
ABSTRACT 

This paper presents and verifies experimentally a model-free methodology for 
off-line damage identification  of truss structures.  The Virtual  Distortion  Method 
(VDM) is used, which allows the approach to be based entirely on experimentally 
obtained  non-parametric  characteristics  of  the  monitored  structure,  so  that  no 
parametric numerical modeling is necessary. The damage is modeled using certain 
damage-equivalent  pseudo-loads,  which  are  convolved  with  experimentally 
obtained local responses of the original structure to compute the response of the 
damaged  structure.  An  effective  sensitivity  analysis  is  possible  via  the  adjoint 
variable method.

INTRODUCTION

The long-term motivation for this research is the need for a practical technique 
for damage monitoring that could be used in black-box type monitoring systems. In 
general,  most  of  the  global  SHM  methods  can  be  classified  into  three  general 
groups [1–3]:

1. Model-based methods, which rely on a parametric numerical model of the 
monitored structure that is usually a Finite Element (FE) model [4–6] or a 
continuum  model  [7].  The  identification  is  stated  in  the  form  of  a 
minimization problem of the discrepancy between the measured response of 
the damaged structure and the computed response of the modeled structure.

2. Pattern recognition methods rely on a database of numerical fingerprints of 
low dimension that  are extracted  from several  responses of the involved 
structure  [8,9].  The  responses  used  to  form  the  database  have  to  be 
previously collected either by simulations or by experimental measurements 
of  the  structure  with  introduced  modification  scenarios,  which  are  to  be 
identified later and which should be well discriminated by the fingerprints. 
Given the database and the measured response of the involved structure, the 
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actual modification is identified using the fingerprints only, without insight 
into their actual mechanical meaning, so that neither a numerical model of 
the structure nor a simulation is required at the identification stage.

3. In case of many real-world structures,  it  may not  be possible  to  actually 
introduce the modifications (in order to build the fingerprint database) or to 
build an accurate numerical model [10]. Therefore, there is a third group of  
methods, which rely on certain structural invariants that can be computed 
directly from the measured response and which can be modal [3], based on 
wavelet or time series analysis [11], use the response surface methodology 
[12] or Lyapunov exponents [13]. By a proper distribution of sensors in the 
structure,  the  invariants  can  be  compared  locally,  which  may allow  the 
detected modification to be also localized.

In a  sense,  the  approach proposed in  this  paper  belongs to  the  third  group, 
because it avoids actual modifications as well as parametric numerical modeling; 
however, it is aimed also at quantification of the modification as the methods of the 
first two groups. Identification of the modifications is formulated as an optimization 
problem of  minimizing the  discrepancy between the measured  and the  modeled 
structural responses. The VDM [14,15] is used, which allows the structure to be 
modeled in an essentially non-parametric way via its locally measured responses, 
which are limited to the potential modification points. Given the excitation and the 
measured response of the original undamaged structure, the corresponding response 
of the damaged structure is computed by using certain damage-equivalent pseudo-
loads, which are convolved with the experimentally obtained local responses of the 
unaffected structure. The pseudo-loads are imposed on the undamaged structure to 
model the mass- and stiffness-related modifications; they are given in the form of 
the unique solution to  a certain linear integral  equation.  The formulation makes 
possible  an  effective  first-  and  second-order  sensitivity  analysis  via  the  adjoint 
variable method.

The methodology is validated numerically and experimentally using a 4-meter-
long, 70-element truss structure.

RESPONSE OF THE DAMAGED STRUCTURE

Let the original undamaged structure obey the following equation of motion:

, (1)

where  f(t) is a given excitation. Let the damage of the structure be described by 
modifications  and  to its mass and stiffness matrices and use u(t) to denote 
the response of the damaged structure to the same excitation f(t),

. (2)

The  VDM [14,15]  can  be  used  to  model  modifications  of  structural  mass  and 
stiffness with a response-coupled field of certain pseudo-loads  , which act in 
the unmodified structure to imitate the effects of the modifications:



       where      . (3)

Therefore, the response of the modified structure to the load f(t) can be expressed in 
terms of the convolution with the system impulse-responses:

        or        ,
        or        . (4)

The matrices  and  contain the structural impulse-response functions and 
the corresponding integral operators are denoted by  and . A substitution of (4) 
into  the  second  equation  of  (3)  yields  the  following  system of  Volterra  linear 
integral equations with the unknown vector of the pseudo-loads :

. (5)

Such a system, due to the distributional terms in , can be proved to be of the 
second kind and thus  uniquely solvable,  if  the matrix   is  non-singular. 
Given the modifications  and , and the solution  to (5), the response of the 
damaged structure can be computed by (4). Notice that the impulse-responses need 
to be measured only locally, that is in the degrees of freedom (DOFs) related to the 
potential modifications, as in other DOFs the pseudo-loads  vanish.

However, in reality the exact impulse-responses are hardly available: one can 
measure only responses to excitations that last  several steps. Nevertheless,  these 
responses can be also used, provided the pseudo-loads can be expressed in the form 
of the following convolution:

, (6)

where  is the actually applied non-impulsive excitation in the ith DOF that has 
to satisfy  for   and  is a certain unknown function. Equation (6) 
can be collected for all involved DOFs and stated in the operator notation to take 
the following form:

, (7a)

where  is the corresponding diagonal matrix convolution operator. A substitution 
of (7) into (4) and (5) yields

,
, (8)

, (9)

where  and , so that, contrary to (4) and (5), all data necessary to 
form (8) and (9) can be directly measured.



DAMAGE IDENTIFICATION

The  inverse  problem  is  stated  here  in  the  standard  form  of  a  problem  of 
minimization of the following objective function:

       where       , (10)

which is the mean-square distance between the measured and simulated responses 
of the damaged structure. It is minimized with respect to a chosen set of parameters 
that define the damage via   and  . The method adjoint can be used for fast 
sensitivity analysis [16,17]. The derivative with respect to the th parameter is

, (11)

where  is the vector of the adjoint variables, defined as the solution to

. (12)

If required, the second derivative can be computed as

                 
                      , (13)

where the derivatives of the responses are computed via differentiated (8) and (9),

, (14)
,                . (15)

Given the derivatives of the response, the first derivative of the objective function 
can be computed for verification purposes also by

. (16)

EXPERIMENT

A 32 kg 4-meter long 3D truss structure with 26 nodes and 70 steel elements 
was used in  the experimental  verification (Figure 1).  A damage of one element 
(0.375 kg, EA=13 850 kN) was modeled by replacing it with an aluminum element 
of a comparable weight (0.300 kg), but reduced stiffness (EA=9 270 kN). A modal 
hammer was used to generate the influence matrix  and the test loading  f(t). The 
loading  acted  in  the  z-direction  (perpendicularly  to  the  plane  marked  blue  in 
Figure 1), and the displacement response was measured in the same direction.

Figure 2 plots  the objective function in dependence on the absolute stiffness 
reduction (the mass was assumed to remain the same). The minimum was found at 
4290 kN, which is relatively close to the actual value of 4580 kN. The measured 
and computed responses are compared in Figure 3.



Figure 1. Truss structure used in the experimental verification

Figure 2. Objective function

Figure 3. Measured responses of the original and damaged structures and the computed response



CONCUSIONS

This  paper  proposes  and  verifies  experimentally  a  model-free  approach  to 
identification of damages in skeletal structures. The approach is based on the virtual 
distortion method (VDM), which allows experimentally measured local impulse-
responses to be directly used to model the response of the damaged structure. As a 
result, no parametric numerical model of the structure is required.
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