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Abstract. The relative sliding motion of two elastic bodies in contact induces the wear
process and contact shape evolution. The transient process at the constant relative velocity
between the bodies tends to a steady state occurring at fixed contact stress and strain
distribution. This state corresponds to a minimum of the wear dissipation power. The
optimality conditions of the functional provide a contact stress distribution and a wear rate
compatible with the rigid body punch motion. The present paper is devoted to the analysis
of wear processes occurring for periodic sliding of contacting bodies, assuming cyclic steady
state conditions for mechanical fields. From the condition of the rigid body wear velocity
a formula for summarized contact pressure in the periodic steady state is derived. The
optimization problem is formulated for calculation of the contact surface shape induced by
wear in the steady periodic state.

Mathematical Subject Classification:
Keywords: steady wear process, periodic sliding, unilateral contact, p-version of finite ele-
ment method, shape optimization

1. Introduction

The wear process on the frictional interface of two bodies in a relative sliding motion
induces shape evolution. In many practical industrial applications it is very important
to predict the form of wear shape and contact stresses. Usually the simulation of the

c©2015 Miskolc University Press
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contact shape evolution is performed by numerical integration of the modified Archard
wear rule expressed in terms of the relative slip velocity and contact pressure.

For cases of monotonic sliding motion the minimization of the wear dissipation
power provides the contact pressure distribution and rigid body wear velocities di-
rectly without time integration of the wear rule until the steady state is reached,
cf. [1, 2, 3, 4]. (The steady state is reached when the contact stress is fixed with
respect to the moving contact domain and the rigid body wear velocity is constant in
time.) The quasi-steady wear state is reached for the stress distribution dependent
on a slowly varying contact domain Sc(t). It is important that in general contact
conditions the vector of wear rate is not normal to the contact surface and has a
tangential component [1]. A fundamental assumption was introduced, namely, in the
steady state the wear rate vector is collinear with the rigid body wear velocity of a
sliding body allowed by boundary constraints.

In [1] a new idea of the wear rate vector and new form of the wear dissipation
power was presented. This new principle was applied in the analysis of the steady
wear states in disk and drum brakes.

Next, this approach was extended in [2] by the authors of previous analysis to
specification of steady-state contact shapes with coupled wear and thermal distortion
effects taken into account. The wear rule was assumed as a non-linear relation of wear
rate to shear stress and relative sliding velocity. The analysis of wear of disks and
drum brakes was presented with the thermal distortion effect.

In [3] an improved numerical analysis of the thermo-elastic contact coupled with
wear process was developed. The coupled thermo-mechanical problem was numeri-
cally treated by applying the operator split technique. For larger values of relative
sliding velocities and moving frictional heat fluxes the thermal analysis requires ap-
plication of the upwind technique. Neglecting temperature dependence of material
parameters, it was concluded that the contact pressure distribution in the steady-
state is not affected by temperature field, but the contact surface shape reached in
the wear process strongly depends on the thermal distortion. A brake system with
different shoes support was investigated, deriving the contact pressure distribution
also for the steady wear state.

In [4] the numerical analysis of coupled thermo-elastic steady wear regimes was
presented: wear analysis of a punch translating on an elastic strip and wear induced
by a rotating punch on a toroidal surface. The wear and friction parameters were
assumed as fixed or temperature dependent. The incremental procedure for temper-
ature dependent parameters was established. Three transverse friction models were
discussed accounting for the effect of wear debris motion. It was demonstrated, that
the contact pressure distribution depends only on the transformed wear velocities,
friction coefficient and wear parameter b, and is not dependent on relative velocity
and wear parameter β̃i (see (1)). The contact conformity condition was defined. In
the cases of wear of punch and wear of two bodies the contact pressure distribution
in the steady state is governed by the relative rigid body motion induced by wear.
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On the other hand, when only wear of the substrate takes place, the contact pres-
sure distribution is specified from the contact conformity condition and depends on
the elastic moduli of contacting bodies. In the literature there are numerous works
dealing with fretting problems, when in the contact domain both adhesion and slip
sub-regions can develop, [5, 6, 7, 8, 9]. Periodic contact sliding was treated in some
papers, cf. [10, 11].

The extension of variational method is presented for the case of multi-zone contact
problems for steady wear states in [12] which both transient and steady states have
been analyzed.

Paper [13] was aimed at extending the results of previous analyses [1, 2, 3, 4] of
steady state conditions to cases of periodic sliding of contacting bodies, assuming the
existence of cyclic steady state conditions. In the time integration it was assumed that
contact pressure distribution is fixed during the semi-cycle and varies discontinuously
during sliding reversal in consecutive semi-cycles. The p-version of the finite element
method is well suited for solving the contact problems with high accuracy, using the
blending technique for approximation of the shape. Wear prediction was made in the
brake system by using the averaging technique of results from monotonic motions.
The contact pressure distribution has been derived in the discretized form for 3 cases
using the Green functions. Case 1 : wear of both punch and substrate, Case 2 : wear
of substrate only, Case 3 : wear of punch only. In particular, the body B1 can be
regarded as a punch translating and rotating relative to the substrate.

Several classes of wear problems can be distinguished and discussed for specified
loading and support conditions for two bodies in the relative sliding motion. Class 1 :
The contact zone Sc is fixed on one of the sliding bodies (like a punch) and translates
on the surface of the other body (substrate). The rigid body wear velocity is com-
patible with the specified boundary conditions. The steady state condition is reached
when the contact pressure distribution corresponds to the wear rate proportional to
the rigid body velocity [2, 3]. The relative velocity between the bodies is constant
in time. Class 2 : Similarly to Class 1, the contact zone Sc is fixed but the wear
process occurs for periodic sliding motion. Class 3 : Similarly to Class 1, the relative
velocity is constant, but the load is periodic in time. Class 4: Similarly to Class 2, the
contact zone is fixed, but the wear process reaches the steady state for periodic load
and periodic sliding motion (for instance in the braking process). In the case of Class
1, from minimization of the wear dissipation power it is easy to derive the formulae
for contact pressure distribution [2, 3]. Paper [6] presents the analysis of wear for the
case of periodic sliding of contacting bodies, assuming cyclic steady state conditions
and taking into the heat generation at the contact surface. In particular, the body
B1 can be regarded as a punch translating and rotating relative to the substrate B2.

It is assumed that strains are small and the materials of the contacting bodies
are linearly elastic. In discretization of the contacting bodies for the displacement
and temperature determination, the p-version of finite elements was used [13, 14],
assuring fast convergence of the numerical process and providing a high level accuracy
of geometry for shape optimization.
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The specific examples are related to the analysis of punch wear induced by recipro-
cal sliding along a rectilinear path on an elastic strip. The external loads acting on the
punch are not symmetric. Specifying the steady state contact pressure distributions
for an arbitrarily constrained punch, it is noted that the pressure at one contact edge
vanishes, and the maximal pressure is reached at the other edge. It was shown that
by summarizing pressure values for consecutive semi-cycles, a resulting distribution is
obtained that corresponds to the rigid body displacement of the punch. The analysis
of the same example taking heat generation into account demonstrates that the ther-
mal distortion affects essentially the contact shape and the transient contact pressure
distribution [15]. However, it was shown that in the steady wear state for reciprocal
sliding, the contact pressure reaches the same distribution as that obtained for the
case of neglect of heat generation, but the steady state contact shapes are different.

In the case of periodic sliding motion, the steady state cyclic solution should be
specified and the averaged pressure in one cycle and the averaged wear velocity can
be determined from the averaged wear dissipation in one cycle. In our investigation
between the bodies it was assumed that the stick zone no longer exists and the whole
contact zone undergoes sliding. The tangential stress can then be directly calculated
from the contact pressure and the coefficient of friction.

2. Wear rule and wear rate vector

The modified Archard wear rule [1] specifies the wear rate ẇi,n of the i-th body in
the normal contact direction. Following previous work [1, 2] it is assumed that

ẇi,n = βi(τn)bi‖u̇τ‖ai = βi(µ pn)bi‖u̇τ‖ai = βi(µ pn)bivair = β̃ip
bi
n v

ai
r , i = 1, 2 (1)

where µ is the friction coefficient, βi, ai, bi are the wear parameters, β̃i = βiµ
bi ,

vr = ||u̇τ || is the relative tangential velocity between the bodies, constrained by the
boundary conditions.

Figure 1. Reference frame and wear rate vectors on the contact
surface Sc. Coaxiality rule of ẇR and eR.

The shear stress at the contact surface is expressed in terms of the contact pressure
pn by the Coulomb friction law τn = µpn. In general contact conditions the wear
rate vector ẇi is not normal to the contact surface and results from the constraints
imposed on the rigid body motion of punch B1. Introducing the local reference triad
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eτ1, eτ2, nc on the contact surface Sc (see Figure 1), where nc is the unit normal
vector, directed into body B2, ni is the unit surface normal of the i-th body, eτ1 is
the unit tangent vector coaxial with the sliding velocity and eτ2 is the transverse unit
vector, the wear rate vectors of bodies B1 and B2 are

ẇ1 = −ẇ1,n nc + ẇ1,τ1 eτ1 + ẇ1,τ2 eτ2 , ẇ2 = ẇ2,n nc− ẇ2,τ1 eτ1− ẇ2,τ2 eτ2 . (2)

The contact traction on Sc can be expressed as follows [3]

tc = tc1 = −tc2 = −p±nρ±c , ρ±c = nc ± µ eτ1 + µd eτ2 (3)

where ρ±c specifies the orientation and magnitude of traction tc with reference to the
contact pressure pn and µd is the transverse friction coefficient. The sign + in (2)
corresponds to the case when the relative tangential velocity is u̇τ = u̇(2)

τ − u̇(1)
τ =

−‖u̇τ‖ eτ1 = −vreτ1 with the corresponding shear stress acting on the body B1 along
−eτ1. The fundamental coaxiality rule was stated by Páczelt and Mróz [1, 2, 3, 4],
namely: in the steady state the wear rate vector ẇR is collinear with the rigid body
wear velocity vector λ̇R, thus

ẇR = ẇR eR , eR =
λ̇R∥∥∥λ̇R∥∥∥ =

λ̇F + λ̇M ×∆r∥∥∥λ̇F + λ̇M ×∆r
∥∥∥ , (4)

where ∆r is the position vector. The coaxiality rule is illustrated in Figure 1. The
normal and tangential wear rate components now are

ẇn = ẇR cos χ , ẇτ = ẇR sinχ = ẇn tanχ (5)

where χ is the angle between nc and eR . The wear rate components in the tangential
directions are

ẇτ1 = wR sinχ cosχ1 , ẇτ2 = wR sinχ sinχ1 (6)

where the angle χ1 is formed between the projection of ẇR on Sc and eτ,1 as shown
in Figure 1. Let us note that the sliding velocity vr = ‖u̇τ‖ is specified from the
boundary conditions and the wear velocity vectors λ̇F and λ̇M should be determined
from the solution of a specific problem. In the analysis of sliding wear problems the
elastic term of relative sliding velocity is usually neglected.

3. Steady state conditions for monotonic motion

It has been shown in [1, 2] that the steady state conditions for monotonic motion can
be obtained from minimization of the wear dissipation power subject to equilibrium
constraints for body B1. The wear dissipation power for the case of wear of two bodies
equals

Dw =

2∑
i=1

∫
Sc

(tci · ẇi) dS

 =

2∑
i=1

Ci . (7)
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The global equilibrium conditions for the body B1 can be expressed as follows

f = −
∫
Sc

ρ±c p±n dS + f0 = 0

m = −
∫
Sc

∆ r × ρ±c p±n dS + m0 = 0

(8)

where f0 and m0 denote the resultant force and moment acting on the body B1 .
The formula for contact pressure at steady wear state can be found in papers [1, 2, 4]
and for multi-contact zone cases the contact pressure’s formula can be found in [12].

4. Wear dissipation in periodic motion and summed pressure in periodic
steady wear state

In this section we shall analyze the wear process induced by the reciprocal strip
translation. It is assumed that only the punch undergoes wear (see Figure 2), that is
in our case β̃1 6= 0, β̃2 = 0.

a) b)
Figure 2. Periodic sliding on the contact interface between punch and
strip. The number of finite elements in body 1 along the x direction
is 8, and in vertical z direction is 7. The lines are drown through the
Lobatto integral coordinates.

In the analysis the contact pressure distribution is assumed as fixed during semi-
cycle and varies discontinuously during sliding reversal in consecutive semi-cycles.
The temperature distribution varies continuously during each cycle period [15]. The
coupled thermo-mechanical problem was solved by the operator split technique [16].
The wear effect is calculated incrementally by applying the Archard type wear rule
(1). The wear is accumulated at the end of the half period of motion, so the contact
pressure is fixed (at the iteration level), and the transient heat conduction problem
is next solved for the given temperature field at the beginning of the half period.
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The steady state contact pressure distribution in the wear process induced by peri-
odic sliding does not depend on the value of wear factor β̃1 nor generated temperature
field, but the wear induced contact surface shape is strongly affected.

During the steady periodic response the wear increment accumulated during one
cycle should be compatible at each point x ∈ Sc with the rigid body punch motion.

The wear dissipation work for periodic motion is

Ew =
1

2

2∑
i=1

T∗/2∫
0

∫
S

(i)
c

(tc+i · ẇ
+
i ) dS

 dτ +
1

2

2∑
i=1

T∗∫
T∗/2

∫
S

(i)
c

(tc−i · ẇ
−
i ) dS

 dτ

(9)
where tc+i , tc−i is the contact traction vector and ẇ+

i , ẇ
−
i is the wear velocity of the

i-th body in the progressive and reciprocal motion direction, T∗ is the period of sliding
motion, T∗ = 2π/ω.

Figure 3. The wear process occurring on the contact interface be-
tween punch and strip translating with the relative velocity vr =

u0 ω sinωτ, u̇τ = −vr eτ1. The segment M̃Ñ of the substrate takes
part in the wear process.

In our case the tangential velocity of body 2 is (see Figure 3):

u̇τ = u̇(2)
τ − u̇(1)

τ = u0 ω sinωτ ex = −u0 ω sinωτ eτ1 = −vr eτ1 (10)

with the corresponding shear stress acting on the body B1 along −eτ1. The integral
of the relative velocity between the bodies is

T∗/2∫
0

vrdτ =

T∗∫
T∗/2

vrdτ = 2u0 . (11)

In view of the wear rule (1) the wear dissipation for the punch of Figure 2 is

Ew =
1

2

1∑
i=1

T∗/2∫
0

 ∫
S

(1)
c

p+
n ẇ

+
1,ndS

 dτ +
1

2

1∑
i=1

T∗∫
T∗/2

 ∫
S

(1)
c

p−n ẇ
−
1,n dS

 dτ (12)
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and for β̃1 6= 0, β̃2 = 0, a1 = b1 = 1 there is

Ew

2u0 β̃1

=

∫
S

(1)
c

{
(
p+
n

)2
+
(
p−n
)2

)} dS =
E+
w

2u0 β̃1

+
E−
w

2u0 β̃1

. (13)

In the steady wear state Ew reaches a minimum value. Let us note that p+
n and

p−n are not uniformly distributed at the contact interface. Taking the coordinate
x̃ = 1130− x it can be stated that p(x) = p(x̃) during the consecutive semi-cycles of
reciprocal sliding.

It is very important that during the steady wear periodic state the wear increment
accumulated during one cycle should be compatible at each point p(x) = p(x̃) with
the rigid body punch motion. The main idea for derivation of the wear increment
and summed pressure for 2D system with cylindrical contact surface is collected in
the Appendix.

Assume the rigid body wear velocities for left (−) and right (+) directions of the
substrate in the following

λ̇
−
F = −λ̇−F ez , λ̇

−
M = λ̇−M ey , λ̇

+

F = −λ̇+
F ez , λ̇

+

M = −λ̇+
M ey . (14)

Thus the velocities at an arbitrary point at the punch, Figure 2b, are −(λ̇+
F +λ̇+

M x̃)ez,
or −(λ̇−F − λ̇

−
M x̃)ez. The displacements resulting from this velocities are

− (∆λ+
F + ∆λ+

M x̃)ez and − (∆λ−F −∆λ−M x̃)ez (15)

where

∆λ+
F,M =

T∗/2∫
0

λ̇+
F,M dt , ∆λ−F,M

T∗∫
T∗/2

λ̇−F,M dt .

Thus, the total wear accumulated during one sliding cycle is

∆wn = ∆w+
n + ∆w−

n = (∆λ−F + ∆λ+
F )− (∆λ−M −∆λ+

M ) x̃ . (16)

This value of wear can be calculated from the wear law supposing β̃1 6= 0, β̃2 = 0,
a1 = b1 = 1, thus according to (A.12)

∆wn = ∆w+
n + ∆w−

n = Q (p+
n + p−n ) = 2 Q pm = QpΣ (17)

where

pm = (p+
n + p−n )/2 = pΣ/2 and Q = β̃1

T∗/2∫
0

‖u̇τ‖ dt .

Comparing (16) and (17), it is seen that the distribution of the sum of contact pressure
values of consecutive semi-cycles must be a linear function of position, thus

pm = pCm + pLm x̃ . (18)
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that is

∆wn = ∆w+
n +∆w−

n = (∆λ−F+∆λ+
F )−(∆λ−M−∆λ+

M ) x̃ = β̃1

T∗∫
0

‖u̇τ‖ dt 2 (pCm+pLm x̃),

where ∆λ±
F,M

is the increment of rigid body wear velocities in the half period time.
Using the equilibrium equations for summed loads, the summed pressure for the steady
wear state is determined as

pCm =
F0

Sc
− 3F0(−L+ 2x̃F )

LSc
, pLm =

6F0(−L+ 2x̃F )

L2 Sc
,

pΣ = 2pm = p+
n + p−n = 2(pCm + pLm x̃)

(19)

where x̃F is the coordinate of the resultant load F0 = F0(p∼) . For non-negativity of
pm there should be L/2 6 x̃F 6 2L/3. At x̃F = L/2 the results of [5, 6] are obtained.
Here Sc is the area of contact zone.

The wear increment in one period (note that the contact pressure is fixed in half
period) equals

∆w1,n = β̃1

[
p+
n + p−n

]
(u0ω)

T∗/2∫
0

|sin ωτ | dτ , (20)

which using (11) provides the simple relation

∆w1,n = β̃1

[
p+
n + p−n

]
2u0 = Q pΣ , (21)

where Q = β̃1 2u0 and the averaged wear rate in one period equals

¯̇w1,n =
∆w1,n

T∗
=
β̃1[p+

n + p−n ]

T∗
2u0 . (22)

If the rigid body wear velocity λ+
M = λ−M = 0, (at the supports – see Figure 2a),

then in the steady periodic wear regime the uniform wear increment is accumulated
during full cycle at each point of the contact zone and the following condition should
be satisfied:

p+
n + p−n = 2pm = const . (23a)

Remark : If a1 = 1 b = b1 6= 1 then in a periodic steady state there must be(
p+
n

) b
+
(
p−n
) b

= 2(pm)
b

= const2 (23b)

where pm is the contact pressure at the center of the punch contact zone, at x = 1100.
Because at x = 1070, p−n = 0 the contact pressure is

p+
n (x = 1070) = 21/bpm (23c)

At the other perimeter at x = 1130 it holds that p+
n = 0 and

p−n (x = 1130) = 21/bpm . (23d)
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Performing time integration of the wear rate rule for a1 = b1 = 1 during the one half
period, the wear increment is calculated in the following way:

∆w
(j)
1,n =

tp+T∗/2∫
tp

β̃1 p
(j)
n (τ) u0 ω |sinωτ | dτ ∼= β̃1 p

(j)
n (tp + T∗/2)

T∗/2∫
0

u0ω |sinωτ | dτ

(24)
where tp is the time of start of the half period, p(j)

n = p
(j)
n (tp + T∗/2).

The accumulated wear at the end of half period at the iterational step j equals

w
(j)
1,n(tp + T∗/2) = w1,n(tp) + ∆w

(j)
1,n = w1,n(tp) + β̃1 p

(j)
n 2 u0 (25)

or in other notation

w
(j)
1,n(tp + T∗/2)=tp+T∗/2w

(j)
1,n = tpw1,n + ∆w

(j)
1,n . (26)

This j type iterational process is repeated until j = J when the following convergence
criterion for contact shape is satisfied, thus

ew = 100

∣∣∣∣∣∣
∫
Sc

(
tpg+∆w

(j)
1,n

)
dS−

∫
Sc

(
tpg+∆w

(j−1)
1,n

)
dS

∣∣∣∣∣∣ /
∫
Sc

(
tpg + ∆w

(j−1)
1,n

)
dS 6

6 0.01 . (27)

Here tpg is the initial gap at the beginning of the half period.
Remark: If a1 = 1, b = b1 6= 1 then the wear increment during the one half period is

∆w
(j)
1,n = β̃1

(
p(j)
n

) b
2 u0 . (28)

In practical calculations the iterative scheme of contact pressure and wear shape
correction can be modified after k half cycles, so we can write

tp+kT∗/2w1,n = tpw1,n + k∆w
(J)
1,n . (29)

In our case we chose the extrapolation factor k in the following way:
for the numerical steps n ≤ 50, k = 1; for 50 < n ≤ 100, k = 5 and when n > 100,
then k = 10.
The number of the half periods in the interval then is

50 6 n 6 100 nhp = 50 + (n− 50) · 5 ,
n > 100 nhp = 300 + (n− 100) · 10 .

(30)

5. Examples

5.1. Example 1: wear of punch induced by periodic sliding of the substrate.
Let us analyze the wear of the punch (Body 1) shown in Figure 2. We would like to
examine two types of constraints, one when the punch can move only in the vertical
direction (see Figure 2a), and second when the punch has additional rotation around
a pin (see Figure 2b). The point M in the punch has coordinates: x = 1070, z = 100.
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The following geometric parameters are assumed: the punch width is L = 60 mm, its
height is h = 100 mm, the thickness of punch and strip is tth = 10 mm.

The wear parameters are: β̃1 = 1.25π·10−8, β̃2 = 0, a1 = 1, b1 = 1, the coefficient of
friction is µ = 0.25. The horizontal displacement of the substrate is uτ = −u0 cosωτ ,
where u0 = 1.5 mm, ω = 10 rad/s, τ is the time. The material parameters are
presented in Table 1.

Table 1. Mechanical parameters of two materials
Young modulus

Poisson ratio
Material density

MPa kg/m3

Material 1 (steel) 2.0× 105 0.30 7800
Material 2 (composite) 1.3× 105 0.23 846

The upper parts of the punch and strip are assumed to be made of the same
material, (Material 1, see Table 1). The lower punch portion of height 20 mm is
characterized by the parameters of Material 2 (see Table 1).

5.1.1. Symmetric load. The punch is loaded on the upper boundary z = 200 mm by
the uniform pressure p∼ = 16.666 MPa corresponding to the resultant vertical force
F0 = 10.0 kN.

The wear parameter is b = 1. This problem was neglecting the heat generation in
[13], and accounting for heat generation in [15]. The numerical results of paper [13]
are collected in Table 2 and in Figure 4 for lz = 40mm.

Let us denote the contact pressure for the punch of Figure 2a by pn(λ̇F ), for the
punch of Figure 2b for lz = 20 and lz = 40 by pn(λ̇F , λ̇M , lz = 20) and pn(λ̇F , λ̇M , lz =
40), respectively.

After time integration of the Archard wear rule the contact pressures at point M are
collected in Table 2 versus the numerical time steps n for different punch constraints.

It is clear that convergence to the pressure 33.333 MPa proceeds for all cases of
constraints. In the case lz = 40mm the evolution of the shape and contact pressure
is demonstrated in Figure 4.

Because the loading distribution is symmetric, the distribution of the pressure and
shape is also symmetric. The optimal solutions (marked by . . . ) correspond to the
monotonic relative motion. Also it is observed that after n ≥ 1500 the pressure
distribution does not change and the contact profile is preserved, moving along the
punch axis like a rigid line. In this case ∆λ−F = ∆λ+

F ,∆λ
−
M = ∆λ+

M , that is in the
wear process the accumulated punch wear is the same during each period, the pressure
distribution is pm = pCm = p∼, and the summed pressure pΣ = p+

n + p−n = 2pm = 2p∼.
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Table 2. Contact pressure at the pointM versus numerical time stepsn

n
no. of half

pn(λ̇F ) pn(λ̇F , λ̇M , `z = 20) pn(λ̇F , λ̇M , `z = 40)period nhp
1 1 0.14841933E + 03 0.10087461E + 03 0.13837226E + 03

50 50 0.11470731E + 03 0.87926576E + 02 0.10745308E + 03
100 300 0.69721237E + 02 0.57950338E + 02 0.67301651E + 02
200 1300 0.46654939E + 02 0.41195687E + 02 0.46039272E + 02
300 2300 0.40931186E + 02 0.36462991E + 02 0.40376545E + 02
400 3300 0.37501127E + 02 0.35565594E + 02 0.37620120E + 02
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Figure 4. a) Contact pressure at different time steps and sliding di-
rections, b) evolution of shape of punch for reciprocal motion, lz = 40
mm, the load p∼ = 16.666 MPa and resultant force’s coordinate is
x̃F = L/2.

The wear parameter is b 6= 1. Let us investigate the periodic wear process at β̃1 =
1.25π µ0.210−8, β̃2 = 0, and a1 = 1, b = b1 = 1.2, µ = 0.25. The displacement of
body 2 is: u = −u0 cosωτ , where u0 = 1.5 mm, ω = 10 rad/s.

Performing time integration of (1) we see that after the number of half periods
(n ≥ 1100) nhp ≥ 10300 the wear process reaches its steady state. In this case the
value 2 (pm)

b
= const2 = 61.48, where pm = 17.369 MPa, p+

n = p−n = 30.948 MPa.
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Comparing the contact pressure and shape of punch in the steady state, we see
that the pressure for b = 1.2 at the border of contact zone is lower than that for b = 1,
and at the center of the punch the pressure is higher. The contact shape for b = 1.2
is shown by the curve placed above that predicted for b = 1 (cf. Figure 5). On the
other hand, for the case b = 0.8, the contact pressure is higher than that for b = 1
at the perimeter points, and the contact shape curve is lower than that for b = 1. It
also is noted that for the wear parameter value β̃1 = 1.25π µ−0.210−8, which is the
smallest, the steady state is reached at n = 2500. Then the pressure in the center is
pm = 15.886 MPa, the value 2 (pm)

b
= const2 = 18.274, the pressure at the perimeter

points are p+
n = p−n = 37.806 MPa and calculated value is (p+

n )
b

= (p−n )
b

= 18.283.
The calculation error 100

[
(p+
n )
b − 2 (pm)

b
]
/2 (pm)

b
= 0.0055 is very small. Also

p+
n (x = 1070) = 21/bpm, pm = 15.8954 MPa.
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Figure 5. The effect of the wear parameter b on the periodic steady
wear state, a) distribution of the contact pressure, b) contact shape
of punch (maximal shape function ordinate is 6 µm).

5.1.2. Non-symmetric load. Let us now analyze the case of eccentric load when the
resultant vertical force equals F0 = 10 kN and its position coordinate is in the interval
L/2 = 30 ≤ x̃F ≤ 2L/3 = 40.

The first case. The pressure p∼ = 20 MPa is applied in the interval 10 ≤ x̃ ≤ 60.
The resultant position coordinate is x̃F ≤ 35 mm. This load case represents the vari-
ant 2. The results are presented in Figure 6. Figures 6a,c demonstrate the pressure
at different numbers of half cycles and Figures 6b,d present the summed pressure
pΣ = p+

n + p−n = 2pm. It is seen that after n ≥ 1000 the summed pressure practically
does not change. Its distribution is presented by a linear function. A small oscillation
is observed because in the solution of the contact problem the positional technique
has not been used [17]. In our calculation it is required that the gap in point x = 1130
mm of the contact zone be fixed during consecutive iterations. The contact shapes
are shown in Figures 7a,b. If the pin height is lz = 20mm, the obtained pressure
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Figure 6. Periodic wear process for the load variant 2: a), c), e)
evolution of pressures, b), d), f) evolution of the summed pressure
pΣ = 2pm.
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Figure 7. Evolution of contact shapes for periodic wear process at
the load variant 2: a), c), n = 100− 3500, b), d) n = 5000− 7000.

distribution is shown in Figure 6e, and the summed pressure is shown in Figure
6f. The contact shapes are presented in Figures 7c,d. Because in the equation for
summed pressure (19) the height lz is absent, the summed pressures for lz = 20 mm,
and lz = 40 mm must be the same. This fact is also demonstrated by the numerical
time integration results (compare Figures 6d and 6f).

The second case. The pressures p∼1 = 25 MPa, p∼2 = 12.5 MPa act in the intervals:
p∼1 : 30 ≤ x̃ ≤ 60, p∼2 : 10 ≤ x̃ ≤ 30. The resultant vertical force is F0 = 10 kN, the
resultant position coordinate is x̃F ≤ 37.5 mm. This load case corresponds to variant
3.

The pressure distribution can be seen in Figures 8a,c and the summed pressure
in Figures 8b,d. The maximum of the pressure is higher than before, because the
resultant coordinate x̃F is larger by 2.5 mm. In this case the high pressure at the
border of contact domain very quickly decreases. For the periodic steady wear state
the maximum of the pressure can be calculated from the summed pressure, which is
predicted without time integration! For each half period the contact gap has been
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specified. For the rightward sliding direction the maximum of the contact pressure is
on the left border of contact zone, but for the leftward sliding direction the maximum
is in the interior of the contact zone.
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Figure 8. Periodic wear process for the load variant 3: a), c) evolution
of the pressures, b), d) evolution of the summed pressure pΣ = 2pm.

The wear is larger for loading variant 3 than for the variant 2. However, the character
of wear process is the same. The shape evolution is presented in Figures 9a,b.

5.2. Example 2: Periodic steady wear state for a disk brake system. Con-
sider the periodic tangential relative displacement of body B2 (the disk) with respect
to body B1 in the direction eτ

uτ = u0 cosωτ eτ (31)

where u0 and ω are the amplitude and angular velocity of the motion.
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Figure 9. Evolution of the contact shapes for periodic wear process
at the load variant 3: a) n = 500− 3500, b) n = 2500− 7500.

The relative sliding velocity and the cycle period are

u̇τ = −u0 ω sinωτ eτ = −vr eτ (32a)

vr = ‖u̇τ‖ = |ω u0 sinωτ | = |v0 sinωτ | , T∗ =
2π

ω
, v0 = ω u0 (32b)
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Figure 10. Brake system, a) α0 = 30◦, the resultant force F0 = 10
kN, thickness of bodies tth = 10 mm; b) finite element mesh of the
half part of the system, number of contact elements is 11, number of
elements in radial direction is 4, the p-version of the finite elements
has p = 8 polynomial degree. The liners are drawn through the
Lobatto integral coordinates.

The shoe (body B1) is loaded by the force F 0 = −F0 ez. In our case F0 = 10 kN.
The Lagrangian multiplier λ̇F represents the vertical wear velocity.
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Figure 11. Contact pressure and summed pressure (pΣ = pσ – theory)
distribution at different time steps.
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It is easy to calculate the average normal wear rate for body 1. (The normal wear
vector is ẇ1,n = −ẇ1,nnc)

¯̇w1,n =
1

T∗

T∗∫
0

β̃1p
b
nv

a1
r dτ =

β̃1p
b
n

T∗

T∗∫
0

va1r dτ = β̃1p
b
nv̄

a1
r (33)

The vertical average wear rate is
¯̇wR = ¯̇w1,n/ cosα (34)

In view of (32)-(34), the average vertical wear rate in one period equals

¯̇wR =
1

cosα

β̃1[p+b
n + p−bn ]

T∗
(u0ω)a1

T∗/2∫
0

|sin ωτ |a1 dτ (35a)

which for a1 = b = 1 provides the relation

¯̇wR =
1

cosα

β̃1[p+
n + p−n ]

T∗
2u0 , ∆wR = ¯̇wRT∗ =

1

cosα
(p+
n + p−n )β̃12u0 (35b)

where ∆wR is the vertical wear increment for one motion cycle.

Let us note that p+
n and p−n are not uniformly distributed on the contact interface.

To assure the uniform wear increment ∆wR accumulated during full cycle at each
point of the contact zone, the following condition should be satisfied according to
results of (A.20) in the Appendix:

∆wR =
∆w1,n

cosα
=
QpΣ

cosα
= Q2pCm = const (36)

where
pΣ = p+

n + p−n = 2pm = 2pCm cosα , Q = β̃1 2u0 (37)

The wear parameters are β̃1 = 0.5π · 10−8, β̃2 = 0, a1 = b1 = 1. The sliding
parameters are u0 = 1.5 mm, ω = 10 rad/s. Using time integration of the wear rule
in the usual way, the obtained contact pressure evolution is demonstrated in Figure
11 at the beginning of numerical steps n = 1000. The number of the half periods is
calculated by (10).

With increasing number of cycles condition (37) is progressively better satisfied, see
Figure 11. Here pΣ = pΣ(α) = (p+

n + p−n ) = 2pCm cosα. At n = 4200, pΣ(0) = 12.42
MPa, at n = 6500 pΣ(0) = 11.67 MPa , at n = 7200 pΣ(0) = 10.93 MPa , at n = 8700
pΣ(0) = 10.71 MPa, at n = 9200 pΣ(0) = 10.69 MPa, at n = 10000 pΣ(0) = 10.66 MPa
and at n = 12100 pΣ = 10.62 MPa, that is n⇒∞ pΣ(0) = 2pCm. The value of pΣ(0) as
the function of n is demonstrated in Figure 12. At the beginning of the wear process
the drop in pressure pΣ(0) is very high, next it exponentially decreases to the value
pΣ(0) = 2pm = 10.57 MPa. This value is calculated from (A.15).

The evolution of the contact shape is also interesting. In the initial phase the wear
is high in the middle contact portion, and next the shape tends to its steady form,
which translates vertically as a rigid line, see Figure 13.
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Figure 12. Satisfying the constraint of uniform vertical wear increment.
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Figure 13. Evolution of contact shape in the wear process.
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Figure 14. Prediction of contact shape from the averaged monotonic
sliding motion between the shoe and disk.

The averaging technique for prediction of the shape form [13] provides an overesti-
mated wear form, see Figure 14. In [13] it was demonstrated that the shape does not
depend on the coefficient of friction. At the center point the averaged shape function
has the value 0.07503 mm, and the shape function obtained by time integration of the
wear rule has the value 0.07456 mm. The error is less than 1%. A small asymmetry
has been found from time integration.

6. Optimization problem

6.1. Specification of the initial wear form. Let us analyze the wear of the punch
(Body 1) shown in Figure 2a. We would like to find the steady contact shape for
periodic motion using the results of monotonic strip sliding in the leftward or right-
ward direction and develop a new optimization technique. The punch now is allowed
to execute a rigid body wear velocity λ̇F [13, 15] which is normal to the contact in-
terface. The optimal pressure for steady wear state is uniform, p+

n = p−n = p∼. The
calculation of the initial gap that is the wear shape is performed by loading separately
each body by the optimal contact pressure and friction stress. In this case the bodies
are not allowed rigid body motion in the vertical direction. For monotonic sliding the
equation requiring the total contact gap to vanish specifies the wear gap g, thus

d = u(2)
n − u(1)

n − λF + g = 0 (38)

where the rigid body wear velocity of the punch is known from the stationary condi-
tion, so that λF = λ̇F ts, where ts is the selected time instant specifying initiation of
the steady state. The steady state shapes can be found in Figure 15, where at leftward
sliding it is set at g(x = 1070) = 0, and at rightward sliding set at g(x = 1130) = 0.
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Denoting by shape(l), shape(r) the resulting wear shape curves during the leftward
and rightward monotonic sliding (see Figure 15), assume the shape curve for reciprocal
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Figure 16. Prediction of the wear shape for periodic wear process
from the results of monotonic sliding. The average shape is Shape(a)

sliding to be approximated by the sum of monotonic shape curves, thus

Shape(a) = shape(l) + shape(r) − 2 · shape(l)(x = 1100) , (39)

where the last term specifies the translation of the curve along the z-axis in order to
obtain the zero value at the mid contact point (see Figure 16). It is seen that the
prediction is not close to the actual wear form at the contact edges. It is also noted
that shapes at n = 1000 and n = 1500 are practically the same, so the wear process
has reached its steady state at n = 1000.
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The evolution of the wear dissipation energy for one cycle is plotted in Figure 17.
The continuous line corresponds to the leftward and the dotted line to the rightward
sliding direction of the substrate. The wear dissipation energy very quickly decreases
and tends to its minimum level.

a

b

Figure 18. δw = ∆w1,n − min ∆w1,n = (∆w+
1,n + ∆w−

1,n) −
min(∆w+

1,n+ ∆w−
1,n) at different time periods, a) at the beginning of

the wear process, b) in the steady state.
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Theoretically calculating the value

δw = ∆w1,n −min ∆w1,n (40)

it is expected that in the steady state it must vanish. Here δw is the wear difference
after one sliding period. In Figure 18 the evolution of δw is shown at the beginning
of the wear process (a), and at the periodical steady state (b). In the initial period
of the wear process, δw is ∼100 times greater than that at the steady state. In the
steady state it reaches a stabilized small value. It seems to be impossible to reduce
δw to zero in the numerical calculation process.

6.2. Solution of the optimization problem using splines. In view of the pre-
ceding analysis, the following optimization problem can be stated for calculation of
the wear shape

min
gn
{ max δw = ∆w1,n max −∆w1,n min | p±n ≥ 0, d±n ≥ 0,

p±n d
±
n = 0, τ+

n = µp+
n , τ−n = −µp−n , f = 0, m = 0

}
(41)

where ∆w1,n max,∆w1,n min are the maximum and minimum values of wear attained
in one cycle, f = 0, m = 0 are the punch equilibrium equations.

The global equilibrium conditions for the body B1 can be expressed as (8).

According to Signorini contact conditions in the normal direction the contact pres-
sure must be positive in the contact zone and distance after deformation between the
bodies must also be positive, thus

d±n = u(2)±
n − u(1)±

n + gn ≥ 0 (42)

where u(i)
n = u(i) ·nc is the normal displacement of the i-th body, gn is the initial gap

(shape of body 1 in the periodic steady state which is not given, but must be found
in the optimization process). The Signorini conditions for the whole period then are

p±n d
±
n = 0, p±n ≥ 0, d±n ≥ 0 . (43)

The objective function can be stated as Iδw =
∫
Sc
δw dS, or Iδw · max δw. The steady

state condition then is Iδw = 0, also max δw = 0. Numerically this extremum cannot
be reached. In our examples it is found that Iδw · max δw ∼ 10−6.

6.2.1. First step in the solution of the optimization problem (41). The optimization
problem is solved in two steps.

A. First we take the average shape for monotonic motions [5], see Figure 16(-+)
line, to build a cubic spline for the following points:
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x mm Shape mm

1 0.10700000E+04 0.18265000E-02
2 0.10707500E+04 0.16335910E-02
3 0.10715000E+04 0.14934270E-02
4 0.10736300E+04 0.11869800E-02
5 0.10757500E+04 0.95190000E-03
6 0.10778800E+04 0.76108000E-03
7 0.10800000E+04 0.60226500E-03
8 0.10900000E+04 0.13810000E-03
9 0.11000000E+04 0.00000000E-00

10 0.11136300E+04 0.26240500E-03
11 0.11200000E+04 0.60244000E-03
12 0.11221300E+04 0.76135000E-03
13 0.11242500E+04 0.95234000E-03
14 0.11263800E+04 0.11876850E-02
15 0.11285000E+04 0.14945845E-02
16 0.11292500E+04 0.16349025E-02
17 0.11300000E+04 0.18279500E-02
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Figure 19. Shape modification specified with 9th polynomial order.

B. Then transform the data in the following way:

∆ ·m · (x− 1100)q/ (L/2)
q for x ≤ 1100 ,

∆ ·m · (−x+ 1100)q/ (L/2)
q for x < 1100 .

(44)

We take q = 9, ∆ = 0.0004 mm, m = 1, 2, ..., 7. This procedure is named polyno-
mial iteration. The shapes are demonstrated in Figure 19. In this figure the curve
obtained from time integration of the wear rule (- - o) is presented. It is seen that
the approximation curve at m = 7 is lower than the curve (- - o). That is, the spline
approximation must be modified.

6.2.2. Second step in the solution of the optimization problem (41). In the second step
we suppose that the new wear function can be approximated by the Taylor series

δw = δw(0) +

16∑
j=1

∂ (δw)

∂aj
∆ aj , (45)
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that is we can calculate the spline parameters aj .

The derivative ∂ (δw) /∂aj is determined in the numerical way, so that

∂ (δw)

∂aj
≈
δw(a

(0)
1 , ..., a

(0)
j + ∆s, ..., a

(0)
16 )− δw(0)

∆s
. (46)

In our case ∆s = 0.00002.
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Figure 20. Shape modification specified by spline modification.

For each j the contact problem must be solved and the wear is calculated for one
sliding period. For the control of the condition δw = 0, 16 point zones in the con-
tact domain are taken, and using the Raphson iteration technique, new spline point
coordinates can easily be found:

anewj = a
(0)
j + ∆ aj (47)
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Figure 21. Contact pressure evolution due to different polynomial
shape modifications, a) for rightward sliding motion, b) for leftward
sliding motion.
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Figure 22. Contact pressure evolution due to spline modifications, a)
for rightward sliding motion, b) for leftward sliding motion.

where the algebraic system is

[
∂(δw)i
∂aj

]
i,j=1,16



∆a1

...
∆aj
...

∆a16

 = −



δw1

...
δwj
...

δw16



(0)

(48)

Using this technique, after ms = 1, 2, 3 spline modifications we obtain a nice result,
see Figure 20. The calculated shape is practically the same as that obtained from
time integration. The contact pressure distributions are presented in Figures 21 and
22. When the averaged monotonic shape is applied, the contact pressure has a high
value at the perimeter points changing with the sliding direction, see Figure 21. After
polynomial iteration the pressure value is lower than that in the steady state, see lines
(–+) in Figure 21. After the end of the second step, the pressure exhibits a very small
oscillation, so the optimal solution is very close to the numerically specified result (see
Figure 22). It can be concluded that the recommended optimization process provides
correct results.

6.3. Solution of the optimization problem by applying the penalty tech-
nique. The objective function can be presented in a different form, using the pressure
constraint in the periodic steady wear state. Define the pressure difference for the
rigid body wear velocity λ̇±F 6= 0, λ̇±M = 0 (see (23a))

∆pn = p+
n + p−n − 2pm . (49)

If ∆pn = 0 at each point of contact zone, then the corresponding contact shape is
correct. If not, then the shape must be modified. Using the idea of penalty technique
[18], we can write

∆pn = p+
n + p−n − 2pm = cn(u+

n + g+
n + u−n + g−n )− 2pm , (50)
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where g+
n and g−n are the shapes (gaps) at the end of the + or – sliding direction , cn

is the penalty parameter used for the normal contact problem.

a) b)
Figure 23. Contact pressure distribution and shape evolution. a) pn
at steady state, b) shape modification in the i-th (+ direction sliding)
and (i+ 1)-th (- direction sliding) iterational step

.

If ∆pn 6= 0 the shape must be changed, that is instead of (50) it can be written

∆p±n = p+
n + p−n − 2pm = cn(u+

n + g∓n + u−n + g±n ) + c∆g±n − 2pm (51)

The optimization problem can be written in the following form

min
gn
{
∫
Sc

1

2
(p+
n + p−n − 2pm)2 dS | p±n > 0, d±n > 0, p±n d

±
n = 0,

τ+
n = µ p+

n , τ−n = −µ p−n , Equilibrium equations for punch} (52)

where the minimum of (52) provides the contact pressure distribution satisfying (49)
if ∆pn = 0. The shear stress τ±n acts on the contact surface of Body 1 in the direction
of x-axis.

For solution of the minimization problem (52) a special iterational process is recom-
mended. In each step the Signorini contact conditions p±n d±n = 0, p±n ≥ 0, d±n ≥ 0 and
the Coulomb dry friction law τ+

n = µp+
n , τ−n = −µp−n must be satisfied in the solution

of the contact problem and next the modified contact shape should be determined.
The shape modification is taken from equation (51).
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Consider the half cycle i of the + sliding direction, next i + 1 of the – sliding
direction and similarly the consecutive half cycle i+2 for + sliding direction and i+3
for – direction of sliding and so on.

According to Figure 23 in the interval xl ≤ x ≤ xcl the contact pressures are
0 ≤ p+

n , p−n = 0 in the interval xcl ≤ x ≤ xcr the pressures are 0 ≤ p+
n , 0 ≤ p−n and in

the interval xcr ≤ x ≤ xr the pressures are p+
n = 0, 0 ≤ p−n .

Let us begin the i-th half cycle. Then

∆p±n = p+
n + p−n − 2pm = cn(u+

n + g∓n + u−n + g±n ) + c∆g±n − 2pm (53)

in the interval xl ≤ x ≤ xcl because g
+(i)
n = g

−(i−1)
n + ∆g

+(i)
n . It is supposed that

in the right direction of sliding at the end of half cycle the new shape is modified by
∆g

+(i)
n . The modification of the shape is

∆p+
n

cn
− (u+(i)

n + g−(i−1)
n ) = ∆g+(i)

n − 2pm
cn

= ∆g̃+(i)
n . (54)

In the interval xcl ≤ x ≤ xcr in right direction

∆p+
n = p+(i)

n + p−(i−1)
n − 2pm =

= cn(u+(i)
n + g−(i−1)

n + u−(i−1)
n + g−(i−1)

n ) + cn∆g+(i)
n − 2pm , (55)

∆p+
n

cn
− (u+(i)

n + u−(i−1)
n + 2g(i−1)

n ) = ∆g+(i)
n − 2pm

cn
= ∆g̃+(i)

n . (56)

For numerical calculation it is supposed that at the point xcr of the contact domain
the modification of the gap is equal to zero, that is ∆g̃

+(i)
n −∆g̃

+(i)
n (xcr) = ∆g

+(i)num
n

and the new shape at the end of + direction motion is

g+(i)
n = g−(i−1)

n + ∆g+(i)num
n . (57)

In the interval xcr ≤ x ≤ xr in the left direction we have

∆p−n = p−(i+1)
n − 2pm = cn(u−(i+1)

n + g+(i)
n ) + cn∆g−(i+1)

n − 2pm (58)

that is
∆p−n
cn
− (u−(i+1)

n + g+(i)
n ) = ∆g−(i+1)

n − 2pm
cn

= ∆g̃−(i+1)
n (59)

and in the interval xcl ≤ x ≤ xcr for the left direction there is

∆p−n = p+(i)
n + p−(i+1)

n − 2pm =

= cn(u+(i)
n + (g−(i−1)

n + ∆g+(i)
n ) + u−(i+1)

n + g+(i)
n ) + cn∆g−(i+1)

n − 2pm

where g+(i)
n = g

−(i+1)
n + ∆g

+(i)
n , thus

∆p−n = p+(i)
n +p−(i+1)

n −2pm = cn(u+(i)
n +u−(i+1)

n + 2g+(i)
n ) + cc∆g

−(i+1)
n −2pm (60)

and
∆p−n
cn
− (u+(i)

n + u−(i+1)
n + 2g+(i)

n ) = ∆g−(i+1)
n − 2pm

cn
= ∆g̃−(i+1)

n . (61)

Since in point xcl the modification of the gap is equal to zero

∆g̃−(i+1)
n −∆g̃−(i+1)

n (xcl) = ∆g−(i+1)num
n



260 I. Páczelt, Z. Mróz, A. Baksa

for numerical calculation the modification of the gap will be

g−(i+1)
n = g+(i)

n + ∆g−(i+1)num
n (62)

Now repeat the calculations for the consecutive period
Right motion:

xl ≤ x ≤ xcl
∆p+

n

cn
− (u+(i+2)

n + g−(i+1)
n ) = ∆g+(i+2)

n − 2pm
cn

= ∆g̃+(i+2)
n (63)

xcl ≤ x ≤ xcr
∆p+

n

cn
− (u+(i+2)

n + g−(i+1)
n + u−(i+1)

n + g−(i+1)
n ) = ∆g+(i+2)

n − 2pm
cn

∆p+
n

cn
− (u+(i+2)

n + u−(i+1)
n + 2g−(i+1)

n ) = ∆g+(i+2)
n − 2pm

cn
= ∆g̃+(i+2)

n

(64)

Left motion

xcr ≤ x ≤ xr
∆p−n
cn
− (u−(i+3)

n + g+(i+2)
n ) = ∆g−(i+3)

n − 2pm
cn

= ∆g̃−(i+3)
n (65)

xcl ≤ x ≤ xcr
∆p−n
cn
− (u+(i+2)

n + g+(i+2)
n + u−(i+3)

n + g+(i+2)
n ) = ∆g−(i+3)

n − 2pm
cn

∆p−n
cn
− (u+(i+2)

n + u−(i+3)
n + 2g+(i+2)

n ) = ∆g−(i+3)
n − 2pm

cn
= ∆g̃−(i+3)

n

(66)

where

∆g̃+(i+2)
n − ∆g̃+(i+2)

n (xcr) = ∆g+(i+2)num
n , g+(i+2)

n = g−(i+1)
n + ∆g+(i+2)num

n ,

∆g̃−(i+3)
n − ∆g̃−(i+3)

n (xcl) = ∆g−(i+3)num
n , g−(i+3)

n = g+(i+2)
n + ∆g−(i+3)num

n .

In this formulation for one period and (i+2-i+3) -th steps, the change of the shape is

g−(i+3)
n = g−(i+1)

n + ∆g+(i+2)num
n + ∆g−(i+3)num

n (67)

In the numerical calculation for each cycle, initially the shape at the point x =
0.5(xl + xr), z = 100 is set to zero value, that is the shape is moved vertically to this
point.

Example 1:
For determination of the shape in periodic steady state for the punch Figure 2a, let
us apply the above iteration process. The initial shape is taken from the solution for
averaged monotonic sliding. Using this initial form the proposed iteration procedure
must be performed for approximately 500 iteration steps. The shape evolution is
shown in Figure 24a. At the beginning the contact pressure has a high value at the
borders of contact domain (see Figure 24b). After ∼300 steps the shape is close to the
steady periodic shape form (see Figure24a). In prectice after 500 steps the iterative
procedure provides accurate prediction – see Figure 24d.
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Figure 24. Determination of the shape for steady state periodic mo-
tion for the construction in Figure 19. a) Evolution of the shape in
the iteration process, b)-d) evolution of the contact pressure.

Example 2:
In this example the punch constraint of Figure 2a is modified. The support is only
placed at one point / pin at point (x = 1030, z = 140) – see Figure 2b. The initial
shape is also taken from the result for averaged monotonic sliding, see Figure 25c
with curve (. . .). To reach the steady state, approximately 300 iteration steps should
be executed. Initially the contact pressure has a high value at the borders of contact
domain. Figure 25e presents the sum of contact pressures, which has a high value
at the borders of contact zone in the beginning stage of the wear process. In the
steady periodic state this sum is close to the 2pm = 33.333 MPa. After 200 steps the
shape is close to the steady shape form (Figure 25d). We remark that after 300 steps
the distribution of contact pressure does not change – see Figure 25b. The solution
of the optimization problem (52) by penalty technique is characterized by the slow
convergence, but the form of the contact shape can be determined with high accuracy.
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Figure 25. Optimization result for a plane punch with support at
lz = 40 mm. a) evolution of the contact pressure, b) contact pressure
distribution near the steady state, c), d) evolution of the shape in the
iteration process, e) evolution of the sum of contact pressures in the
iteration process.
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7. Conclusion

In our analysis the relative contact sliding displacements were considered and the par-
tial slip displacements were neglected. The relative periodic sliding motion between
contacting bodies induces a periodic steady wear state with different distributions of
contact pressure during the leftward and rightward sliding directions. These pressure
distributions cannot be specified from minimization of the wear dissipation in one
sliding period. They are determined by solving the boundary value problem with
imposed periodicity and contact compatibility conditions. On the other hand, the
summed pΣ contact pressure value for consecutive semi-cycles results from rigid body
wear displacement of the punch. In the steady periodic wear state the wear dissipation
during one cycle reaches its minimum and specifies the summed contact pressure. The
specific examples presented in the paper illustrate the solution method for periodic
wear states.

By solving the optimization problem (41) or (53), we can generate the shape and
the contact pressure distributions with high accuracy without time integration of
the wear rule for periodic sliding. The results of steady states for monotonic sliding
provide fairly good simple predictions for shapes generated in the steady periodic
wear states

Appendix A. Periodic sliding along a cylindrical contact surface

Consider a 2D contact problem for fixed loads and periodically varying relative
sliding velocity between two bodies interacting on a cylindrical contact surface as in
Figure 26. Body 1 (punch) is allowed to translate vertically in z-direction and rotate
around y-axis located at point O. Body 2 (substrate) is a circular disc of radius R0

executing periodic rotation through the angle [+α,−α] with the relative velocity u̇τ ,
vr = ‖u̇τ‖. The wear rate in normal contact direction is specified by the rule

ẇi,n = βiv
ai
r p

bi
n i = 1, 2 . (A.1)

It is assumed that during the steady periodic state the wear increment accumulated
during one cycle should be compatible at each point x ∈ Sc with the rigid body
punch motion. Assume the rigid body wear velocities for left (-) and right (+) sliding
directions of the substrate in the following form

λ̇−F = −λ̇−F ez , λ̇−M = −λ̇−Mey , λ̇+
F = −λ̇+

Fez , λ̇+
M = λ̇+

Mey . (A.2)
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Figure 26. Body 1 can move as a rigid body in vertical direction and
rotate around O. The wear velocity is not normal to the contact sur-
face. Its direction eR is defined by the rigid body velocities λ̇

±
F , λ̇

±
M

according to (A.4).

Thus the velocities at an arbitrary point at the punch are

ẇ+
R = λ̇

+

F + λ̇
+

M × rOP , ẇ−
R = λ̇

−
F + λ̇

−
M × rOP (A.3)

and the summed wear velocity for consecutive semi-cycles is

ẇR = (λ̇
+

F + λ̇
−
F )+(λ̇

+

M + λ̇
−
M )×rOP = −(λ̇+

F + λ̇−F ) ez+(λ̇+
M − λ̇

−
M ) ey×rOP (A.4)

The displacement resulting from this velocity equals

∆wR = −(∆λ+
F + ∆λ−

F ) ez + (∆λ+
M −∆λ−M ) ey × rOP = −∆λF ez + ∆λM ey × rOP

(A.5)
where

∆λ+
F,M =

T∗/2∫
0

λ̇+
F,Mdt, ∆λ−F,M

T∗∫
T∗/2

λ̇−F,Mdt .

The normal and tangential unit vector components are

nc = − cosα ez − sinα ex , eτ = sinα ez − cosα ex . (A.6)

Thus, the total wear in normal direction accumulated during one sliding cycle is

∆wn = ∆wR · nc = ∆λF cosα+ ∆λM [(xP − xO) cosα− (zP − zO) sinα] (A.7)

The wear velocity vector for two bodies is coaxial with rigid body wear velocity, that
is

ẇR = ẇ2 − ẇ1 . (A.8)

Assuming β̃1 6= 0, β̃2 = 0 (the material is removed only from Body 1), the wear
velocity of Body 1 on the contact surface is expressed in the form

ẇR = −ẇ1 = −(−ẇ1,n nc + w1,τ eτ ) , ẇn = ẇR · nc = −ẇ1 · nc = ẇ1,n (A.9)

and its increment for one sliding period is

∆wn = ∆wR · nc = −∆w1 · nc = ∆w1,n . (A.10)
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In this way, the wear increment in normal direction can be calculated easily, thus

∆w1,n = −∆w1 · nc = ∆λF cosα+ ∆λM [(xP − xO) cosα− (zP − zO) sinα] .
(A.11)

This value of wear can also be calculated from the wear rule, assuming a1 = b1 = 1,
thus

∆w1,n = ∆w+
1,n + ∆w−

1,n = β̃1

T∗/2∫
0

‖u̇τ‖ p+
n dt + β̃1

T∗∫
T∗/2

‖u̇τ‖ p−n dt

∆w1,n = ∆w+
1,n+∆w−

1,n = β̃1

T∗/2∫
0

‖u̇τ‖ dt (p+
n +p−n ) = Q (p+

n +p−n ) = Q 2pm = QpΣ

(A.12)
where

pm = (p+
n + p−n )/2 = pΣ/2 , Q = β̃1

T∗/2∫
0

‖u̇τ‖ dt .

Comparing (A.11) and (A.12), it is seen that the distribution of the sum of contact
pressure values of consecutive semi-cycles can be expressed as a function of position,
thus

pΣ/2 = pm = pCm cosα+ pLm [(xP − xO) cosα− (zP − zO) sinα] (A.13)

that is

∆w1,n = ∆λF cosα+ ∆λM [(xP − xO) cosα− (zP − zO) sinα] =

= β̃1

T∗/2∫
0

‖u̇τ‖ dt 2 { pCm cosα+ pLm [(xP − xO) cosα− (zP − zO) sinα] }

where ∆λ±
F,M

is the increment of rigid body wear velocities in the half period time,
pCm, pLm are unknowns, which can be calculated from equilibrium equations.

The punch is assumed to be loaded by the resultant vertical load F0 and the
moment M0 relative to the support point O. Using the equilibrium equations for
summed loads, it can be written

0 = 2f0 +

∫
Sc

(tc+ + tc−) dS (A.14a)

0 = 2m0 +

∫
Sc

rOP × (tc+ + tc−) dS (A.14b)

where
tc+ = −p+

n nc − µ p+
n eτ , tc− = −p−n nc + µ p−n eτ ,
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Sc is the area of contact zone, f0 = −F0ez,m0 = M0ey resultant force and moment,
respectively, of the specified loading. The projection of (A.14a) on ez gives

0 = −2F0 + ez ·
∫
Sc

(tc+ + tc−) dS =

= −2F0 +

∫
Sc

{ (p+
n + p−n ) cosα− µ (p+

n − p−n ) sinα } tthR0 dα

or

0 = −2F0 +

∫
Sc

{ 2pm cosα− µ (p+
n − p−n ) sinα } tthR0 dα . (A.15)

The moment equilibrium equation has the form

0 = 2m0 · ey + ey ·
∫
Sc

rOP × (tc+ + tc−) dS =

= 2M0 −
∫
Sc

2pm [(zP − zO) sinα− (xP − xO) cosα] tthR0 dα+

+

∫
Sc

µ(p+
n − p−n ) [(zP − zO) cosα+ (xP − xO) sinα] tthR0 dα (A.16)

where tth is the disc and punch thickness.

We have two equations for calculation of pCm and pLm occurring in (A.13). For some
cases we find a direct way to calculate these parameters.

Some remarks:

1. If λ̇M = 0, then pm = pCm cosα and in this case from (A.15) we find

pCm = F0/

∫
Sc

(cosα)
2
tthR0dα

2. If the contact surface is plane (α = 0), then from (A.13) we have pm = pCm +
pLm(xP − xO). The values of pCmand pLm can be calculated from (A.15) and
(A.16): Using dS = tthR0 dα and ∆z = zP − zO = const we get

∫
Sc

µ(p+
n −

p−n )∆zdS = 0 since

µ

∫
Sc

(p+
n − p−n )∆zdS = ∆zµ(

∫
Sc

p+
n dS −

∫
Sc

p−n dS) = ∆z(µF0 − µF0) = 0 .

Consequently the moment of the shear contact stress is equal to zero.
3. If in the integrals (A.15) and (A.16) the termsµ(p+

n − p−n ) are negligible, then
pCm and pLm can be calculated and can be regarded as the first approximations
of exact values.
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Assume the relative tangential displacement on the contact surface in the form uτ =
u0 cosωteτ Then the relative velocity is vr = ‖u̇τ‖ = ωu0 sin ωt.
The wear increment in one period (note that the contact pressure is fixed in half
period) equals

∆w1,n = β̃1

[
p+
n + p−n

]
(u0ω)

T∗/2∫
0

|sin ωτ | dτ (A.17)

which, using the equalities
T∗/2∫

0

vrdτ =
T∗∫

T∗/2

vrdτ = 2u0, provides the simple relation

∆w1,n = β̃1

[
p+
n + p−n

]
2u0 = Q pΣ (A.18)

where Q = β̃1 2u0.

The averaged wear rate in one period equals

ẇ1,n =
∆w1,n

T∗
=
β̃1[p+

n + p−n ]

T∗
2u0 =

QpΣ

T∗
(A.19)

If the rigid body wear velocity λ̇+
M = λ̇−M = 0, then λ̇+

F 6= 0, λ̇−F 6= 0, pm = pCm cosα,
pΣ = 2pm = 2pCm cosα and

∆wR =
∆w1,n

cosα
=
QpΣ

cosα
= Q 2pCm = const (A.20)

that is in the steady periodic wear regime the uniform vertical (rigid body) wear
increment is accumulated during the full cycle at each point of the contact zone.
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