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The purpose of this work is to present an algorithm for optimal vibration
control of guyed masts and an example of its application to a numerical
simulation. The objective of the proposed control system is to minimize
amplitudes of transverse vibrations of the top of a mast induced by
wind pressure acting on the structure. Control forces are assumed to be
physically realized through changes of tension in guy cables, supporting
the mast. The only required measurements are velocities of guy cables at
the anchor-points. On the basis of those, a complete state of deformation
of the structure is obtained by using the Kalman filter. The Davenport
spectral density function is adopted as a model of the stochastic action
of the wind.
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1. Introduction

Guyed masts applied in radio, television and cellular phone industry, belong to
the class of vibration-prone structures. Both their height (which can be even a
few hundred meters) and their location in open spaces make them exposed to
actions of strong windblasts of different velocities. In winter, masts are often
covered with icing. It causes an increase, not only of the structure weight, but
also of the surfaces of elements exposed to wind pressure. Ice, together with
wind pressure, are the most common reasons of mast failures.
Dynamic analysis of a guyed mast is nonlinear, because of nonlinear be-

haviour of guy cables (McCaffrey and Hartmann, 1972). During recent years,
many control methods have been developed, but their practical application
to mast-like structures still remains limited. One of the recent approaches
was presented by Preumont (2002). Replacing cables with massless strings,
he proposed an Integral Force Feedback controller to reduce vibration of a
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truss structure. Another control technique of cable structures, called Active
Stiffness Control, was proposed by Fujino et al. (1993) and was applied to
cable-stayed bridges. Recently, the problem of damping cable vibrations by
semi-active control was investigated by Spencer (2002).
The objective of this paper is the analysis and simulation of the Model

Based Predictive Control (Goodwin et al., 2001) of guyed mast vibrations.

2. The model of a mast

In deriving equations of motion, the following assumptions on the dynamics
of a mast are made:
• for requirement of proper functioning of the equipment attached to the
top of the mast, only vibrations of small amplitudes are taken into ac-
count

• guy cables are tightly stretched and do not carry bending loads

• deformations of structural members are linear elastic.

Fig. 1. Guyed mast and its feedback control system

The column of the mast is represented by a prismatic truss of a triangular
cross section. One cable end is attached to the mast and the second one to an
anchored mechanism, allowing for control of cable tension.
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For the purpose of simulation, the mast is discretized according to the
Finite Element Method (FEM). Every guy cable is represented by a chain of
rods. It is assumed that each chain node has three degrees of freedom. The
whole structure, i.e. the mast and its supporting guy cables, is subjected to
the action of stochastic wind gusts.
The dynamic analysis of the mast is proceded by its static analysis under its

dead load and prestressed forces in the cables. This way, the initial deformation
of the structure is obtained, locations of nodes are determined and the global
stiffness matrix is updated.
The equations of motion of the N -degree of freedom (DOF) structure can

be written as follows

Mq̈(t) +Dq̇(t) +Kq(t) = Bff(t) + Buu(t) (2.1)

where
M – N ×N mass matrix,
D – N ×N damping matrix,
K – N ×N stiffness matrix,
q – N -vector representing displacements of the structure,
f – P -vector of wind velocity fluctuations,
u – R-vector of control forces,
Bu – control input matrix of proper dimension,
Bf – wind input matrix of proper dimension

Bu =





0 0 0 0 0 0
...
...
...
...
...
...

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
...
...
...
...
...
...

0 0 0 0 0 0










Allocation
of the actuators

Nonzero elements in the control input matrix represents the allocation of
the actuators. The form of the wind input matrix will be explained in the next
section.
Additionally, measured and performance outputs are introduced in the

following form

y(t) = Cqq(t) + Cvq̇(t) + v(t) z(t) = Cpq(t) (2.2)

where
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y(t) – S-vector of measured node displacements and velocities,
Cq,Cv – the allocation of the displacement and velocity sensors,
Cp – degrees of freedom to be controlled

Cq = 0 Cv =





0 · · · 1 0 0 0 0 0 · · · 0
0 · · · 0 1 0 0 0 0 · · · 0
0 · · · 0 0 1 0 0 0 · · · 0
0 · · · 0 0 0 1 0 0 · · · 0
0 · · · 0 0 0 0 1 0 · · · 0
0 · · · 0 0 0 0 0 1 · · · 0





Cp =





0 · · · 1 0 0 0 0 · · · 0
0 · · · 0 1 0 0 0 · · · 0
0 · · · 0 0 1 0 0 · · · 0
0 · · · 0 0 0 1 0 · · · 0
0 · · · 0 0 0 0 1 · · · 0





v(t) is an S-vector characterising the measurement noise which is assumed to
be completely random. Moreover, it is assumed that measurement errors do
not depend on wind disturbances

E(v(t)) = 0 ∀t

E(v(t)v(τ)⊤) = Rδ(t− τ)

z(t) is a T -vector of the performance output and Cp is a Boolean matrix of
proper dimensions selecting the degrees of freedom significant for the perfor-
mance output.

The model of the mast, in the configuration space, entails long simulation
times of the mast dynamics due the large number of degrees of freedom. To
avoid this difficulty, a modal transformation is performed, and the number of
dynamic degrees of freedom is reduced to the first Nc mode shapes

q(t) =Θη(t) = Θcηc(t) +Θrηr(t) ≈ Θcηc(t) (2.3)

where
Θc – N ×Nc matrix of the first Nc mode shapes,
η – N -vector of modal amplitudes,
ηc,ηr – vectors of controlled and residual modal amplitudes of di-

mensions Nc and Nr, respectively. It is assumed that
Nc ≪ N . Nc depends on the required accuracy of the control.

The mode shapes are normalised with respect to the mass matrix M, that is

Θ⊤c MΘc = I
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which yields
Θ⊤c KΘc = Ω

2
c

where Ωc is an Nc×Nc matrix with the diagonal containing successive eigen-
frequencies of the structure.
Next, adopting the model of viscous damping, one obtains

Θ⊤c DΘc = 2ΞcΩc

where Ξc is an Nc ×Nc modal damping matrix.
Performing modal reduction and normalising the mass matrix (Thomson,

1981), the equations of motion, measured output y(t) and performance output
z(t) take the following forms

η̈c(t) + 2ΞcΩcη̇c(t) +Ω
2
cηc(t) = Θ

⊤
c Bff(t) +Θ

⊤
c Buu(t)

y(t) = CqΘcηc(t) + CvΘcη̇c(t) + v(t) (2.4)

z(t) = CpΘcηc(t)

Now, the state vector of the structure is introduced in the form
x⊤m(t) = [η

⊤
c (t), η̇

⊤
c (t)] which, after substitution into (2.4), yields

ẋm(t) = Amxm(t) + Bm1f(t) +Bm2u(t)

z(t) = Cm1xm(t) (2.5)

y(t) = Cm2xm(t) + v(t)

where

Am =

[
0 I

−Ω2c −2ΞcΩc

]

Bm1 =

[
0

Θ⊤c Bf

]

Bm2 =

[
0

Θ⊤c Bu

]

Cm1 =
[
CpΘc 0

]
Cm2 =

[
CqΘc CvΘc

]

Finally, it can be observed that the modal truncation does not affect the
dimension of the measured output y(t).

3. Wind modelling

The mast is exposed to action of wind, and therefore experiences time-varying
loads. Initially, wind pressure was only modelled as a static loading. Later,
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(Iannuzzi and Spinelli, 1987) more realistic wind models were introduced in
the form of trigonometric series. Currently, in the modelling of stochastic wind
pressure, linear filters are frequently used (Gawronski et al., 1994).

The overall wind velocity can be decomposed into its average value f and
velocity fluctuation f(t)

F (t) = f + f(t) (3.1)

It is assumed that the average value f exerts a static load. The fluctuation
component f(t) is a random with the zero mean, which in the frequency
domain is characterized by the spectral density function called the Davenport
spectrum

Sf (n) =
4f
2
10κ

n

X2

(1 +X2)4/3
X =

1200n

f10
(3.2)

where n is the frequency [Hz], f10 is the average velocity at the 10 meter
altitude [m/s] and κ – terrain roughness coefficient.

The along-wind force acting on both the mast and its guy cables can be
decomposed into a static and dynamic part

P (t) =
1

2
ρaCdAef

2
+ ρaCdAeff(t) (3.3)

where ρa is the air density, Cd – drag coefficient, Ae – exposition area, f de-
notes the average wind velocity and f is the wind velocity fluctuation.

The above relation allows determination of elements of the matrix Bf in
(2.4)1

Bf =





ρaCdAe,1f cosα
ρaCdAe,1f sinα

0

ρaCdAe,2f cosα
ρaCdAe,2f sinα

0
...





(3.4)

where α is the wind direction.

The wind load is obtained by applying as an input a purely random pro-
cess to a filter that approximates the Davenport spectrum (Davenport, 1961)
within a desired bandwidth.

The Davenport filter is presented as a linear dynamical system of the form

ẋw(t) = Awxw(t) + Bww(t)
(3.5)

f(t) = Cwxw(t)
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Fig. 2. Davenport filter

where w(t) is a purely random sequence of data,

E(w(t)) = 0 ∀t
(3.6)

E(w(t)w(τ)⊤) = Qwδ(t− τ)

and the matrices Aw, Bw, Cw are chosen such that the following formula is
satisfied

Hw(j̟) = Cw(sI− Aw)
−1Bw (3.7)

The structure of the Davenport filter ensures that the input w(t) is uncorre-
lated with the measurement noise v(t)

E
(
v(t)w(τ)⊤

)
= 0 (3.8)

4. Controllability

Before designing a control system, it is important to verify the controllability.
The classical criterion for the controllability tells that a dynamical system is
controllable if its controllability matrix has the rank 2Nc

rank
[
Bm2 AmBm2 A

2
mBm2 . . . A

2Nc−1
m Bm2

]
= 2Nc (4.1)

where Nc is the number of mode shapes.
However, in large systems there are numerical difficulties involved in cal-

culating this rank. Hence, from the computational point of view, it is much
more convenient to use an alternative method. One of them is the concept of
modal controllability index. Information on the controllability is here obtained
for particular mode shapes, through calculating the lengths of successive rows
of the matrix Θ⊤c Bu

µj = Θ
(j)
c
⊤
BuB

⊤
uΘ
(j)
c j = 1, 2, . . . , Nc (4.2)

where Θ(j)c is the jth column of the matrix of the mode shapes.
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The index equal to zero signifies that the corresponding mode shape is
uncontrollable. Additional attention has to be paid to those indices which
correspond to multiple eigenfrequencies (Joshi, 1989).

For the guyed mast under consideration it was observed that the control
forces very weakly affect the symmetrical mode shapes of cables (Fig. 4), but
they have significant influence on the antisymmetrical ones (Fig. 5), i.e. those
involving transverse vibrations of the column. It is advantageous because those
modes are responsible for transverse vibration of the top of the mast, which
is going to be damped.

Fig. 3. Dominant mode shapes of column

Fig. 4. Dominant axi-symmertical mode shapes of cables

Fig. 5. Dominant antisymmetrical mode shapes of cables
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5. Control system

One of the possible implementations of this idea is a control system which
consists of: a velocity sensor, digital controller and hydraulic actuator. The
actuator is driven by the controller which gets information from the velocity
sensor.

As a result, the control forces change the tension in guy cables. Moreover,
it is assumed that the control system is collocated (Fig. 6), which means that
sensor placements coincide with that of actuators. Aditionally, the hydraulic
actuator and velocity sensor are supported in such a way that the control
forces do not affect measurements.

Fig. 6. Control system scheme

6. Control strategy

After answering the question of the controllability, one can proceed to choose
a suitable control strategy. In this paper, the idea of Model Based Predictive
Control (Goodwin et al., 2001) is used. It is an algorithm, based on on-line
solving an optimal control problem (Fig. 7), which can be summarized in the
following steps:

(i) at each time instant, using past and current measurements, estimate the
current state vector
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(ii) solve on-line the optimal control problem over some future interval, ta-
king into account the current and future constraints

(iii) use, as the current control signal, the first step in the computed optimal
control sequence.

When dealing with an uncertain structure, the control system has to be au-
gmented with a model updating procedure. The objective of that procedure
is to identify current dynamics of the structure which operates in varying
environmental conditions.

Fig. 7. Model predictive control of guyed mast

7. Optimal estimator

Optimal control of a dynamical system requires knowledge of the state of that
system. In practice, individual state variables cannot be determined exactly
by direct measurements. Instead, measurements that can be made are func-
tions of the state variables, and these measurements contain random errors. A
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guyed mast itself is also subjected to random wind disturbances. If the struc-
ture is completely observable, and, in collocated systems, this property holds
simultaneously with the controllability, a virtual dynamical system called the
estimator can be constructed.

The goal of the estimator is to assess, on the basis of the measured qu-
antities, the current deformation of the structure and the value of the wind
force (Fig. 8). For that purpose, an augmented dynamical system is introduced
which consists of a model of the guyed mast and a model of the wind force
represented by the Davenport filter. It takes the form

ẋm(t) = Amxm(t) + Bm1Cwxw(t) + Bm2u(t)

ẋw(t) = Awxw(t) + Bww(t)

z(t) = Cm1xm(t)

y(t) = Cm2xm(t) + v(t)

(7.1)

The above equations can be written uniformly as

ẋ(t) = Acx(t) + Bc1w(t) + Bc2u(t)

z(t) = Cc1x(t)

y(t) = Cc2x(t) + v(t)

(7.2)

Finally, equations (7.2) are translated into a discrete time state-space formu-
lation (Franklin et al., 1990)

xk+1 = Axk + B1wk + B2uk

zk = C1xk (performance output)

yk = C2xk + vk (measured output)

(7.3)

The design of an optimal estimator depends on probabilistic data, concerning
the initial condition of the system, disturbances and measurement errors

E(x0x
⊤
0 ) =M0 E(wkw

⊤
l ) =

1

∆t
Qwδkl = Qδkl

(7.4)

E(vkv
⊤
l ) = Rδkl

where ∆t is the sampling time.
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Fig. 8. Kalman filter concept

Taking into account the above facts, the maximum likelihood estimate of
the state xm is given by sequential use of the following procedure (Bryson
and Ho, 1975)

x̂k+1 = Ax̂k + B2uk +Ke(yk − C2x̂k) x̂0 given

Ke = APkC
⊤
2 R
−1 k = 0, 1, . . . ,m

Pk =Mk −MkC
⊤
2 (C2MkC

⊤
2 + R)

−1C2Mk

Mk+1 = APkA
⊤ + B1QB

⊤
1

(7.5)

To implement MPC, it is required to know not only the current, but also future
states of the system. Theory of optimal prediction tells that the best estimate
of the future state vector can be obtained by taking the expected value of
the forward solution to discrete state equations, calculated on the basis of the
current estimate:

x̂k = A
kx̂0 +

k−1∑

m=0

A
k−1−m

B2um k = 1, 2, . . . , n (7.6)
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8. Optimal control

Knowing the current state estimate, one can propose an optimization proce-
dure for the discussed control system. The following cost function is proposed
by wishing to drive the current state vector to the smallest possible value
over a specified time interval, but without spending too much control effort to
achieve this goal

J = z⊤nΦznzn+
n−1∑

k=0

z⊤k zk+u
⊤
kΨuk = x

⊤
nΦnxn+

n−1∑

k=0

x⊤kΦxk+u
⊤
kΨuk (8.1)

where Φn, Φ and Ψ are weighting matrices of proper dimensions.

It is assumed that the control forces uk are several times smaller than the
static tensile force in cables. This allows one to use a quadratic cost function
as the performance index.

Assuming a random wind fluctuation to be equal to its mean value, which
is zero, and using the solution to the discrete state equation, one can arrive at
the following quadratic programming problem. Additionally, the constraints on
the control force amplitude can be expressed in the form of linear inequalities.
Finally, one obtains a quadratic programming problem with the constraints

J = J0 +U
⊤ΓU+HU Umin ¬ U ¬ Umax (8.2)

where H = 2x⊤0 Ω
⊤ΦΛ, Γ = Λ

⊤
ΦΛ+Ψ and

Λ =





B2 0 0 . . . 0

AB2 B2 0 . . . 0

A2B2 AB2 B2 . . . 0
...

...
...

. . .
...

An−1B2 A
n−2B2 A

n−3B2 . . . B2




Ω =





I

A

...

An−1

An





Ψ =





Ψ 0 0 . . . 0

0 Ψ 0 . . . 0

0 0 Ψ . . . 0
...
...
...
. . .

...
0 0 0 . . . Ψ




Φ =





Φ 0 . . . 0 0

0 Φ . . . 0 0
...
...
. . .

...
...

0 0 . . . Φ 0

0 0 . . . 0 Φn





U =
[
u0 u1 u2 . . . un−1

]⊤

Constraints can be also imposed on the rate of change of the control forces.
This can be particularly important in the case of using hydraulic actuators.
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After solution, the first signal in the optimal control sequence is applied, and
the whole procedure is repeated at the next time instant

U
OPT = arg min

LU¬b
HU+U⊤ΓU (8.3)

where

L =

[
I

−I

]

b =

[
Umax

Umin

]

I is identity matrix.
Closed-loop stability of the system can be verified by Lyapunov theory

where the quadratic cost index is chosen as the Lyapunov function. As it was
mentioned earlier, the identification of the mast parameters, like its mass and
stiffness, is performed by an updating procedure of the model. Similarly to the
case of the state estimator, the assessment of the mast parameters could be
done by a Kalman filter whose state is defined by the uncertain parameters of
the mast. To realize the above idea, it is necessary to assume a certain measure
for the system of parameter estimation, like covariance of uncertainty of the
parameters.

9. Numerical simulation

In this section some results of numerical simulations are shown. A 100-meter-
high mast is supported by 6 active guy cables. The guy cables are anchored
at an angle of 45◦. The column of the mast is a spatial truss structure with
a cross-section of shape of an equilateral triangle of 1.5 meter side length.
The constitutent elements of the column are circular tubes with following
cross-section areas: 0.0074m2 for vertical members, 0.001m2 for horizontal
and diagonal members. It is assumed that the structure is made from steel,
which has following properties: Young’s modulus E = 205GPa, mass density
ρ = 7500 kg/m3. The diameter of guy cables is chosen as d = 30mm. The guy
cables are prestressed by a force of T = 400 kN, which correspond to internal
stresses of 570MPa.

Dynamics of the mast is modelled by 32 mode shapes of frequencies ranging
from 0 to 20 rad/s. For the first 10 modes, damping equal to 1% of the critical
damping is assumed, i.e.

D = 0.006M + 0.0001K

In order to verify the controllability of the structure, modal controllability
indices are calculated:
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Mode no.
Frequency Modal controllability
ω [rad/s] index µ

1. 0.3438 9.8361E-2

2. 0.3440 9.8499E-2

3. 4.7474 9.0610E-2

4. 4.7492 9.0650E-2

5. 6.6279 7.9389E-9

6. 6.6892 4.2767E-6

7. 6.6892 3.9231E-6

8. 6.6899 1.8798E-7

9. 6.8727 8.8209E-3

10. 6.8747 8.9116E-3

The data characterising wind gusts are following:

• air density 1.22 kg/m3

• average wind velocity 25m/s

• drag coefficient Cd = 1

Fig. 9. Scheme of guyed mast and direction of applied wind forces

Davenport filter (3.7) has the following transfer function

Hw(s) =
a0 + a1s+ a2s

2 + a3s
3

b0 + b1s+ b2s2 + b3s3 + b4s4

where the filter parameters are

a0 = 3.4197
a1 = −686.3151
a2 = 230.1426
a3 = 3.9021

b0 = 0.3538
b1 = 22.7788
b2 = 224.7118
b3 = 38.2997
b4 = 0.331

Full spatial correlation of velocity fluctuation is assumed.
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Fig. 10. Displacement in x1 direction (dashed line-without control, solid line-with
MP control)

Fig. 11. Displacement in x2 direciton (dashed line-without control, solid line-with
MP control)

Fig. 12. Inclination angle in x1x3 plane (dashed line-without control, solid line-with
MP control)
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In Fig. 10 - Fig. 13, dynamic behaviour of the mast is presented. The dashed
line corresponds to the open loop system without control and the solid line to
the closed loop system with Model Based Predictive Control. The disturbing
forces are applied in the form of random fluctuations with the Davenport
spectrum. In the case of the transverse displacement of the top of the mast,
a significant reduction of vibration amplitudes can be observed. The control
strategy is effective regardless of the wind direction.

Fig. 13. Inclination angle in x2x3 plane (dashed line-without control, solid line-with
MP control)

10. Conclusions

• A 3D FEM model of a guyed mast under control forces is proposed.

• The external loading is included in the form of a stochastic wind model
with the Davenport spectrum.

• Controllability of individual mode shapes of the mast is determined.

• A model based estimator for the mast is constructed.

• It has been demonstrated that a combination of the Kalman and Daven-
port filters enables prediction of wind forces acting on the guyed mast.

• A numerical simulation of the control process is presented, displaying a
significant reduction in vibration amplitudes of the top of the mast.
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Fig. 14. Control forces in guy cables (Fig. 9)

11. Future work

The linear dynamical model of a guyed mast the present work is based on does
not reflect such phenomena as e.g. parametric resonance. On the other hand,
it was shown by Preumont (2002) that Active Damping strategies are effective
even in the presence of loads capable of inducing parametric resonance. To
verify in this respect the performance of the proposed algorithm based on
Model Based Predictive Control, further research in this field is required.
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Predykcyjne sterowanie drganiami masztów z odciągami

Streszczenie

Celem pracy jest algorytm i jego przykładowe zastosowanie do symulacji nume-
rycznej optymalnego sterowania drganiami masztów z odciągami. Zadaniem układu
sterowania jest minimalizacja amplitud poprzecznych drgań wierzchołka masztu wy-
wołanych oddziaływaniem wiatru. Realizacja sił sterowania odbywa się poprzez zmia-
nę naciągu w odciągach masztu. Estymacja pełnego stanu deformacji konstrukcji na
podstawie pomiaru jedynie prędkości w punktach zakotwienia odciągów uzyskana jest
poprzez wykorzystanie filtru Kalmana. Do zamodelowania losowego oddziaływania
wiatru użyto funkcję gęstości widmowej Davenporta.
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