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Abstract. The authors propose an idea of monitoring the state of skeletal structures of high
importance (e.g. roof structures over large-area buildings) with the aim of identification of
slowly-developing plastic zones. This is formulated as an inverse problem within the framework
of the Virtual Distortion Method, which was used previously to identify stiffness/mass
modifications in similar manner. Permanent plastic strains developed in a truss element can
be modeled by an initial strain (virtual distortion) introduced to the structure. The formation
of subsequent plastic zones in the structure is assumed to be slow. Consequently, the design
variable (plastic strain) is time-independent, which makes the inverse analysis efficient. This
article presents problem formulation and numerical algorithm for identification of the plastic
strains in truss structures. The identification relies on gradient-based optimization. A numerical
example is included to demonstrate the efficiency of the algorithm.

1. Introduction
There are two types of skeletal structures of high importance – bridges and roof structures over
large-area buildings. The former are designed with high safety factors, which makes them work in
the elastic regime. The latter do not have such reserves of capacity and sometimes exhibit plastic
behavior under extraordinary loadings. There are documented cases of progressive collapses of
truss roof structures, which were slow, not sudden i.e. it took several months from the formation
of first plastic hinge to the final disaster. A good example of such accident is the collapse of the
exhibition centre in 2006, Katowice, Poland, with many casualties. Motivated by the mentioned
fact, the authors propose an idea of monitoring the state of such large-area roof structures
with the aim of identification of slowly-developing plastic zones. This task can be formulated
as an inverse problem within the framework of the Virtual Distortion Method [1, 2], which
was used previously to identify stiffness/mass modifications in skeletal structures. Permanent
plastic strains developed in a truss/frame element can be modeled by an initial strain (distortion)
introduced to the structure. As the formation of subsequent plastic zones in the structure is
assumed to be slow, the design variable (plastic strain) is time-independent, which makes the
inverse analysis efficient. The proposed idea of solving the identification problem of progressive
collapse may be further extended to identification of other defects, e.g. loosening of bolts in a
structural joint, using similarities between relevant constitutive laws.
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2. Plastic strains as damage indicator
2.1. Baseline method - the Virtual Distortion Method
As mentioned in the Introduction, the Virtual Distortion Method (VDM) constitutes the
framework of our analysis. The method belongs to fast reanalysis methods [3] and has been
successfully used in various types of engineering analyses, including optimal remodelling [4, 5],
progressive collapse [6], adaptive impact absorption [7, 8] and structural health monitoring
(SHM) [9]-[14]. The VDM can be easily applied for linear systems. In order to account for
non-linearities, one should use a piece-wise linear approximation of the original curve.

Let us briefly look at the VDM fundamentals using the truss structure model to explain how
the method works. The basic idea of the VDM is to introduce some pseudo-strains (called virtual
distortions) or equivalent pseudo-forces to the structure in order to model some modifications of
the structure e.g. the local change of stiffness or mass in some element. For effective numerical
calculation of these structural modifications using virtual distortions, one should build a set
of interrelations between truss members in the form of the influence matrix. In statics, by
introducing a virtual distortion to the truss structure of some redundancy, one gets a pre-
stressed state in all members of the structure, which constitutes a vector of the 2D (n×n, where
n is the number of elements) influence matrix. Analogously in dynamics, one can introduce
an impact distortion and consider resulting variations of strains in other members over some
pre-defined time, which results in a 3D (n×n× t, where t is the number of time steps) influence
matrix.

If we denote the influence matrix by Dαβ, the response of the modified structure can be
expressed as a linear combination of the initial responses L

εα, L
σα and the residual parts R

εα, R
σα

responsible for modeling of the modification, i.e.:

εα = L
εα + R

εα = L
εα +Dαβ

0
εβ , σα = L

σα + R
σα = L

σα + Eα
(
Dαβ − δαβ

) 0
εβ, (1)

where the residual parts are defined as:

R
εα = Dαβ

0
εβ ,

R
σα = Eα

(
Dαβ − δαβ

) 0
εβ. (2)

In the above formulas as well as in the next equations there is no summation over the underlined
indices. The generalized forces for the truss structure subject to modifications and the one
modelled by virtual distortions can be written in the following form:

Nα = E?αa
?
αεα , Nα = EαAα

(
εα −

0
εα
)
. (3)

In the equations (3) Nα and Nα denote internal forces of the modified and modelled structure,
respectively. The structural modification is understood here as a change of Young’s modulus and
cross-section area of an α-element. The modified quantities are marked by asterisks. Enforcing
the equality of strains and generalized forces for the modified and modelled structures, the vector
of stiffness modification parameters can be expressed as follows:

µα =
k?α
kα

=
εα −

0
εα

εα
, (4)

where k?α = E?αA
?
α and kα = EαAα are axial stiffnesses of the modified and original structural α-

element, respectively. Let us notice that the vector µα depends nonlinearly on virtual distortions
0
εα, due to the relation (1)a.

Relationships (1) and (4) constitute a set of equations, which allow for computation of virtual
distortions 0

εα as well as updated strain responses εα for a given vector of stiffness modification
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parameters µα. In order to determine the virtual distortions 0
εα, the following set of equations

have to be solved: [
δαβ −

(
1α − µα

)
Dαβ

] 0
εβ =

(
1α − µα

) L
εα, (5)

where 1α denotes the vector of unit components. The updated strains and stresses for the
modified structure can be calculated using formulas (1) without recalculating the stiffness matrix.

2.2. Design variables - plastic strains
In the SHM context, the VDM has been applied to follow changes of stiffness/mass [1], [11] -
[14], which is the most frequently analysed symptom of damage in structures. In this paper
authors propose the analysis of plastic strain development leading to progressive collapse. This
could be an alternative indicator of a hazardous state of the monitored structure.

Within the framework of the VDM one can not only use pseudo-strains. The plastic strains
with real physical interpretation can be also modeled using the influence matrix Dαβ [6]. One
condition must be met however – the constitutive material law has to be piece-wise linear. In the
engineering approach, the law is usually bi-linear e.g. elastic-plastic with one section modeling
the elastic zone, the other section modeling the yielding zone. Fig. 1 presents a bilinear, elastic-

σ

σuα

σLα

σα

ε
εuα εLα εα

Eα

Etanα

Figure 1. Model of elastic-plastic material.

plastic material model used for analysis of progressive collapse. The yield stress is marked by
σuα and the corresponding strain by εuα. Etanα denotes here the tangent modulus. The point(

L
εα,

L
σα
)

refers to the structural response calculated within the elastic regime only. The yield
condition can be expressed by the following expression:

σα − σuα = Etanα

(
εα −

0
βα
)
, (6)
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where the virtual distortions
0
βα refer to plastic strains. The updated, total strains εα and the

virtual distortions
0
βα are computed using Eqs. (1), which take now the following forms:

εα = L
εα +Dαβ

0
ββ , σα = L

σα + Eα
(
Dαβ − δαβ

) 0
ββ. (7)

The virtual distortions
0
ββ can be determined using the Eqs. (7a) and (6). It leads to the

formula: [
δαβ −

(
1α − γα

)
Dαβ

] 0
ββ =

(
1α − γα

) (L
εα − εuα

)
, (8)

where γα is a dimensionless coefficient:

γα =


Etanα
Eα

, |Lσα| > |σuα|
0, |Lσα| < |σuα|

. (9)

2.3. Problem formulation
Local plastic deformation causes strain and stresses redistribution in structural elements. A
sensor-equipped structure allows for monitoring of those states and identification of plastic
strains. Based on the measured quantities M

εα, this can be performed in an optimization process
by minimization of an objective function expressed in terms of the virtual distortions

0
βα.

For the identification of plastic zones let us assume the elastic-ideally plastic material model.
This implies limitations on stresses: |σα| ≤ |σuα|, which can be taken into account in the objective
function as an additional penalty term:

F =
n∑

α=1

(
εα −

M
εα
)2

+
n∑

α=1
(c (σα − σuα))2

∣∣∣
|σα|>|σuα|

, (10)

where c is a constant coefficient. The penalty term is calculated only for elements in which
stresses exceed the yield stresses. The design variable

0
βα is iteratively updated using the steepest

descent method:

0
β(i+1)
α =

0
β(i)
α −∆F (i) ∇αF (i)(

∇βF (i)) (∇βF (i)) , (11)

where the gradient of the objective function reads:

∇αF (i) = ∂F (i)

∂
0
β

(i)
α

= 2
(
ε

(i)
δ −

M
εδ
)
Dδα + 2c

(
σ

(i)
β − σ

u
β

) ∂σ(i)
β

∂
0
β

(i)
α

∣∣∣
|σα|>|σuα|

. (12)

The partial gradient of stresses with respect to design variable
0
βα in Eq. (12) can be determined

by the differentiation of Eq. (1) with respect to
0
βα:

∂σ
(i)
β

∂
0
β

(i)
α

= Eβ
(
Dβα − δβα

)
. (13)

The partial gradient is constant for each iteration. The gradient of the objective function (12)
has non-zero components only for the plastic elements.
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2.4. Numerical algorithm
The approach for identification of plastic zones presented in the previous subsection has been
implemented in Java. The numerical algorithm can be divided into 3 main steps:

(i) Initial data and assumptions:
• initial structure subjected to given load,
• selection of monitored elements (in a particular case – all elements),
• numerical model of the initial structure (with or without known plastic deformations)

used to simulate the measured responses M
εα,

• assumption of the material model e.g. elastic-ideally plastic,
• initial plastic strains

0
βα (zeros in most cases),

• update of total strains εα and stresses σα, Eqs. (7).
(ii) Preliminary computations:

• influence matrix Dαβ corresponding to the monitored elements,
• initial strains L

εα and initial virtual distortions
0
βα according to Eq. (8),

• gradient of stresses, Eq. (13).
(iii) Iterative computations:

• objective function, Eq. (10),
• gradient of the objective function, Eq. (12),
• update of plastic strains (virtual distortions), Eq. (11),
• termination condition, e.g. F i

F 1 < 10−5.

3. Numerical example
Figure 2 shows an example of a truss structure of the degree of redundancy 4 subjected to the
load P = 1725 kN . The steel elements have pipe cross-sectional area with the wall thickness of
1 cm and the outer diameters either 10 cm (elements no. 3, 7, 8, 11, 12) or 30 cm (remaining
elements). The basic length of the module is equal to L = 10m.

The material model is assumed as elastic-ideally plastic (Young’s modulus E = 210GPa,
tangent modulus Etan = 0). The yield stress equal to σuα = 210 MPa is assumed for all elements.

The applied load P causes plastic deformations in 4 elements no. 3, 7, 9, 11. The results
obtained using the Newton-Raphson method are shown in Table (1) in the column (4) for strains
and column (5) for stresses. The influence matrix Dαβ as well as the reference responses L

εα
(column (1)) and L

σα (column (2)) were computed for elastic range (initial structure). Evidently,
the stresses in elements no. 3 and 9 exceed the yield stress. The aim of the optimization
procedure is to determine the virtual distortions 0

εα, which should simulate the plastic strains
and keep the stresses within the permissible limits determined by the adopted material model.

The objective function is assumed according to Eq. (10) with constant c = 210 1
GPa . The

measured strains are simulated numerically. Because of the static character of the applied load, it
is assumed that strain sensors are required in each structural member. The number of iterations
is set to 500. The identification algorithm presented in Section 2.4 is used. Figure 3 illustrates
the decrease of the objective function in subsequent iteration steps according to the formula:

n = log10
F (i)

F (1) . (14)

Supplied with the initial information on the measured responses M
εα, the VDM-based algorithm

successfully identified all 4 plastic strains (column (6) in Table (1)) generated in the structure
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Figure 2. Tested truss structure.

Table 1. Listing of the results for the initial, modified and modelled structure.

Initial (elastic)
structure

Modified (plastic)
structure

(Newton-Raphson)
Modelled

structure (VDM)
α

L
εα

[x0.001]
L
σα

[MPa]
ε pl
α

[x0.001]
εα

[x0.001]
σα

[MPa]

0
βα

[x0.001]
εα

[x0.001]
σα

[MPa]
(1) (2) (3) (4) (5) (6) (7) (8)

1 0.4138 86.91 0.0 0.5155 108.26 0.0 0.5155 108.25
2 0.0500 10.49 0.0 0.1060 22.27 0.0 0.1060 22.27
3 -1.0698 -224.65 -1.2354 -2.2354 -210.00 -1.2353 -2.2354 -210.00
4 0.3103 6.52 0.0 0.0394 8.28 0.0 0.0394 8.28
5 -0.6132 -128.78 0.0 -0.8464 -177.73 0.0 -0.8464 -177.73
6 0.3001 63.02 0.0 0.4005 84.11 0.0 0.4005 84.11
7 -0.9174 -192.65 -0.4648 -1.4648 -210.00 -0.4646 -1.4648 -210.00
8 0.8739 183.52 0.0 0.9835 206.53 0.0 0.9835 206.51
9 -1.1601 -243.62 -1.7082 -2.7082 -210.00 -1.7080 -2.7082 -210.00
10 0.2615 54.92 0.0 0.3179 66.76 0.0 0.3179 66.76
11 -0.6429 -135.01 -0.1845 -1.1845 -210.00 -0.1836 -1.1845 -210.00
12 0.0670 14.07 0.0 -0.6548 -137.50 0.0 -0.6548 -137.47

due to the load P . The performace of the inverse VDM analysis can be compared with the direct
Newton-Raphson results listed in Table (1). The values of the quantities in columns (3)-(6),
(4)-(7), (5)-(8) are almost identical. One should note that the identification is feasible until the
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Figure 3. Decrease of the objective function in subsequent iterations.

moment of total collapse of the structure i.e. its transformation into a kinematic mechanism.
In the analyzed example any other plastic location except for those in elements no. 3, 7, 9, 11
would provoke such a mechanism.

4. Conclusions
The paper presents an idea of identification of progressive collapse as an inevitable symptom
of the deteriorating condition of a skeletal structure. Plastic strains in elements are certainly a
reliable indicator for the owner of the structure to undertake immediate action e.g. inspection
on site.

The problem is formulated within the framework of the Virtual Distortion Method. The
solution is obtained via gradient-based optimization. The procedure assumes that the structure
is instrumented with sensors collecting its responses, which are necessary for the identification
algorithm. In the presented numerical study, these measured responses are simulated numerically
with the Newton-Raphson method.

The solution of the VDM-based inverse problem of identification of plastic strains is
demonstrated for static load in this paper. This corresponds to standard modeling of damage as
stiffness degradation for static problems (cf. [11]). Further research will be focused on extending
the approach for dynamic excitations, analogously to [1, 14]. Experimental verification is also
planned.
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[14] Świercz A, Ko lakowski P and Holnicki-Szulc J 2008 Damage identification in skeletal structures using the
virtual distortion method in frequency domain Mechanical Systems and Signal Processing 22 8 1826–39

9th International Conference on Damage Assessment of Structures (DAMAS 2011) IOP Publishing
Journal of Physics: Conference Series 305 (2011) 012133 doi:10.1088/1742-6596/305/1/012133

8




