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SUMMARY

An important problem in structural dynamics is concerned with the analysis of struc-
ture behaviour under dynamic pressure or impulsive loading in the inelastic range. To sim-
plify this analysis, models of rigid-plastic, non-linear elastic, or non-tinear viscous mate-
rials have been used. For such simplified models, the permanent mode motions exist,
u(x) = w(x)- F(f), and correspond to solutions of non-linear eigenvalue problems. Such
mode motions were investigated by Martin and Symonds Proc-ASCE 92, EMS, 43 (1966),
Lee and Martin, ZAMP 21 (1970), 1011, and others. It was shown that mode approxima-
tions provide reasonable prediction of finite deflections even in cases when initial transient
behavior precedes the mode motion.

The aim of this work is to study optimal synthesis of beams and plates which are sub-
jected to initial impulses of given kinetic energy or dynamic pressure loading. Such form
of a structure is to be determined for which mean or local final deflections are minimized
for given material volume and prescribed kinetic energy of the initial impulse. Starting
from mode approximation, it was shown that maximization of the eigenvalue of mode so-
lution leads to minimization of the mean deflection and the problem of maximizing this
eigenvalue can be used as a major criterion in generating optimal design solutions. On the
other hand, for minimization of a local final deflection, the numerical search technique
must be applied. In particular, it was shown that for perfectly plastic structures the static

criteria of op on a concept of a simultaneous failure mode are not di-
rectly applica ynamic loading and the significance of one-degree-of-free-
dom modes In the case of dynamic pressure loading, the piecewise

mode solutions were applied in the range of moderate pressures in order to determine op-
timal designs. A direct variational approach or optimal control theory are useful tools in
deriving optimality conditions and relative numerical methods.

Examples of beams and circular plates are considered in detail in order to illustrate
general results reached in the first part of work. Designs with continuously varying and
piecewise constant cross sections were considered and their effectiveness with respect to
unifarm designs was studied. Non-unique mode solutions were found to exist in rigid-
plastic structures and coexistence of several modes was theoretically observed for some
ranges of design parameters. The present work constitutes the first step towards rational
synthesis of inelastic structures and the presented approach may prove too simplified since
no constraint was imposed on the acceleration of motion which is of essential importance
in damping of impact in vehicle structures. However, there is a large class of problems
(for instance, in nuclear technology), where plastic damping capacity of a structure should
be utilized without necessary constraints on accelerations. For such cases the present for-
mulation may be useful in determining rational designs of flexural structural elements.
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1. Introduction

One of egsentinl problems in structural dynamics is zational synthesis of structural
elements subjectad to dynamic loads and in particular pressure or impulsive loading.
Due to ability to plastic deformation, the structure may mbsord imposed kinetic energy
through plastic dissipation mnd the rational synthesis should be aimed at utilization
of maximum damping oapacity of the struoture, The present papsr is aimed at discuseing
such optimal design conditions,

A problem of optimal synthesis of etructures subjected to dynamic loads has not so
far been widely investignted. Due to complexity of mechanical behaviour under different
loading conditiona, the general optimality oriteria whioh could be applied im any parti-
cular case are not likely to be derived. It is therefore natural to consider firest some
simpler onges of loading in order tocbtain better ineight into the problem, If the stru-
oture executes the steady siate vibrations induced by cyolically varying loads, the epti-
mal design may be aimed at minimizing material volume or structure cost for preseribed
maximum amplitudes of vibratiens /1, 2 /. For tree vibrations of a linear elastio stru-
cture, the optimnl design is usually constrained by specifying one or saveral free
frequencies,/3/.

In this paper, we shall discuss the optimal synthesis of nonlinearly-viscous and
rigid-plastis structures subjected to dynamic pressure loading /pulse loading/ or impul-
sive loads when some kinetic energy is-introduced during short initial inetant and the
strustures executes a free motion afterwards., For viseous or plastic structures the
subsequent motion will be monotonic until final reset, resulting in permanent deflestions.

We ghall consider such onses when motion ocan be presented in a mode form
uy/x, Y/ = W /348 Y

during the whole peried of motien 0% tté ts) Or as a sequence of different mo%o motions

4 2
R N L RN T R W VY ]t r2/

lasting over finite time intervals. The eecond representation is ueeful in eoneidering
the oase of pressure loading, whersas the permanent moede representation /1/ will be
applied in eanalysing the case of impuleive lomds. It will be shown that in the latter
cage the problem of free motien ocan be reduced to a nem-limear eigenvalue problem and

optimization will be aimed at determining such design for whioh the mean or local def-
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laoctionis minimized for given initial kinetie energy Ko'
2. Imulsive loading. formulation of the problem

Consider a nonlinemrly-visocous material for which the viecous potential is a homoge-
neous funotion of order m+1 of strain rates, that is
LL(%}: SG\jdaJ 73/

where ij' denotes the viscous strain rate and 0<m 41, The diseipation function is
expreased as follows

D(EI:,)Z G«‘a'év'j = %L%h>,_: (m-k’l\ L*L(‘2\3> /4/

Lot us note that for m=0, the diesipation function ie homogeneous of order one of strain

<5

rates, D(‘ij )= w ({“'35 o In this limiting oaee, the viecous materiml becomes a ri-
gid, perfeotly plastic materiml, Fig 1,
Aseume the velooity field to be presented in the form /1/, that is
G ()= Ve 00) () s/

and the corresponding strain rate, siress &.y , and acoeleration fielde LL.( x.iJuro

£y k)= @y () () A lxok )= vV G,

Suy (A) = 55 (x) 47 (%) = cb“(;&)%jil 7%/
The equations of motion now takes the form
m DS, ]
$ —,073" -gvad =0 /1

and the function 43(*7\ should satisfy the condition

b+ X" =0
? /8/

where A is an eigenvalue of the medal motion and the mede V. (X) is an aigenfun-

etion, Integrating /8/, we obtain

P b, - (AR s/

where 4’0 denotes the initial value of d>(7‘:) at t = O, The impulee induced motion

terninates at t = t, when § = 0, thus

7 o/

Aesume that at the initial inetant t = 0 the initial velocity fiels is imparted to the

structure  tx (x,0)= Vi) &, such that the kinetic eneray K ig given. Thus
o .



L 2/4

Ko= (teiwddV= %Ség\uv;c{\/ 11/

The mean displmcement at the end of motion can be expressed as follows
5 £ ot 2z, )¢
a=63mwdvﬁ=gzwwAﬁzi(M*W¢=L?rL§§&wt=
GRS Rt L. /12/

Po G-mya2 ¢,
Let us note that we can set &,=4 and then /12/ becomes

L 4
o= (2K,
() 2050 )

It is seen that the maan deflection is minimized when the eigenvalue "N\ is maximized
for the claas of structure designs preserving constant volume of material. Alternatively,
the value of (- may be specified and a design minimizing material volume is to be deter-
mined. Such formulation of the problem will be discussed in the next section.
Let ue note that for a linearly viscous material, m = 1, from /8/ we obtain

= ¢, -exp («WED o
and tf—voo s Whereas 1'4 = 4"’/’7\2 « On the other hand, when m = O, the nonlinearly-
viscous material coincides with a rigid, perfectly plastic material and the siructure

undergoes a motion with constant negative mcceleration, Fig, 2

$= & Nk,
/15/
The equations of motien /7/, after using /8/ take the form
oy vy A0 16/
and the principle of virtual work gives
S sy efﬂv 4V = (en® NEIVANLVAS .

where ef\ﬂ- (,4\,\/:(x)denoto the kinematically admissible velocity field and the correspon-
K
ding strain rate field. When €.;=¢€.;, from /16/ we obtain

S D Cé.&j) dV = e S g VAU AV

/18/
The eigenvalue 2 oAn thus ba determined from /18/
2 §D (éeg)dV
S qvave =V 119/
and the following funetional
M= SU(es)dV = & Sevevaay »

attaing Aan extremum in the clase of kinematically admissible velocity fields.

Extremum of || was first shown by Lee and Martin / 5 /.
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3. Optimization problem for beams and plates
Let ue restriet our discussion to sueh structures as baame and plates for whieh
generalized etracses Qi and strains q; onn be used instead of 5:5 and EA() « The dikei-

pation funotion and the constitutive relations now have the form

D4 k)= Al Qo= T3 4k r21/
for instance,for the oase of beams of width B and height h, oGations /21/ take the form
cB K2 Pl <3 ne2 .
= k R S, ~
D a2 )y 2N ! M= (razyon+a h i< ) /22/

where M and k denote the bending moment and the ocurvature and o is a material oenstanmt,

Using mode representation

Wi £ = v d () 723/

instead of /19/, we have
el STENA)AA
SguvavehdA 724/

and the mean final deflection equals
1
2
2 i
T = ot d - 2 Ko
s [S wi(x ot ) h H} \/——g (————2_‘“)7\2 Jo5/

The optimization prodlem will thus be formulated me followa: for specified kinetic ener-

& Ko imposed by the impulse, minimize the mean or local deflestion for a structure of

fixed volume or matarial cost, thue
minimize W or v,

. /26/
subjeot to K = S% SUVLhd A = K, V= S\«dﬁé vo

In view of /24/, it is seen that inetead of minimizing w, we may maximize 7\2 or maximi-
ze the total rate of dissipation, thus
mAximize SDOZQI,J) d(h)dA = 6““) S L (CL4 v h ) 4R

/21
subjast to K= % S hg veus dR = Ko | SL\A\A EAVA

The formulation /27/ is mimed at finding the structure of maximal damping ompacity. In
order to derive the optimality conditions, let us introduce Lagrangian multipliers n
and v and consider the following funotional

34 )= QUG R EA -7 [Stehvaviad — k|- [ ShaA-Vel

whoae variation with respest Yo d . and V. equals
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£ = g;th 56 dA + (2 shad - (hgvaoucdA - w §3hd A - g (sguivi BRhdA0

~<h
/28/
2
Identifying the Lagrangian multiplier /VL with A and using the virtual work prin-
oiple ~
S%u S A - A Skg va3uedA =0,
9~ /30/
we arrive at the stationarity conditions
%«% R Esveve - =0
/31/

These stationarity oriterim apply when infinitesimal variation of the design variable
involves infinitesimal variation of the form of mode, Such smooth variation of modes

can be expected for non-linear viecous etructures, However, for a rigid-plastio material
the abrupt ohange from one te the other mode form may eocur and the conditions /31/ de

not apply to such cases.

4o Rigid-plastic structures, Examples

Coneider a stepped beam or plate of thicknesses h1 » by, h3' ves nnd steps of lengths
ghown in Fig. 3. Considering the case of impuleive loading, we raquire that optimal deei~
gn corresponds to minimum of local deflection at beam or plate center ¥y OT mean defle-'
ction %, subject to the sondition

V=2Bt/;h1 +/b-l\/h2+/1-b/h37=\r°
k=2 Cevdx =g
o o
Considering mode motion, let us assume that plastic hinges may ocour at ende of segments
and at the beam center. A detailed analysis of equations of motion is presented in / 5 /.

Here, we quote only some results, Introducing the non~dimensional quantities

@ _ A % h h=
A= G, /’S =T £ = L = ‘ﬁ“ ' = T;
the final deflection at the beam center can be pressnted in the form
16 L7 Ko -
w (oot = A Flot, o, %, 3 ) /29/

and similarly the mean deflection is proportional to the funection 6= G/ulﬁ.xﬂi

By varying the design parambters, we may study the effectivensss of particular designs.
Figss 4 and 5show the variation of F and G in function of A and ¥~ for a two segment
beam, It is smen that forf,f %‘ﬁf*the ocoexistenme of all three modes may occur and opti-
mal deeign corresponds to a one-degree of freedom mode with plastic hinges at segment
ends, Similar raeults were obtained for stepped plates. Thay indicate that static conce-

ptes of design may not ba appligable in the dynamic case,



The case of pressure loading hae been treated by ueing the rapresentation /2/, that is
asguming mode forms to occur at consecutive time intervals, Particular solutions obtai-
ned indioate that one degree of freedom modes are esgentiml in deeign since the final

detleotions despend mainly on these modes.
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