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FUNCTIONAL NANOCOMPOSITE COATINGS 
Nanocomposite TiC/a-C(:H) coatings 
MoS2-Ti- coatings 
Oxide coatings –V2O5, 

Functionaly gradied materials (FGM) 
 Cu-Al2O3- systems, Al2O3-NiAl  

thruster chamber 
exhaust engine valve Brake disk 
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Macroscopic scale: 
sliding on the smooth frictional substrate 
ball on disk; braking system  

different oxidation kinetics in contact  and free boundary zone  

roughness,real contact area  

flash temperature at the asperity from heat flux 

balance equation 
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Wear-oxidation model – two-scale aproximation 
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Macroscopic scale 

V- sliding velocity 

f – fraction of frictional 

contact heat distributed to 
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Conclusion 
• oxidation starts from Tmin 

• macromodelling does not allow for oxidation (obtained 
temperatures are smaller than Tmin) 

• micromodelling results in flash temperatures bigger than Tmin – 
oxidation can be desribed  

• assumption that friction coefficient is a function of temperature 
(T) in asperity scale provides macroscale (T, n)  

Thermo-mechanical analysis of coupled wear –oxidation and temperature field at transient and steady state 
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