b).

Fig. 10. Solution at time 𝑡∗ = 0.5 for 𝜆 = 5GPa, comparing elliptic mixing (top row) and simple mixing (bottom row). In the case of elliptic 
mixing, only the 𝛽 phase (black line) and the 𝜔1 variant (red line) are present. For simple mixing, the 𝜔2 variant (green line) also appears, 
indicating that the EC condition is not satisfied.

as shown in Fig.  8. Interestingly, for the elliptic mixing, the average EC violation increases only during the first two time steps. In 
contrast, for the simple mixing, it increases for more than 20 time steps, regardless of the chosen double-ditch parameter 𝜆.

To visualize the phase distributions, in Fig.  9, we present ternary plots at time 𝑡∗ = 0.5 for both mixing types and for different 
values of 𝜆. For the elliptic mixing (top row), all points lie along the 𝛽–𝜔1 edge, indicating exact satisfaction of the EC condition (up 
to numerical precision). In contrast, the simple mixing (bottom row) leads to the spurious formation of 𝜔2, though this violation 
gradually diminishes as 𝜆 increases. The corresponding one-dimensional profiles for 𝜆 = 5 are shown in Fig.  10, where 𝜔2 appears 
only in the simple mixing case, documenting the violation of the EC condition.

Stability of the EC condition. We further examine the stability of the EC condition by introducing a small perturbation in the initial 
condition. Specifically, we slightly perturb the variant 𝜔2 such that 𝜂2 is non-zero but remains close to zero at time 𝑡∗ = 0. The 
goal is to test whether this small deviation from the 𝛽–𝜔1 edge vanishes over time, i.e., whether the system naturally returns to the 
EC-compliant state. The perturbed initial condition is shown in Fig.  11.

The temporal evolution of the average EC violation given by Eq. (63) is plotted in Fig.  12. The results show that for both mixings 
the violation decays exponentially with time, indicating that the spurious 𝜔  phase disappears. This behavior confirms the stability 
2
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Fig. 11. Initial condition for the stability test of the EC condition: the black curve represents 𝜂0, the red curve 𝜂1, and the green curve 𝜂2. The 
variant 𝜔2 is present with a small perturbation, i.e., 𝜂2 ≈ 0 but not identically zero.

Fig. 12. Temporal evolution of the average EC violation for the test with a perturbed initial presence of 𝜔2, measured as 1
|𝛺|

∫𝛺 |𝜂2| d𝑥 for (a) 
simple and (b) elliptic mixing. The violation decays rapidly over time, indicating that the spurious variant 𝜔2 vanishes and the system returns 
to a physically consistent configuration.

of the EC condition: even if the initial state lies slightly off the 𝛽–𝜔1 edge, the system quickly relaxes back to a physically consistent 
configuration, with 𝜂2 → 0.

Effect of the double-ditch parameter 𝜆. As discussed in Section 6, for small values of the chemical energy difference 𝛥𝐺, the standard 
double-well formulation without the double-ditch term may still yield acceptable results. However, when |𝛥𝐺| becomes larger, this 
formulation fails: the 𝛽 phase disappears entirely and the two 𝜔 variants come into direct, undesired contact, cf. Fig.  5. To address 
this issue in a controlled way, we now fix 𝛥𝐺 = −0.02GPa and vary only the double-ditch parameter 𝜆.

The initial condition (see Fig.  4) consists of nearly pure phases of 𝛽, 𝜔1, and 𝜔2, with small random perturbations. It also contains 
phase mixtures such as 𝛽–𝜔1 and 𝛽–𝜔2, as well as 𝜔1–𝜔2, the undesired contact of two 𝜔 variants.

The steady-state solutions for selected values of 𝜆 are shown in Figs.  13 and 14, using both the simple and elliptic mixing 
formulations. With 𝜆 = 0 and simple mixing, the 𝛽 phase vanishes completely and the two 𝜔 variants are in direct contact (Fig. 
13, top-left and Fig.  5). For elliptic mixing with 𝜆 = 0, the solution converges to a non-physical constant state with 𝜂0 = −5 and 
𝜂1 = 𝜂2 = 3 across the entire domain (outside the range of the ternary plots in Fig.  13). This unphysical behavior is due to a spurious 
minimum of the multiwell potential outside the Gibbs simplex in the total-spreading regime, as noted by (Boyer & Lapuerta, 2006). 
While this minimum exists for both mixing formulations, the elliptic model shifts the driving forces in such a way that the system 
can reach this state more readily, especially under weak or unstable initial conditions.

Introducing a small double-ditch penalty of 𝜆 = 0.2GPa is already sufficient to regularize the solution. A thin layer of the 𝛽 phase 
reappears, separating the 𝜔 variants and eliminating the spurious minimum in both formulations. As 𝜆 increases further to 5 and 
100GPa, the separation becomes more robust, with a clearer and wider 𝛽 phase forming between the 𝜔 variants. This separation 
with 𝜆 = 100GPa and both types of mixing is clearly visible in the spatial plots in Fig.  14.

8.4. Quinary system (𝑁=4)

We now investigate a more complex quinary system involving four 𝜔 variants, extending our analysis to one-, two-, and 
three-dimensional settings.

8.4.1. 1D setting
For all simulations, we use 𝛥𝐺 = −0.02GPa, 𝜆 = 100GPa, 𝛾𝛽𝜔 = 0.01 J∕m2, and 𝛾𝜔𝜔 = 0.022 J∕m2. As before, we first examine 

compliance with the EC condition.
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Fig. 13. Steady-state solutions for fixed 𝛥𝐺 = −0.02GPa and varying double-ditch parameter 𝜆. The initial condition is shown in Fig.  4. Each 
triangle shows the final composition points (magenta bullets) in the ternary diagram. Top row: simple mixing. Bottom row: elliptic mixing.

Fig. 14. Steady-state solutions for 𝛥𝐺 = −0.02GPa and 𝜆 = 100GPa. The spatial distribution of phases is shown using colors: 𝜂0 (black), 𝜂1 (red), 
and 𝜂2 (green). Composition points are plotted in the ternary diagram as magenta bullets. The top row corresponds to simple mixing; the bottom 
row shows results for elliptic mixing. A video of the full simulation is available in the Supplementary material (see Movie M4).

EC condition compliance and stability. The initial condition is constructed similarly to Fig.  11—with only a single variant 𝜔1 present 
and the remaining 𝜔 variants initialized as small perturbations near zero. The specific configuration for the 𝑁 = 4 system is shown 
in Fig.  15.

The evolution of the EC violation for 𝜂2, 𝜂3, and 𝜂4 is shown in Fig.  16. Both simple and elliptic mixing exhibit a similar transient 
behavior, with violations stabilizing around 10−3 until 𝑡∗ ≈ 2. After that, the violations rapidly decrease. While the difference during 
the evolution is negligible, the elliptic formulation reaches significantly lower steady-state values, dropping below 10−28, in contrast 
to about 10−14 for the simple mixing. This demonstrates that elliptic mixing leads to cleaner long-term solutions, although simple 
mixing already yields acceptable results.
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Fig. 15. Initial condition for the 1D EC compliance with 𝑁 = 4. Initially, only 𝜂1 is prescribed, 𝜂2, 𝜂3, and 𝜂4 are perturbed close to zero. Phase 
fields: 𝜂0 (black), 𝜂1 (red), 𝜂2 (green), 𝜂3 (blue), 𝜂4 (yellow).

Fig. 16. EC violation for 𝑁 = 4 and order parameters 𝜂2, 𝜂3, and 𝜂4. The plot shows the average 1
|𝛺|

∫𝛺 |𝜂𝑖| d𝑥 as a function of time for (a) simple 
and (b) elliptic mixing. Both formulations show similar behavior.

Fig. 17. Initial condition for the 1D simulation with 𝑁 = 4, including all 𝜔 variants. Phase fields: 𝜂0 (black), 𝜂1 (red), 𝜂2 (green), 𝜂3 (blue), 𝜂4
(yellow).

Simulation with all variants present. We now consider a simulation where all four 𝜔 variants are present in the initial condition. As 
shown in Fig.  17, the setup includes both ternary and quaternary mixtures, along with direct 𝜔–𝜔 interfaces.

The steady-state profiles are shown in Fig.  18 for both mixing models. In both cases, only 𝜔1 and 𝜔3 remain, separated by a 
layer of the 𝛽 phase, demonstrating that the double-ditch penalty enforces proper separation of secondary phases.

We also monitor the interfacial, chemical and total free energies during the evolution. As shown in Fig.  19, the total free energy 
decreases monotonically in time for both mixing formulations; the same behavior is observed in higher-dimensional simulations.

During the evolution, we also check whether the physical constraint 0 ≤ 𝜂𝑖 ≤ 1 is satisfied. For both (simple and elliptic) 
formulations, the values never exceed one, but may drop occasionally below zero with the amplitude below 10−2. Detailed time 
evolution of the error is provided in the Supplementary material, see Figure S1.

These 1D simulations confirm that the double-ditch works well to separate different 𝜔 variants by 𝛽 phase even in the presence 
of four variants. Both mixing strategies lead to stable steady states with good EC compliance, and no unwanted variant formation. 
In the following sections, we extend the analysis to 2D and 3D simulations.
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Fig. 18. Steady-state solutions for 𝛥𝐺 = −0.02GPa, 𝜆 = 100GPa, and 𝑁 = 4 using (a) simple and (b) elliptic mixing. Only 𝜔1 and 𝜔3 remain, 
separated by the 𝛽 phase.

Fig. 19. Time evolution of the interfacial, chemical and total free energies for the one-dimensional simulation with 𝑁 = 4 using (a) simple and 
(b) elliptic mixing. The total free energy decreases monotonically during the whole evolution.

8.4.2. 2D setting
We proceed with a two-dimensional numerical experiment to assess the behavior of the model with the double-ditch penalty 

(𝜆 = 100GPa) and elliptic mixing. As in the previous subsection, we set 𝛥𝐺 = −0.02GPa and consider four 𝜔 variants. The initial 
condition, shown in the top-left panel of Fig.  20, consists of three 𝜔 variants – 𝜔1, 𝜔2, and 𝜔3 – placed in mutual contact. Small 
perturbations are added to all phase fields, resulting also in the presence of a minor amount of the fourth variant, 𝜔4. This setup 
allows us to observe whether any pathological behavior occurs near triple junction.

The domain is a square of size 50 × 50nm2, discretized using 256 × 256 quadrilateral elements. Periodic boundary conditions 
are applied in both spatial directions to reflect the intended physical setting of a domain embedded in a larger material domain.

A sequence of snapshots from the simulation is presented in Fig.  20. Shortly after the simulation begins, the 𝛽 phase emerges 
between the initially present 𝜔 variants and separates them. As the system evolves, the three visible 𝜔 variants expand, followed 
by a coarsening process that ultimately leads to a steady state in which the domain is fully occupied by the 𝜔2 variant.

Similarly to the 1D setting, the physical constraint on the phase fields, 0 ≤ 𝜂𝑖 ≤ 1, is only mildly violated (maximal negative 
value of 0.0056 located within the interface regions), see also Figure S2 in Supplementary material.

8.4.3. 3D setting
Finally, we present a three-dimensional numerical simulation involving elliptic mixing and a double-ditch penalty parameter 

𝜆 = 100GPa. The chemical driving force is set to 𝛥𝐺 = −0.02GPa, and we consider four distinct 𝜔 variants.
As the initial condition, we impose a quadruple point configuration in which each 𝜔 variant initially occupies one of four 

symmetric regions that meet at the center of the domain, with planar interfaces between each pair of variants. The order parameters 
are not set to pure variant values but to intermediate values around 0.8, with small random noise added—not to trigger the evolution 
itself, but to break the symmetry and promote the development of possibly a more interesting solution. This initial condition is shown 
in the top-left panel of Fig.  21. The purpose of this setup is to investigate whether the 𝜔 variants become separated by parent 𝛽
phase during the evolution.

The computational domain is a cube of size 50 × 50 × 50nm3, discretized using 128 × 128 × 128 cubes, each divided into six 
tetrahedra. Periodic boundary conditions are applied in all three spatial directions to mimic a representative volume element of 
a bulk material. The resulting system exceeds 8 million degrees of freedom and was solved on the Karolina supercomputer at the 
IT4Innovations National Supercomputing Center in Ostrava.

A sequence of snapshots from the simulation is shown in Fig.  21. Shortly after the start, all 𝜔 variants become separated by the 
𝛽 phase, similar to the behavior observed in the two-dimensional simulation. As the system evolves, the 𝜔 domains grow and then 
coarsen, as in the 2D case. Eventually, only a single variant, 𝜔 , remains and fills the entire domain in the steady state. Throughout 
3
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Fig. 20. Selected snapshots from the 2D simulation. The top-left panel shows the initial condition, while the subsequent images illustrate the 
system’s temporal evolution up to the steady state, which is fully occupied by the 𝜔2 variant. The 𝛽 phase is depicted in gray, and the 𝜔 variants 
are colored as follows: 𝜔1 in red, 𝜔2 in green, 𝜔3 in blue, and 𝜔4 in yellow (not visible). Each point is colored according to the variant 𝜔𝑖 for 
which the corresponding order parameter satisfies 𝜂𝑖 > 0.5. A video of the full simulation is available in the Supplementary material (see Movie 
M5).

the simulation, the constraint on the order parameters 0 ≤ 𝜂𝑖 ≤ 1 is only slightly violated. The values always stay below one, but 
within the interfaces they can become slightly negative, with amplitudes smaller than 10−2. The detailed time evolution of the error 
is shown in the Supplementary material, see Figure S3.

9. Discussion

Let us now briefly discuss some features of the model, in particular its connection to the published augmentations of the standard 
model (Boyer & Lapuerta, 2006), the implications of the EC condition for the freedom in choosing the mobility coefficients, and a 
summary comparison between the elliptic and standard chemical mixing approaches.

9.1. Relationship between the double-ditch augmentation and existing models

By introducing the double-ditch terms, we have extended the standard algebraic part of the multiwell potential with additional 
terms of the form 𝜆𝜂2𝑖 𝜂2𝑗 . These off-diagonal terms, rejected by Boyer and Lapuerta (2006), are added selectively, only for the 𝜔–𝜔
pairs (𝑖, 𝑗 ≥ 1). As shown in Section 6.1, the double-ditch augmentation preserves the EC condition for physically relevant two-
phase 𝛽–𝜔 states, while violating it only for the unphysical two-phase 𝜔–𝜔 states. This targeted violation is precisely the intended 
mechanism by which these spurious mixed 𝜔–𝜔 configurations are destabilized.

Specifically, in the ternary case comprising the 𝛽 phase (𝜂0) and two 𝜔 variants (𝜂1, 𝜂2), this augmentation takes the form 𝜆𝜂21𝜂22 . 
For comparison, in the same ternary setting, the following additional term in the free energy was proposed by Boyer and Lapuerta 
(2006) (see Eq. (38) therein): 

𝜆 𝜂20𝜂
2
1𝜂

2
2 , (64)

which we may refer to as a triple-ditch term. This penalization was originally introduced to eliminate non-physical minima of the 
multiwell potential that may arise outside the physically admissible region in the total-spreading regime. Numerical simulations 
reported by Boyer and Lapuerta (2006) demonstrate that a sufficiently large value of 𝜆 restores the non-negativity of the algebraic 
part of the free energy and constrains the evolution to remain within the physical range.

However, it is important to note that this augmentation does not allow relaxation of the condition (36) (Eq. (11) of Boyer 
and Lapuerta (2006)), which limits the allowable contrast in interfacial energies under total spreading. From this perspective, our 
double-ditch augmentation substantially broadens the regime of applicability of multiwell potential models.

Finally, we note that the triple-ditch term introduced by Boyer and Lapuerta (2006) – and its possible extensions to general 
multi-phase systems (cf. (Boyer & Minjeaud, 2014)) – could, in principle, be combined with the present double-ditch terms to 
suppress unphysical minima outside the Gibbs simplex and potentially further enhance model stability and convergence.
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Fig. 21. Selected snapshots from the 3D simulation. The top-left panel shows the initial condition. The top row (left to right) depicts the evolution 
of the 𝜔 variants, colored as follows: 𝜔1 in red, 𝜔2 in green, 𝜔3 in blue, and 𝜔4 in yellow. The rightmost column shows both the 𝜔 variants (top) 
and the distribution of the 𝛽 phase (bottom). The bottom row presents the subsequent evolution of the 𝛽 phase, proceeding from right to left. 
The simulation eventually reaches a steady state fully occupied by 𝜔3 (not shown). Each point is assigned the color of 𝜔𝑖 if the corresponding 
order parameter satisfies 𝜂𝑖 > 0.5. A video of the full simulation is available in the Supplementary material (see Movie M6).

9.2. Mobility coefficients

Let us now comment on the condition given in Eq. (28), which reads
𝑚𝛽 = 𝑀𝜅𝜅

−1
𝛽 , 𝑚𝜔 = 𝑀𝜅𝜅

−1
𝜔 ,

linking the mobility coefficients 𝑚𝛽 and 𝑚𝜔 to the capillary coefficients 𝜅𝛽 and 𝜅𝜔 via a common scalar factor 𝑀𝜅 .
In the case of an interface separating two pure phases 𝑖 and 𝑗, the effective mobility that governs the motion of the interface is 

given by 𝑚𝑖𝑗 = 𝑚𝑖𝑚𝑗∕(𝑚𝑖 + 𝑚𝑗 ) (Rezaee-Hajidehi & Stupkiewicz, 2020). For a system with 𝑁 equivalent 𝜔 variants, only two types 
of binary interfaces may arise: 𝛽–𝜔 and 𝜔–𝜔, with the corresponding effective mobilities

𝑚𝛽𝜔 =
𝑚𝛽𝑚𝜔

𝑚𝛽 + 𝑚𝜔
, 𝑚𝜔𝜔 =

𝑚𝜔
2

.

In our case, only one type of interfaces (𝛽–𝜔 interfaces) is physically relevant, while the other one (𝜔–𝜔 interfaces) is not. Hence, 
it suffices to properly characterize the effective mobility of 𝛽–𝜔 interfaces, 𝑚𝛽𝜔 = 𝑚𝛽𝑚𝜔∕(𝑚𝛽 + 𝑚𝜔) (note that 𝑚𝛽𝜔 is a physical 
parameter that can be measured experimentally, while 𝑚𝛽 and 𝑚𝜔 are the model parameters). This can be achieved by adequately 
adjusting the two mobility parameters 𝑚𝛽 and 𝑚𝜔 such that the condition (27) is also satisfied. This choice will imply an effective 
mobility of 𝜔–𝜔 interfaces, 𝑚𝜔𝜔 = 𝑚𝜔∕2. However, those interfaces are to be ruled out by the phase-field model as non-physical, 
hence the corresponding mobility is irrelevant. The resulting explicit expressions for 𝑚𝛽 and 𝑚𝜔 are thus given by 

𝑚𝛽 = 𝑚𝛽𝜔

(

1 +
𝜅𝜔
𝜅𝛽

)

, 𝑚𝜔 = 𝑚𝛽𝜔

(

1 +
𝜅𝛽
𝜅𝜔

)

. (65)

Equivalently, this establishes a direct link between the effective mobility 𝑚𝛽𝜔 and the proportionality factor 𝑀𝜅 as: 

𝑀𝜅 = (𝜅𝛽 + 𝜅𝜔)𝑚𝛽𝜔 . (66)

Thus, under our modeling assumptions, the constraint (28) still allows for arbitrary specification of the only physically meaningful 
mobility parameter, 𝑚𝛽𝜔.

9.3. Comparison of simple and elliptic mixings: strengths and weaknesses

In Section 7, we have proposed a novel chemical mixing formulation with the goal of ensuring compliance with the EC condition 
even in simulations involving a chemical driving force. This goal has been partially achieved: we have identified an elliptic mixing 
expression that indeed satisfies the EC condition for 𝛽–𝜔 interfaces.
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However, a drawback emerges at 𝜔–𝜔 interfaces, where the elliptic mixing introduces a spurious thermodynamic driving force. 
This artifact necessitates at least a weak double-ditch regularization in case of elliptic chemical mixing. In the absence of such 
regularization (i.e., for 𝜆 = 0), simulations using elliptic mixing tend to converge to non-physical solutions outside the Gibbs simplex. 
Additionally, elliptic mixing introduces extra nonlinearity into the system, which slightly deteriorates numerical convergence.

By contrast, the standard simple mixing formulation, due to its violation of the EC condition, inherently introduces an artificial 
chemical preference among the 𝜔 variants. Interestingly, when combined with a sufficiently strong double-ditch augmentation, it 
performs reasonably well in numerical simulations and thus remains a viable modeling option.

While we opt for the more rigorous elliptic mixing formulation, the choice between elliptic and simple mixing may ultimately 
depend on the specific application and the balance between physical fidelity and numerical efficiency.

9.4. Possible extensions

In the present model, we have considered the interface energy augmented by a double-ditch term, which promotes the separation 
of different phases, together with a chemical energy contribution that distinguishes the thermodynamically preferred phase. A 
natural extension is to incorporate elastic energy, where the total strain is decomposed into elastic and transformational parts, 
the latter depending on the order parameters. The elastic energy then becomes a function of the elastic strain, with stiffness tensors 
varying with the order parameters so as to capture the anisotropic elasticity characteristic of the individual phases. Such an extension 
enables the description of a rich interplay between chemically driven growth and stress-mediated interactions, ultimately leading to 
the emergence of non-trivial microstructures. We plan to use this model in the framework of the 𝛽→𝜔 transformation in titanium 
alloys in a subsequent paper where spatially inhomogeneous concentration fields will be incorporated, as we believe this to be 
essential for any meaningful comparison with experimental observations.

10. Conclusions

In this work, we have proposed a novel augmentation of the standard multiwell model for phase separation in an (𝑁+1)-
component material consisting of one parent 𝛽 phase and 𝑁 variants of 𝜔 phases. The proposed formulation allows for a numerical 
treatment of cases with an arbitrarily large contrast in surface energies between 𝜔–𝜔 interfaces (total spreading regime), whereas 
in the standard model the maximum achievable contrast is limited to a relatively small value. We have demonstrated – both 
theoretically and through numerical simulations in one, two, and three spatial dimensions – that the new approach can efficiently 
mimic the crystallographic incompatibility of contact between selected phases (𝜔𝑖–𝜔𝑗 , 𝑖 ≠ 𝑗) by introducing an energetic penalty.

The proposed multiwell model preserves the property of evolutionary consistency (EC), which ensures that purely two-phase 𝛽–𝜔𝑖
states do not spontaneously evolve into configurations containing multiple 𝜔 variants. Furthermore, we have introduced a novel 
chemical energy mixing formula – termed elliptic mixing – which is compatible with the EC condition and reflects the chemical 
equivalence of the 𝜔 variants. We have systematically compared the performance of the standard and elliptic mixing formulations 
in a series of numerical experiments, highlighting the advantages of the proposed approach.
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Appendix A. Equivalence of diagonal and off-diagonal forms of H and M

In Section 3, the capillary matrix H has been adopted in a diagonal form, see Eq. (8). Considering that in our setting the 𝑁
variants of the product 𝜔 phase are equivalent, matrix H is characterized by two parameters (𝜅𝛽 and 𝜅𝜔, see Eq. (10)) and takes the 
form H = diag(𝜅𝛽 , 𝜅𝜔,… , 𝜅𝜔). Upon enforcing the sum-to-unity constraint, the reduced matrix Ĥ is given by Eq. (15)2.

An alternative way could be to adopt the capillary matrix H̃ composed of only off-diagonal terms, 

H̃ =

⎡

⎢

⎢

⎢

⎢

⎣

0 𝜅̃𝛽𝜔 … 𝜅̃𝛽𝜔
𝜅̃𝛽𝜔 0 … 𝜅̃𝜔𝜔
⋮ ⋮ ⋱ ⋮

𝜅̃𝛽𝜔 𝜅̃𝜔𝜔 … 0

⎤

⎥

⎥

⎥

⎥

⎦

, (A.1)

characterized by two parameters 𝜅̃𝛽𝜔 and 𝜅̃𝜔𝜔 related to the 𝛽–𝜔𝑖 and 𝜔𝑖–𝜔𝑗 interfaces, respectively. Imposing the sum-to-unity 
constraint (1)3, the gradient part of the interfacial energy takes then the following form, 

∇𝜼 ⋅ H̃∇𝜼
|

|

|

|∇𝜂0=−
∑𝑁

𝑖=1 ∇𝜂𝑖
= ∇𝜼̂ ⋅ ̂̃H∇𝜼̂, (A.2)

with the corresponding reduced capillary matrix 
̂̃H = −𝜅̃𝜔𝜔 Î + (𝜅̃𝜔𝜔 − 2𝜅̃𝛽𝜔)𝟏̂⊗ 𝟏̂. (A.3)

The reduced capillary matrices Ĥ and ̂̃H, see Eqs. (15)2 and (A.3), are equal when the two sets of coefficients satisfy the following 
relation: 

𝜅𝛽 = 𝜅̃𝜔𝜔 − 2𝜅̃𝛽𝜔, 𝜅𝜔 = −𝜅̃𝜔𝜔. (A.4)

This proves the equivalence of the diagonal and off-diagonal forms of the capillary matrix characterizing the gradient part of the 
interfacial energy in our special setting of 𝑁 equivalent product phases.

Additionally, it can be checked that the above equivalence holds also for a capillary matrix composed of both diagonal and 
non-diagonal terms. Such a matrix would involve four coefficients, of which two would be redundant (linearly dependent), since 
the reduced matrix has only two distinct coefficients.

The above reasoning also holds for the dissipation potential and for the mobility matrix M, see Eq. (12) (note that matrices M
and H have the same structure). Accordingly, the diagonal and off-diagonal forms of the mobility matrix M are fully equivalent 
upon enforcing the sum-to-unity constraint.

Note that the equivalence of diagonal and off-diagonal forms discussed above does not hold in the general case of 𝑁 + 1 distinct
phases when 𝑁 > 2. The diagonal capillary matrix H involves then 𝑁 + 1 independent coefficients, while the off-diagonal matrix Ĥ
involves 12𝑁(𝑁 + 1) independent coefficients. For 𝑁 = 2, the two numbers are equal and the equivalence holds.

Finally, it can be easily checked that, in the case of the double-well potential considered in this work, the equivalence of diagonal 
and off-diagonal forms does not hold for the algebraic part of the interfacial energy. Interestingly, it can be shown that, in the case 
of the double-obstacle potential (Steinbach, 2009), the equivalence holds also for the algebraic part, provided the 𝑁 variants of the 
product phase are equivalent.

Appendix B. Conditions on the positive definiteness of the capillary matrix

The quadratic form ∇𝜼̂ ⋅ Ĥ∇𝜼̂ given by Eq. (13)2 is positive-definite if and only if the matrix Ĥ is positive-definite. To check this, 
one can apply Sylvester’s criterion, a necessary and sufficient condition stating that a matrix is positive-definite if and only if all 
leading principal minors are positive.

In the case of 𝑁 + 1 phases, the reduced capillary matrix has dimensions 𝑁 ×𝑁 and is of the form specified by Eq. (15)2. Let 
𝐻̂𝑗 denote the 𝑗th leading principal minor of Ĥ. To ensure the positive definiteness of the matrix Ĥ, the following inequalities must 
hold, 

𝐻̂𝑗 > 0 ⟹ 𝜅𝑗−1
𝜔 (𝑗𝜅𝛽 + 𝜅𝜔) > 0, 𝑗 = 1,… , 𝑁. (B.1)

Since 𝜅𝜔 > 0 (cf. Eq. (10)2), the general formula for the 𝑗th inequality takes the form 
𝑗𝜅𝛽 + 𝜅𝜔 > 0. (B.2)

Alternatively, after substituting Eq. (10), this leads to 
2𝑗

𝑗 − 1
𝛾𝛽𝜔𝓁𝛽𝜔 > 𝛾𝜔𝜔𝓁𝜔𝜔. (B.3)

As the term 2𝑗∕(𝑗 − 1) decreases as 𝑗 increases, the principal leading minor of the highest order (𝑗 = 𝑁) determines the final 
restriction. Thus, the condition for the positive-definiteness of the reduced capillary matrix Ĥ for 𝑁 + 1 phases is given by 

2𝑁
𝑁 − 1

𝛾𝛽𝜔𝓁𝛽𝜔 > 𝛾𝜔𝜔𝓁𝜔𝜔. (B.4)

This condition, under the assumption 𝓁𝛽𝜔 = 𝓁𝜔𝜔 (as follows from the EC condition, see Eq. (33)), yields the condition given in 
Eq. (36).
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Fig. C.22. Profile of 𝜂1 across a forced 𝜔1–𝜔2 interface (𝜂2 = 1−𝜂1). Right: zoomed view of the central region. Minor differences are seen only 
for 𝜆 = 0; for larger 𝜆, the two approaches yield nearly identical results.

Table C.1
Comparison of the effective interfacial energies 𝛾eff𝜔𝜔
(in J∕m2) obtained from simulations using different 
mixing functions, alongside the theoretical predic-
tion from Eq. (51).
 𝜆 Mixing 𝛾eff𝜔𝜔  
 simple elliptic  
 0 0.0220 0.0278 0.0220 
 5 0.1372 0.1382 0.1372 
 100 0.6060 0.6062 0.6059 

Appendix C. Effect of elliptic mixing on 𝝎–𝝎 interfacial energy

As noted in the main text, the elliptic mixing function is not constant along the 𝜔–𝜔 edge. Consequently, the assumptions used to 
derive Eq. (51) are no longer exactly satisfied. To quantify the potential error introduced by this inconsistency, we have conducted 
a series of one-dimensional numerical simulations of a forced 𝜔1–𝜔2 interface in the absence of the 𝛽 phase.

We compare the elliptic mixing function (58) against a reference case with constant chemical energy along the 𝜔–𝜔 edge, which 
corresponds to the simple mixing. Simulations were performed for three values of the regularization parameter 𝜆, using the material 
parameters specified in Section 8.2 with 𝛥𝐺 = −0.02GPa.

The interfacial profiles are plotted in Fig.  C.22. As shown, the difference between the two approaches is negligible for 𝜆 = 5 and 
100GPa. Only a small deviation is observed for 𝜆 = 0. The corresponding numerical values of the interfacial energies are summarized 
in Table  C.1.

We conclude that although the elliptical mixing breaks the assumption of constant 𝜔–𝜔 chemical energy, the resulting error 
in interfacial energy is minor and becomes negligible for 𝜆 ≳ 5GPa with errors below 1%. In all practical simulations, this 
approximation is acceptable and does not compromise the validity of the model.

Appendix D. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.ijengsci.2026.104474.

Data availability

One-dimensional numerical results are available through a Zenodo repository: https://doi.org/10.5281/zenodo.16882290. The 
numerical results for 2D and 3D simulations will be shared upon request due to the repository size limitations.
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