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Elasto-plastic post-critical analysis of disks under tension
Z. MROZ and M. KOWALCZYK (WARSZAWA)

IN THE ELASTO-PLASTIC analysis of disks within the small strain theory, a continuous displacement
solution may not exist and discontinuities in both velocity and displacement may occur within
hyperbolic stress regimes or along transition lines between elliptic and hyperbolic regimes.
To study elasto-plastic behaviour in the presence of discontinuity lines, it is assumed that an
additional constitutive relation exists between displacement discontinuity and interface traction
along a stationary discontinuity line. The general formulation is illustrated by a solution for an
axisymmetric disk, using both Tresca and Huber-Mises yield conditions. It is demonstrated how
the solution evolves from brittle to ductile response depending on disk thickness.

W analizie tarcz w zakresie sprezysto-plastycznym przy wykorzystaniu teorii malych odksztalcef
moie nie istnieé ciagle rozwiazanie opisujace rozklad przemieszczefi. Linie niecigghosci predkoscei
| przemieszezen wystepuja w stanach hiperbolicznych lub wzdhuz linii rozgraniczajacych elip-
tyczny i hiperboliczny stan naprezefi. W celu przeanalizowania sprezysto-plastycznego zachowa-
nia z liniami nieciagloéci przyjeto zalozenie, e nieciaglos¢ przemieszezed i naprezenia normalne
do linii nieciaglosci zwigzane sa dodatkowym réwnaniem konstytutywnym. Ogolne sformulowa-
nie zilustrowano na przykladzie rozwiazania tarczy osiowosymetrycznej z wykorzystaniem
cmrunkow Treski oraz Hubera-Misesa. Pokazano, w jaki sposob w zaleznosci od grubodci
zachowanie tarczy zmienia si¢ od kruchego do ciggliwego.

B apanuse JHCKOB B YOPYTo-IUIACTHYeCKoH oGNACTH, NPH HCMONbSOBAHMH TCOPHH MAIBLIX
aedopmaumii, MOMKET HE CYIIECTBOBATh HCNPCPBIBHOC PCILICHHC, ONMCHIBAIOLIEE pacmpesec-
nerne nepememiennii. JIMEAE paspeiBa CKOPOCTH H NepeMeIlcHAH BBICTYNAIOT B

HECKIY COCTOMHMSX JUIH BIOJH JMHWH, PRsAeAIONMX JUTHITHUCCKOE H FHNCPOOIHIECKOE
cocToAHust HanpskeHwi. C Ienbi0 NMPOAHANHIHPOBAHUA YIPYTO-ILIACTHNHECKOrO TNOBEICHHAA
¢ NUMHAMY PasphbiBa NPHHATO TPEINO0NKCHHE, HTO PA3pLIB mepeMellieHMit 1 HOPMATBHBIC
anpsOKeHHA K JIMHHH Da3phIBa CBASAHBI JOMOHMMTEBHBIM OMPEMeIFIOILIM YPABHCHHCM.
Obmaa (opMy/IHPOBKa MJUIOCTPHPOBAHA HA IpHMEpE PeUICHAEA OCECHM-METPHUHOIO JTHCKA
¢ mcrmonbs3oBaEMem yoaosmit Tpecka I'y6epa—Museca. TTokasamo xaxum ofpasom, B 3a-
BHCHMOCTH OT TOJNLIMHE], MOBEACHNE JHCKA HIMEHAETCH OT XPYNKOrQ X TATYHEMY.

1. Introduction

IN SOLVING boundary-value problems for elasto-plastic disks of a perfectly plastic material,
different stress regimes are encountered, namely elliptic, hyperbolic or parabolic. For
elliptic stress regimes, there are no real characteristics within the disk-plane, whereas
for parabolic or hyperbolic regimes there exist one or two families of stress and velogcity
characteristics. Velocity discontinuities may then occur along characteristics as a part
of the solution. Denoting by /lv, and Av, the normal and tangential velocity discontinuities
and by ¥, the normal velocity of propagation of the material element across the discontinu-
ity line S,, the discontinuity in strain components referred to a local coordinate system
(n, 1) is expressed as follows:

Av Av,
1. —- = '
( .1) Aa.,, V. 5 Ay., 7 ..

where the n and ¢ axes are normal and tangential to the line S,.

Aé‘" = 0!
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From the relations (1.1) it follows that when the discontinuity line moves with the
material particles (¥, = 0), the strain discontinuity tends to infinity. Such a situation
occurs in axisymmetric disks which have stepwise varying thickness or are rigidly constrained
at one of the edges. The solution for a rigid-plastic model then exhibits normal velocity
discontinuity along circumferential lines (cf. [1, 2]) or normal displacement discontinuity
in an clasto-plastic solution. Obviously, such a displacement or infinite strain discontinuity
may create doubt about the physical validity of the solution. In a series of papers, K. Szu-
waLkl and M. Zyczkowskl [3-9] introduced the concept of a decohesive capacity by
assuming that velocity discontinuity on a stationary material line or surface is equivalent
to local brittie decohesion.

In the present paper a different viewpoint is taken. It is assumed that an additional
constitutive relation exists between the rate of displacement discontinuity and the respective
traction ratc along the material discontinuity line. On the other hand, the usual flow rule
governs within domains of regular solution. Both geometric necking and material softening
or hardening can be ipcorporated into the localized discontinuity mode. This general
concept will be illustrated by solving an axisymmetric disk problem for both Tresca and
Huber-Mises yield conditions and for a perfectly plastic material model. It turns out
that the solution may exhibit both stable and unstable behaviour. A limit state is reached
when total decohesion occurs on the discontinuity line and a full plastic regime develops
within the disk. The present approach may be generalized to other cases and also to plates
undergoing both flexure and extension, on the condition that proper constitutive relations
are provided between rates of displacement discontinuities and the traction rates.

2. General solutions for elastic and elasto-plastic states

Consider an annular disk, uniformly loaded at its external boundary r = b and rigidly
supported at the interior boundary r = a (Fig. 1). Before going into the details of the
evolution of particular phases, we first present the general solutions in the elastic and
elasto-plastic regimes taking into account the decohesive zone.

2.1. Elastic solution

Denote by u(r, ) the radial displacement and by # = %‘its time rate of ohange.

Within the small strain theory the strain components are specified as follows:

du
@.1) o s -a,-%.
As there are no body forces, the equilibrium equation is
do, 0, —0
2 r r [} -
22 ik e 0,

where o,(r, 1) and o,(r, 1) are radial and circumferential stresses. In writing Eq. (2.2)
we neglect the thickness variation of the disk since Eq. (2:2) is valid for generalized stresses
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FiG. 1. a) Zones in the disk of elastic-perfectly plastic material. b) Mode of deformation in the focalizoion
zone.

N.=aH N, = a,H(where H denotes the disk thickness and {; < a). In subsequeint

analysis, the thickness variation will be considered only within a narrow decohesive zone
in the vicinity of the edge r = a. Hooke’s law provides the relations

1 1
(23) E = ? (Gr _val)y & = _E_ (U,—‘l"ﬂ,.),

where E and » are elastic constants. Solving the system (2.1)-(2.3) one obtains

1

1
Ur=Al_A2?', 0',=A;+A;-;2—,

(2.4)
u= ——;— ((1 —?)Al r+ (l +’)A3 %)s

where 4,, A, are integration constants.
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-2.2. Elasto-plastic solution

Let us consider two yield conditions, namely Tresca (T) and Huber-Mises (HM),
for which solutions will be discussed independently.

2.2.1. Tresca yield condition. In view of the equilibrium condition, the stress state G, = 6o,
o, < o, represented by the side 4B in Fig. 2 cannot exist. Hence the elasto-plastic state

—_— — 52 —
100 - &
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v 75
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Stress 6,6,

FiG. 2. Tresca and Huber-Mises -yield surfaces,

should correspond to the side BC of the Tresca hexagon for wich o, = o,, o, < o, (cf.
Fig. 2). The,equilibrium equation (2.2) then provides

_ 1

(2‘5) Ul‘ = 00+A3 _'r_’ g, = Ug,

where A, is an integration constant. The associated flow rule now provides

§ e (B 9)

. r = -r E r /s

(2.6)
b= irit=— @)+ 1-L o Lo —reyrl

For progressing plastic flow, Eqs. (2.6) can be integrated to yield

2.7 & =g, &==¢+4, A=4¢
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and, in view of Egs. (2.3) and (2.5), we obtain

28) U= —‘((l —=v)oor+As(inr—v)+4,)

with a new integration constant A,.

2.2.2. Huber-Mises yield condition. The Huber-Mises yield condition is satisfied by using
the stress representation

@9) o= aoeos(w + %) 0 =

2 0o COS (w— i
V3 3’ .6)’
where w is a stress parameter specifying a stress point on the Huber-Mises ellipse (cf.
Fig. 2).

(2.10) f=d}+0i—0,0,—05 = 0.

The stress field is therefore specified by providing a function w = w(r, ). From Egs.
(2.2) and (2.9), one obtains

@11) . = As(eTesinag)

with the constant 4, to be determined from a boundary condition. This stress distribution
occurs within a plastic zone developing from the interior edge before the decohesive process
initiates. This initiation starts once the stress path reaches the parabolic point S, (cf, Fia. 2),
It can be expected that the primary plastic zone is small, as was shown in [4]. There!
when using the Hencky-llyushin deformation theory, this primary zone was neciecie
in [4] and the secondary plastic zone developmg after the decohesion process was taken
into account.

Let us present briefly the formulation of the deformation theory and specify the displace-
ment field associated with the relation (2.11). We have

&—8&y _ 20,—0y A 0, +0,
£ — Ep 20,—0,’ " 9K

(2.12)

where K = E/3(1—2v) is the bulk modulus and ¢, denotes the mean volumetric strain.
Using the compatibility condition

a s
2.13 B —
( ) E'f (ref) &
the following differential equation is obtained from Egs. (2.9), (2.12) and (2.13):

@.14) 38* .

'/_
from which it follows that

(2.15) 5, -

2 cos(w+--3—;-) +A, eV
3Ky/3 6]
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The displacement field is obtained from Egs. (2.15) and (2.11), namely

]/3_00 0.5
Ajo, 4 S A0S e
(2.16) u= -—ﬁ/—%— cos (m-l- —-6—)(e‘/3 sinw) +A3A4( — )

with the constants A, A4 to be specified from the boundary or continuity conditions,
When the associated flow rule is used, the strain and stress rates are related by

; ; ; | g "
(2. 17) (8,— E (0',—?0',)) (261' = Ur) = (8, - 'E' (0', —!"O',.)) (20'1' - t:"'l)
which results in the following equation for &:
5 08, T. _ 2000 1 sinw
2.18) o -V3& = V3 (Tasinw + 3% )

where G = £/2(1 +v) is the shear modulus. The solution of this equation will be obtained
numerically. Tn view of the relation (2.11), Eq. (2.18) can also be presented in the form

. . . ! -1
- [ 2000 (1 sin'e =. . _i) _
(2.19) = [_-_-__}”37 (46 e V3 ésinw | (reosfw 2

2.3, Decohesive zone

For the Tresca material an elasto-plastic solution satisfying the condition u = 0 at
r = g does not exist since the stress state in the plastic regime must correspond to the side
BC for which f; = o,— 0, = 0. When the first plastic flow occurs at r = a and for the
side AB 0, = 04, 0, < 0y, at the subsequent instant we must have o, = 0, = gpatr = a
since the final plastic zone corresponding to the side AB cannot exist. The elasto-plastic
solution can only be constructed by assuming the displacement discontinuity u = uy
at r=4a. .._

On the other hand, for the Huber-Mises yield condition a continuous elasto-plastic
solution for a-compressible material (v < 0.5) can be constructed with the respective
displacement field satisfying # = 0 at r = 4. A primary plastic zone will first develop
at the interior edge r = a. When the stress point representing the stress state in the plane
o,—0, for r = a approaches the parabolic point S, (cf. Fig. 2), the radial strain &,(a)
increases rapidly, tending to infinity when o¢,(a) = 0.50,(a). This means that a regular
elasto-plastic solution no longer exists. For the case » = 0.5, the parabolic point is reached
by the elastic stress path (cf. [4]). ‘

Physically it can be expected that a localized flow zone (or decohesive zone) occurs
near the edge » = a. Denote the stress for r = a at the onset of decohesion by o*(a) and
f’? (). Our &I'lalysis is based on a simplified description of this zone starting from the follow~
ing assumptions. e

'For simplicity, assume that the axisymmetric stress state is approximated by the plane
strain state occurring within the plane r, z. Moreover, it is assumed that the localization

gl H
rocess i i
p develops within the zone @ < r < a+ > The stress state is assumed as uniform

in this zone(?).

(') This approximation is discussed in more detail in the appendix,
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Figure 1b presents the mode of deformation in the localization zone. The slip surfaces
GE’ and GE" are inclined at 77/4 with respect to the middle disk plane. Two rigid material
portions GE'F’ and GE"F” are sliding along slip planes toward this plane, thus inducing
local thickness reduction. The cross section 4’4" of constant thickness is displaced by w,.
It is seen that the reduced thickness 4 is related to ug, h = H—2u,. The stress state 0*(a),
o7 (a) is uniform in the decohesive zone. Thus the stress states in the cross sections F*F”
and E'E" are the same, whereas the radial stress in the cross section A’A” follows from
the condition of equilibrium of radial disk forces, so that

O (A'A") = a,‘(a)(l—2%), Uy <
(2.20)
0,(4'A") = 0, Uy >

el b

Further, we assume that the cross section 4’4" constitutes an “edge” for the remaining
disk portion where a regular solution exists; thus the boundary conditions for this solution

are specified in the form _
a,(a) = a(A'A"),
u(a) = u,.

2:21)

As it follows from Eqgs. (2.20) the radial stresses (2.21) at the disk edge constituting
the boundary stresses for a regular solution will diminish to zero in the course of the
decohesion process. Thus local unloading occurs near the interior cdge.

We now discuss the details of the solution for this new boundary-value croblem.

3. Elasto-plastic solution taking into account the decohesive zone

In this section, we shall discuss the details of the elasto-plastic solution taking into
account the softening zone at r = a due to localized plastic flow.

3.1. Elastic solution

Within the elastic regime, the boundary conditions

G.D u(@ =0, o()=p

are sufficient to specify the elastic solution (2.4). The integration constants follow from

the conditions (3.1), namely

. (1+v)pb? A, = — —(1=v)pa’?
(1+9)2+(1—v)a®’ 2 (1+9)b2+(1-va* ~

The elastic solution ceases its validity when the stress state at r = a reaches the yield

surface. The value of p corresponding to the onset of plastic flow is given as follows:
Tresca yield condition

(3.2) 4,

(3.3), pr= —;{’,— (+9)b* + (1-9)a),
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Huber—-Mises yield condition

To
= ————————— 1+ b3+ -y dz -
(3.3) Pam 2y T—viv b? ((1+») (1-v)a®)

3.2. Elastic solution with the decohesive zone

For the Tresca yield condition or for the deformation theory (2.12), we assume that
subsequent plastic flow is localized in the cohesive zone

when Eq. (3.3) is satisfied, the
e displacement discontinuity ug(a) satisfies the softening

near the edge r = a, so that th
condition {2.20). Setting

(3.4) oy (a) = g,
for the Tresca material and
- a
(1".\ 0’:(&) = -——__—o__—_—
Y1-v+v?

for the Huber-Mises material, the constants A, , 4; can be determined from the relations
(2.20), (2.21) and the condition ¢.(b) = p. We obtain

Ay 5= %(E—[;i +(1+v)o,¥(a)(1-;2-f‘k‘—)),

Ay = -"; (E_‘:;‘-—(l—v)of(a)(l—z%)).

In the course of growth of u,, the radial stress decreases in the vicinity of r = @ and the
circumferential stress increases. A plastic zone may occur near the internal edge before the
decohesive process énds, or the decohesive process may end first and full separation between

the disk and the hab’ then occurs.

3.3. Elasto-plastic solution with the decohesive zone

_ Consider the case when the plastic zone starts to develop first. The constants 4,, 43,
As, A, occurring in Egs. (2.4), (2.5), (2.8) or (2.11), (2.16) and the radius ¢ of the plastic
zone are determined from the conditions (2.20), (2.21), the condition ¢,(b) = p and the
continuity conditions at r = g: u*(0) = u”(0), o7(¢) = of(¢) where e and p denote elastic
and plastic solutions respectively. Moreover, the yield condition should be satisfied by the
elastic solution at r = p, thus of(¢) = of(e). The integration constants now become
Tresca yield condition

(E—"-%(QHHP)G!(Q)).

(a.) 1= (EX9 _-norea),
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A3 = —2(70 "q;;"‘

d

Ay = Eug— (1 =¥)0pa+20, “;‘{ (Ina—v).

The end of this phase occurs when the decohesive process ends (us > 0.5H) or the whole
disk becomes plastic.

Consider now the case when the disk becomes plastic before the termination of the
decohesive process. Then only A4,, and A, occur in the solution. They are determined
from the relations (2.20), (2.21) and the condition &,(b) = p. For the Tresca material,
we obtain

auy
H L

Ag = -‘20'0
3.8)

‘T;,‘ (Ina—v).

The process terminates when total decohesion occurs (#y = 0.5H) and the disk passes
into the limit state.

We see that various sequences of development of different phases of deformation can oc-
cur there. They depend on the geometric parameters of the disk, that is, ratios b/a and a/H.

Ay = Euy— (1 —v)opa+20,

3.4. Numerical elasto-plastic solution for the flow rule (2.17)

The incremental numerical procedure is applied for the case of the Huber—Mises yield
condition and the associated flow rule. The primary plastic zone P, (a < r < p,), for which
g, > a,, & < 0, develops near the edge r = a. The stress and displacement fields are
calculated in this zone by integrating Eq. 2.19 numerically, which can be rewritten in the
form

f v —1

. o ,
39) ?_(f;_) - [ M;/»; (_4% . _3K£) +V3 (As.;)sinwl ( fo- \ )
where de,; and 4w, are increments of ¢ and w at the consecutive integration step. This
equation can be integrated within the plastic zone @ < r < p, using the explicit Eulerian
scheme. Next, the displacement increment Au; can be calculated, and the elastic solution
in the domain g, < r < b is updated accordingly. When ¢,(a) tends to large values, it
indicates that the decohesive process starts and the stress point approaches the parabolic
point S,. Next, decohesive deformation develops and, consequently, elastic unloading
occurs near the disk edge. The secondary plastic flow within zone P, occurs for o, > d,,
&/ > 0 with the plastic zone spreading from the edge r = a. If the decohesive process
ends first, the calculation is continued until the whole disk becomes plastic.

4. Examples

A set of examples was solved for both Tresca and Hubert-Mises yield conditions
associated with the deformation or flow theories. Table 1 presents the material constants
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and geometric parameters used in the particular examples. Table 2 presents the sequence
of development of particular regimes within the disks considered.

Figure 3 presents the dependence of the external loading p/s, on the displacement
of the loaded disk edge r = b for the parameters bja = 4, a/H = 300, y = 0.3, 0o/E =
= 0.001. The results correspond to the Tresca yield condition and the associated flow
rule. It is seen that the elastic phase with decohesion corresponds to stable behaviour.
However, the clasto-plastic phase with decohesion is unstable, and the quasi-static deforma-
tion process should occur under displacement control. After total decohesion (s,(a) = 0,
#g > 0.5H), the subsequent development of the plastic zone is stable until limit state 4
is reached. Figure 4 presents the evolution of the stress state within the disk at consecutive
stages. The interior edge first becomes plastic when the stress point i reaches the side AB:
@, = 0y, 0, < do. However, when the decohesion process develops, elastic unloading
occurs in the vicinity of the edge r = a, and subsequently the material becomes plastic
at the state represented by the side BC: o, = 0,, 0, < 0o. During decohesion, the stress
point at r = @ moves to C and total decohesion occurs.
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FiG. 5. Relation between disk loading p/o, and edge displacement for the Huber-Mises yield condi:iu_n

and the deformation theory. Disk parameters: bja = 4, a/H = 300, v = 0.3, go/E = 0.001. /-2 clastic

.deformation with decohesion, 2-3 elasto-plastic deformation with decohesion, 3 clasto-plastic deforma-
tion after decohesion.

" Figure 5 presents the load-deflection curve for the same disk pararr‘nctcrs but for ﬂTc
Huber-Mises yield condition and the deformation theory. Similarly as in [4].‘ the plastic
flow prior to decohesion was neglected, and hence the sequence of phases is ic sutmc
as in Fig. 4. Figure 6 shows the respective stress evolution for the Huber-Mises yield
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@ > g1, with decohesion, 5-6 phase of decohesion after total plastic flow.

[474)



4i 3i
e
50 48 Se
ls:
1004
3g'
e
e
v 2e
® 0.75-
v 1e
a
o
a
0.50-
&
i
0.25-
000 70 025 050 075 100

Stress 6:/6

Fic. 8. Stress evolution in the disk during consecutive phases for the Huber-Mises yield condition and !.he

associated flow rule. Disk parameters: bja = 4, a/H = 300,v = 0.3, 6o/E = 0.001. i — points representing

stress states on the interior edge r = a, e — points representing stress states on the exterior edge r = b,
g, — points representing stress states at the interface between elastic and primary plastic zones.

1.00 ]
bla=8 |
o DJ’Q"S
4
o 0.751 Ty
g ‘;
}
8
0.501 Lbla=2
0.25-
0.004 . . .
0.00€+00 150E-03 3.00E-03 45DE-03 6.00E-03

Displacement ulblfa

FIG. 9. Effect of the external disk radius on load-displacement curves for the Tresca yield condition and the

associated flow rule.

Disk parameters: a/H = 400, v = 0.3, o,/E = 0.001,
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condition and the deformation theory. It is seen that both the Tresca yield condition
with the associated flow rule and the deformation theory demonstrate similar behaviour,
as there is no effect of plastic flow preceding the decohesion process.

Figures 7 and 8 present the solution of the same case but for the Huber-Mises yield
condition and associated flow rule taking into account the plastic zone P, deVeIOping
before the initiation of decohesion. It is seen that the load-displacement curve does not
exhibit an unstable portion that was predicted for the Tresca yield condition or the deforma-
tion theory. The segment 1-2 in Fig. 7 corresponds to the development of the primary
plastic zone, with the stress point representing the edge stress moving from 1i to 2i in
Fig. 8. The radial strain increases rapidly when 2i reaches the parabolic point S, , and next
the decohesion process starts to develop. The decohesion process induces unloading in the
vicinity of the interior edge and during the phase 2-3 the interior stress point again reaches
the yielo surface at 37 (Fig. 8). Note that at 3i we have &2 > 0, &/ > 0, that is, 3/ corresponds
to the clliptic regime. During the phase 3-4 the secondary plastic zone spreads, so at 4i
it is equa: to ihe primary plastic zone. Moreover, the stress solution passes through the
parapche comt S. and enters into the hyperbolic regime for which &/ < 0, & > 0. Further
decohesion induces translation of the edge stress point to 5i and 6i for which ¢,(a) = 0.
Al stage 5 tho whole disk becomes plastic and the phase 5-6 corresponds to decohesion
plastic flow of the whole disk. In Fig. 8, the stress is shown at the point g, corresponding
to the interface reached at the end of primary plastic flow. Due to the complex history
of plastic flow, the instability is exhibited only during the phase 5-6. Note also that the
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deformation theory.
Disk parameters: bla = 4, a/H = 250, co/E = 0.001,
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sequence of phases is now different since the decohesion process continues during the whoje
period of deformation and full plastic flow of the disk precedes the end of the decohesion
PFO‘;ZR 9 presents the effect of external disk radius on the load.-d.isplacemcnt Fllrvés.
It is seen that for b/a > 2, the load-displacement curve not only exhibits unstable, displace.
ment controllable portions (p < 0, #(b) > 0), but also unstable and uncontrollable portions
(p < 0, u(b) < 0). Further, the onset of decohesion doe.s not correspond to maxima]
load: for larger values of b/a the limit load is usually higher than the_ load' associated
with the onset of decohesion. Figures 10 and 11 present the effect of disk th.l-:fkness. As
expected, thicker disks exhibit more ductile behaviour and a very short tra?lsmon to the
limit states, whereas thin disks behave in a brittle manner. Both the Tresca yield condition
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FiG. 13. Effect of Young’s modulus on load-displacement curves for the Huber-Mises yield condition
and the deformation theory,
Disk parameters: b/a = 4, alH = 250, v = 0.3,

and the deformation theory predict similar responses. Figures 12 and 13 illustrate the
effect of varying Poisson ratio and Young’s modulus. It is seen that the decohesion stress
and elasto-plastic response depend on the elastic moduli.

The present paper, though concerned with a simple example, presents a method for
solving elasto-plastic problems takin

| : g into account post-critical states, Since the 1aTg¢
deformation process is confined to a narrow cohesive zone, its effect on the whole structur®
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is described by formulating a constitutive relation between the respective traction and
displacement discontinuities or their rates. A complex character of plastic deformation is
demonstrated in the analysis. A primary plastic zone is followed by unloading, and a second-
ary plastic zone appears near the edge and propagates throughout the whole disk.

The present analysis also indicates that the assumption of brittle decohesion used
by SzuwALskl and ZYCZKOWSKI in [3-9] may not be justified in all cases. According
to the conclusions reached in [3-9], brittle decohesion occurs independently of disk thickness
once the stress point has reached the parabolic regime S, on the yield surface and the disk
is fully elastic at this state. The subsequent eclasto-plastic deformation process occurs after
the separation of disk and hub. However, the present analysis provides different conclusions.

Depending on disk thickness, at the state of decohesion the disk may be in elastic or
elasto-plastic stress regimes. The size of the plastic zone near the edge r = a increases
with disk thickness. As it follows from Fig. 12, the value of the Poisson ratio » does not
affect the load value corresponding to the end of decohesion but affects the value of displace-
ments of external edge r = b. _

In general, the onset of decohesion may be followed by both stable or unstable response,
8o the complete elasto-plastic analysis should be carried out in order to describe the structu-
ral response. Disk thickness H is very essential in this analysis since the decohesive ductility
specified by the conditions (2.21) depends explicitly on H. As it follows from Figs. 10
and 11, the load-displacement curves are much dependent on the ratio a/H.

The present analysis and method may be generalized to more complex loading cases
involving both extension and flexure, and also to nonaxisymmetric cases. These cases are
now being studied within the set of assumptions outlined in the paper.

Appendix

To assess the error introduced by assumption of stress homogeneity near the edge
r = a, consider the elastic stress state. From Eqs. (2.4) and (3.2) it follows that

e (‘H—%) 1 a?
—e i ] =) —— -
or(a) 2 +1"+( 'P) a+ f:f_ 2 »
2

H

“r(“*?) 2 & ]

= — 1=l =) —— ———
0.(a) »| ! (a+ “?‘)zj

H H
and since H < a, there is o, (a+ T) % 0, (a) and g, (a+ 7) % o,(a). The departure

from homogeneity did not exceed 0.5% in the examples presented.

When the primary plastic zone exists before the decohesion process, then, depending
ony and H, the decohesive zone may lie totally or partially within the plastic zone. Assum-
ing that for a sufficiently thin disk the decohesive zore lies within the plastic zone, then
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the stress profile near r = a would lie on the yield curve in Fig. 2 between A and S, . Hence

H
the maximal difference’ between o, (a+ —2~) and o,(a) cannot exceed 17Y%,.

The derivation of Egs. (2.20) follows the assumption of the plain strain state. For the

axisymmetric case, the slip lines would not be straight, cf. [10]. However, the error involved
with our approximation is insignificant for relatively thin disks (small values of H/a).
Moreover, any other relation between a,(4’A"") and u, could be uscd in the analysis without

any conceptual difficulties.
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