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ABSTRACT 
 
The nodal connections in the standard analysis of frame structures are idealized 

assuming either pinned or fully rigid joints. State of such structural connections is 
highly important for safe operation of skeletal structures. In this work, the authors 
propose modeling, detection and identification of semi-rigid joints, i.e. nodal 
connections covering the range between pinned and fully rigid joints. The presented 
approach is based on the Virtual Distortion Method (VDM) and dedicated to statically 
or dynamically loaded two-dimensional frame structures. 

 
 

INTRODUCTION 
 
Steel frames with semi-rigid joints can be analyzed using the finite element 

method by application of a designed finite element [1]. In such approach, dedicated 
element stiffness matrices are computed and then global stiffness matrix is aggregated 
for further analyses. However, in this article an adaptation of the Virtual Distortion 
Method (VDM) for modeling, detection and identification of semi-rigid joints is 
presented. The VDM is a fast reanalysis tool, which can be successfully applied in the 
field of Structural Health Monitoring (SHM). This method is highly effective for 
linear systems, cf. [2], [3]. Necessary field measurements can be performed using 
wireless data transmission systems as presented in [4]. Other examples of VDM-based 
applications are: damage identification in electrical circuits [5], identification of 
delamination between laminates [6] or leakages in water distribution networks [7]. 
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BASICS OF THE VIRTUAL DISTORTION METHOD 
 

The VDM exploits the Finite Element Method (FEM) and operates on finite 
elements. In general, some structural modifications of a system are modeled by the so-
called virtual distortions (pseudo strains), which are imposed on original elements. 
States of a system caused by introduced virtual distortions without any external load 
are called distorted states. Updated response of a modified structure is a superposition 
of the response calculated for the loaded original structure and the response obtained 
for the distorted state supposed to model structural modifications. The distorted state 
is a linear combination of components of the influence matrix and virtual distortions. 
The influence matrix contains strain responses caused by introduction of unit virtual 
distortions to finite elements. 

For a finite beam element (Bernoulli's theory), there are three basic deformation 
states: longitudinal, symmetric and asymmetric corresponding to tension, pure 
bending, bending and shear, respectively. In this work, these deformation states are 
basic strain components and can be determined by solving the eigenvalue problem for 
the element stiffness matrix. The three non-rigid eigenstates are presented in Fig. 1. 
Any other deformation state can be linearly combined from the three basic ones. 

 
Figure 1. Basic strain components with corresponding compensating loads for 2D beam finite element: 
a) longitudinal, b) symmetric, c) asymmetric. 
 
For the finite element e, the strain components: longitudinal – ߳௘, symmetric – ߵ௘ and 
asymmetric – ߯௘ can be calculated using the following formula: 
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where ݑ௘
ሺ௜ሻ, ߮௘

ሺ௜ሻ, ݓ௘
ሺ௜ሻ (݅ ൌ 1,2 – number of the local node) are the generalized nodal 

displacements (as denoted in Fig. 1) and ݈௘ is the length of the finite element. The 
virtual distortions ߝ௘଴ are initial strains introduced to the structural finite element e. 
The columns of the influence matrix contain strain responses generated by action of 
the unit virtual distortions on the system. An introduction of the unit virtual distortion 
is equivalent to application of the corresponding load to the finite element using self-
equilibrated compensating forces (cf. Fig. 1): 

ܳሺ߳௘଴ ൌ 1ሻ ൌ ܣܧ ሾെ1 0 0 1 0 0ሿ்

ܳሺߵ௘଴ ൌ 1ሻ ൌ ܬܧ ሾ0 0 െ1 0 0 1ሿ்

ܳሺ߯௘଴ ൌ 1ሻ ൌ ܬܧ ሾ0 2 ݈௘⁄ 1 0 െ2 ݈௘⁄ 1ሿ்
 (2)

For a structure under load, a semi-rigid joint is modeled by introduction of a non-
deformable wedge to the element local node i. This wedge is characterized by the 

angle of ߮௘
଴ሺ௜ሻ, which is called angular virtual distortion. Based on formula (1), the 

relation between the angular virtual distortion ߮௘
଴ሺ௜ሻ and the strain virtual distortion  ߝ௘଴  

can be written in the following form: 
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௘଴ߝ ൌ ௘ݒ
ሺ௜ሻ ߮௘

଴ሺ௜ሻ (3)

where ݒ௘
ሺ௜ሻ ൌ ଵ

௟೐
ሾ0 ሺ௜ሻߦ 3ሿ் is the transformation vector for the local node i. The 

coefficient ߦሺ௜ሻ is equal to െ1 for the local node ݅ ൌ 1, whereas  ߦሺ௜ሻ  is equal to ൅1 
for the local node ݅ ൌ 2. We can see from Eq. (3) that the longitudinal component of 
the element virtual distortion is equal to zero, i.e. ߳௘ ൌ 0, therefore we can disregard 
it: 

௘଴ߢ ൌ ௘ݒ
ሺ௜ሻ ߮௘

଴ሺ௜ሻ (4)

where ݒ௘
ሺ௜ሻ ൌ ଵ

௟೐
ሾߦሺ௜ሻ 3ሿ் and ߝ௘଴ ൌ ሾ0  .௘଴ሿ்ߢ

On the other hand, the bending moment ܯ௘
ሺ௜ሻ for the element e in the local node i 

can be expressed by strain components in the following way: 

௘ܯ
ሺ௜ሻ ൌ ௘ݓܬܧ

ሺ௜ሻߢ௘ (5)

where ݓ௘
ሺ௜ሻ ൌ ሾ1 ௘ߢ ሺ௜ሻሿ is the nodal transformation vector andߦ ൌ ሾߵ௘ ߯௘ሿ் is the 

subvector of bending strain. 
 
 

MODELING OF THE SEMI-RIGID JOINTS BY THE VIRTUAL 
DISTORTIONS 

 
Statics  

 
For now, the introduced Greek indices run over elements with modeled nodal 

connections and there is no summation over underlined indices. Thus, the updated 
structural strain responses can be expressed by the equations: 

ఈߝ ൌ ఈ௅ߝ ൅ ൫ܦഥఈఉ െ ఉߝఈఉ൯ߜ
଴    or    ߢఈ ൌ ఈ௅ߢ ൅ ൫ܦఈఉ െ ఉߢఈఉ൯ߜ

଴  (6)
where reduced matrices ܦఈఉ and ߜఈఉ do not contain columns and rows corresponding 
to axial strain components. Unlike VDM-modeled structural modifications 
corresponding to axial deformations (e.g. in [2]), we have now the identity matrix ߜఈఉ 
in Eq. (6) because we account for introduction of a non-deformable wedge for 
calculation of strain components in the distorted structure. This wedge modifies nodal 
rotation in the element in which it is introduced, cf. Fig. 2. 
 

 
Figure 2. The nodal rotations of elements for non-rigid connection in element no. 2 in a frame-like 
substructure. 

  
Analogously, in the semi-rigid joints of the loaded frame structure such rotational 

discontinuities occur at nodes. This means that element cross section adjacent to the 
node rotate unlike the other element cross sections. Those differences are modeled by 

the angular virtual distortions ߮ఈ
଴ሺ௜ሻ. The relationship between the nodal bending 
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moment ܯఈ
ሺ௜ሻ and distortion ߮ఈ

଴ሺ௜ሻ can be postulated to be linear or bi-linear as shown 
in Fig. 3. For simplicity, in the further consideration the linear model is assumed, 
which can be written in the following form: 

ఈܯ
ሺ௜ሻ ൌ ݇ఈ

ሺ௜ሻ߮ఈ
଴ሺ௜ሻ (7)

where the nodal rotational stiffness ݇ఈ of the nodal connection is defined as: ݇ఈ ൌ
ఈ݄ఈܬఈܧ

ሺ௜ሻ. Here, the parameter ݄ఈ
ሺ௜ሻ denotes rotational stiffness of the nodal connection 

in the element ߙ for the local node i. Alternatively, Eq. (7) can be rewritten using two 

diagonal matrices ܵఈఉ ൌ ݀݅ܽ݃ሼܧఈܬఈሽ and  ܪఉఊ
ሺ௜ሻ ൌ ݀݅ܽ݃ሼ ݄ఉ

ሺ௜ሻሽ: 

ఈܯ
ሺ௜ሻ ൌ ܵఈఉܪఉఊ

ሺ௜ሻ߮ఊ
଴ሺ௜ሻ (8)

Eq. (5) may be rewritten similarly to Eq. (8) for a set of modeled nodal joints: 

ఈܯ
ሺ௜ሻ ൌ ܵఈఉ ఉܹఊ

ሺ௜ሻߢఊ (9)

where ఉܹఊ
ሺ௜ሻ ൌ ݀݅ܽ݃ሼݓఉ

ሺ௜ሻሽ. Analogously to Eq. (4), we have: 

ఈ଴ߢ ൌ ఈܸఉ
ሺ௜ሻ ߮ఉ

଴ሺ௜ሻ (10)

where ఈܸఉ
ሺ௜ሻ ൌ ݀݅ܽ݃ሼݒఈ

ሺ௜ሻሽ. The matrices ఉܹఊ
ሺ௜ሻ and ఈܸఉ

ሺ௜ሻ are of rectangular shape. 

 
Figure 3. Linear and bi-linear models of the nodal semi-rigid connections.  

 
By comparing relationships (8) and (9) as well as using (6) and (10), the formula for 

determining the angular virtual distortions ߮ఉ
଴ሺ௜ሻ has the following form: 

ቂܪఈఉ
ሺ௜ሻ െ ఈܹఊ

ሺ௜ሻ൫ܦఊణ െ ఊణ൯ߜ ణܸఉ
ሺ௜ሻ ቃ ߮ఉ

଴ሺ௜ሻ ൌ ఈܹఊ
ሺ௜ሻߢఊ௅ (11)

Let us note, for the fully rigid connection in the local node i  in the finite element α, if 

ఈఈܪ
ሺ௜ሻ ൌ ݄ఈ

ሺ௜ሻ ՜ ൅∞, the distortion ߮ఈ
଴ሺ௜ሻ ՜ 0. On the other hand, if ܪఈఈ

ሺ௜ሻ ൌ ݄ఈ
ሺ௜ሻ ՜ 0, 

then ߮ఈ
଴ሺ௜ሻ ് 0.  
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Dynamics  
 
For the time domain analysis, the impulse influence matrix ܦఈఉሺݐሻ has to be 

determined. It is computed by applying impulse excitations i.e. self-equilibrated 
compensation loadings only in the first time step of the analysis. The strain virtual 
distortions are time-dependent, thus the updated bending strain components can be 
expressed by the equation: 

ሻݐఈሺߢ ൌ ሻݐఈ௅ሺߢ ൅෍ܦఈఉሺݐ െ ߬ሻߢఉ
଴ሺ߬ሻ

௧

ఛୀ଴

െ ሻ (12)ݐఈ଴ሺߢ

Analogously to Eq. (9) and (10), for the time-domain analysis the bending moment 

ఈܯ
ሺ௜ሻሺݐሻ can be expressed by the following relationship: 

ఈܯ
ሺ௜ሻሺݐሻ ൌ ܵఈఉ ఉܹఊ

ሺ௜ሻߢఊሺݐሻ ൌ ܵఈఉܪఉఊ
ሺ௜ሻ߮ఊ

଴ሺ௜ሻሺݐሻ (13)

which by using Eq. (12) leads to the equation for determining the angular virtual 

distortion ߮ఊ
଴ሺ௜ሻሺݐሻ: 
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and 
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ۖ
۔

ۖ
ۓ ఈܹఉ
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ሺ௜ሻ߮ణ

଴ሺ௜ሻሺ߬ሻ
௧ିଵ

ఛୀ଴

൩ for ݐ ൐ 0
 (16)

Eq. (14) has to be iteratively solved for each time step t. Let us note, the matrix ܣఈఊ
ሺ௜ ሻ is 

constant for each time step and only the right-hand side of Eq. (14) has to be 

recalculated. Using the computed virtual distortions ߮ఊ
଴ሺ௜ሻ and next using formula 

(10), the bending strain components  ߢఈ଴ሺݐሻ can be determined. Furthermore, the 
generalized structural responses ஺݂ሺݐሻ (e.g. selected displacement) can be also updated 
according to the relation: 

஺݂ሺݐሻ ൌ ஺݂
௅ሺݐሻ ൅෍ܦ෱஺ఈሺݐ െ ߬ሻߢఈ଴ሺ߬ሻ

௧

ఛୀ଴

 (17)

where the vector ஺݂
௅ሺݐሻ contains the pre-computed generalized responses for original 

structure and ܦ෱஺ఈሺݐሻ is the generalized influence matrix. The columns of the matrix 
 ሻ. They areݐሻ contain generalized responses corresponding to the vector ஺݂ሺݐ෱஺ఈሺܦ
obtained due to introduction of unit, bending-like virtual distortions to the system. 

 
 

IDENTIFICATION OF SEMI-RIGID JOINTS  
 

For an inverse problem i.e. identification of nodal connection parameters ݄ఈ
ሺ௜ሻ, the 

VDM approach can be effectively applied thanks to its ability of calculation of fast 
updated responses (cf. Eq. (12), (17)). The identification task can be defined as a 
gradient-based minimization problem with an assumed objective function. The 
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objective function given below reflects the normalized difference between the known 
bending strain responses of the modified structure ߢఈெሺݐሻ (which should be taken from 
measurements) and the corresponding updated responses ߢఈሺݐሻ (modeled by the 

virtual distortions ߮ఈ
଴ሺ௜ሻሺݐሻ): 

ቀ݄ఈܨ
ሺ௜ሻቁ ൌ෍

∑ ሺߢఈሺݐሻ െ ሻሻଶ௧ݐఈெሺߢ

∑ ሺߢఈெሺݐሻሻଶ௧ఈ

 (18)

Using Eq. (10) and (12), the gradient of the objective function (18) with respect to the 
optimization variable can be written in the following form:  
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(19)

where the partial derivatives 
డ఑ഀ
డ఑ഁ

బ  and 
డ఑ഁ

బ

డఝം
బሺ೔ሻ were obtained using Eq. (12) and (10), 

respectively. The derivatives 
డఝം

బሺ೔ሻ

డ௛ഋ
ሺ೔ሻ  can be calculated by differentiating Eq. (14), 

which leads to the following relation: 
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ሺ௜ሻ෍ܦఉఊሺݐ െ ߬ሻ ఊܸణ
ሺ௜ሻ ߲߮ణ

଴ሺ௜ሻሺ߬ሻ
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௧ିଵ

ఛୀ଴

for ݐ ൐ 0
 

(20)

In Eq. (20), we have a three dimensional matrix ܪఈఊఓ
ሺ௜ሻ

ൌ
డுഀം

ሺ೔ሻ

డ௛ഋ
ሺ೔ሻ . This matrix for ߤ slice 

has a two dimensional, square submatrix with zero-values except for ߤ ൌ ߙ ൌ  .i.e ,ߚ

ఓఓఓܪ
ሺ௜ሻ

ൌ 1. Let us note, the matrix ܣఈఊ
ሺ௜ ሻ has been calculated previously (cf. Eq. (15)). 

Eq. (20) has to be iteratively solved for each time step. 
The optimization variable can be determined using the steepest descent method: 

݄ఈ
ሺ௜ሻ

 
ሺ௞ାଵሻ ൌ ݄ఈ

ሺ௜ሻሺ௞ሻ െ ∆ ሺ௞ሻܨ ஑׏ ሺ௞ሻܨ

ԡ׏஑ ሺ௞ሻܨ ԡଶ
 (21)

where the right upper superscript ሺ݇ ൅ 1ሻ denotes the current iteration, and ሺ݇ሻ 
denotes the previous iteration. ∆ is a constant in the range of ሺ0.1 ൊ 0.3ሻ. 
 
 
NUMERICAL EXAMPLE 

 
Let us consider a simple 2D frame structure loaded at node 4 as shown in Fig. 4. 

The structure is excited by a single Hanning-like impulse function with the time 
duration of 50ms. The amplitudes of the excitations are equal to: 500N and 750N for 
horizontal and vertical component of the force P, respectively and 250 Nm for the 
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bending moment M. The structural sections are based on square grid with modular 
length of 0.51m. All elements have the same physical and geometrical properties: 
Young’s modulus: 210GPa, density: 7850 kg/m3, cross-section 0.8cm by 8cm. Some 
analyses using the Newmark method with 500 time steps (analyzed time 

500x0.5ms=250ms) were performed for different values of the parameter ݄ఈ
ሺ௜ሻ. For 

element no. 7 in node no. 7, the following values were assumed: 0, 2, 10 ቂ ଵ

௠ ௥௔ௗ
ቃ. For 

those cases, the virtual distortions ߮ఈ
଴ሺ௜ሻ have been computed using Eq. (14). The 

corresponding results are shown in Fig. 5. We can see, the greater the value of the 

parameter ݄ఈ
ሺ௜ሻ, the smaller the angular distortion ߮ఈ

଴ሺ௜ሻ. The updated vertical 
displacements for node no. 3, presented in Fig. 6 , were calculated using Eq. (17) and 
compared to the displacements obtained for the original structure (all rigid nodal 
connections). The differences between the original and current responses tend to be 

smaller if values of the parameter ݄ఈ
ሺ௜ሻ increase. 

 
Figure 4. Tested frame structure. 

 

 
Figure 5. The angular virtual distortions applied to node 7 in element 7 depending on nodal connection. 

 

 
Figure 6. Updated vertical displacement for node 3 at various connection variants for element 7 in 
node 7. 
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CONCLUSIONS 

 
In this work, the modeling of semi-rigid joints using the VDM is presented. The 

model of the nodal connection is assumed to be linear. It is determined by the relation 
between the nodal bending moment and the perturbation of the angle of rotation called 
the angular virtual distortion, which is related to previously used strain virtual 
distortion. Thus, this approach allows for application of the pre-computed influence 
matrix in various modeling tasks (e.g. modification of axial and bending stiffness, 
modification of mass). 

Purely numerical results of modeling of semi-rigid joints are presented. Gradient-
based identification procedure for identification of nodal parameters is proposed. The 
objective function is defined by the normalized difference between the modeled and 
measured responses. The measurements are numerically simulated in this paper. In 
future work, an experimental verification of the proposed theoretical approach is 
planned.  
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