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Abstract

In the paper there is proposed an algorithm offficient semi-active control of steady-state peiioldteral
vibrations of the overhung rotor-shaft system. Tddgorithm has been developed using fundamentatleof
Optimal Control Theory. In the considered systemdabntrol is realized by means of the linear daspéth

the magneto-rheological fluid built in the bearifgusing. The computational example demonstrates
possibilities of the applied approach resultingmradditional reduction of out-of-resonance and-nesonance
harmonic oscillation amplitudes in comparison véithanalogous passive control.
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1. Introduction

Heavy rotors suspended in bearings in an overhwygoenstitute a wide class of rotating
machinery. Typical examples of this group are puropmpressors, blowers, gas turbines,
crushers, beater mills, drums of washing machimesraany others. As it follows e.g.
from [1,2], at high rotational speeds they are gimesto gyroscopic effects associated by
their lateral vibrations excited mainly by residuaibalances as well as by assembly
misalignments, rubbing effects in bearings, sealiagblade rims and by other sources.
Such oscillations are usually very detrimental arslippression of their amplitudes is an
important challenge in order to assure precise anetiof such rotor-shaft systems,
possibly small bearing reactions, minimized darafematerial fatigue and low level of
generated noise. This target can be effectiveljeaed by means of a semi-active control
of lateral vibrations affecting the rotor-shaft &gyms with overhung rotors. For this
purpose, similarly as e.g. in [3], actuators whk tagneto-rheological fluid (MRF) are
going to be applied. Such an approach seems terlyecgnvenient for rotor machines like
vacuum pumps, turbo-chargers, washing machinesjseraspindles and others rotating
with high speeds in steady-steady state operatimglitons under harmonic external
excitations due to residual unbalances and theiorertt above dynamic effects. It is to
emphasize that, contrary to a control of transtgnmesonant vibrations, for which many
algorithms turned out to be effective, a suppressfdorced, steady-state oscillations with
frequencies far away from resonance zones is aeragty difficult task. Here, in cases
of the abovementioned rotor machines even a fewemerminimization of fluctuation
amplitudes can be very fruitful from the viewpaifitmaterial fatigue, precision of motion,
dynamic interaction with an environment, detrimémi@ise generation and many other
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factors. Thus, in order to achieve this targethapaper for the actuators with the MRF a
control strategy based on the Optimal Control Th¢®CT) will be applied for the high-
speed overhung rotor-shaft under steady-state hmacnhateral vibrations. The obtained
results of simulations are going to be comparet #ie analogous ones determined for
additional passive damping applied into the considesystem as well as using the
numerical optimization control algorithm.

2. Modelling of therotor-shaft and mathematical for mulation of the problem

In many cases the high-speed rotating machineslsaeacterized by heavy, lumped
overhung rotors attached on short, dumpy shafisesited on relatively flexible bearing
supports. Thus, deformations of such rotor-sh&dts lme neglected and then only rotor-
shaft inertial parameters and bearing support vidastic properties play a predominant
role in lateral vibrations of these objects. Acdongdto [1], if a maximal static deflection
of such rotor-shaft is of the same order as theitga&learances, its dynamic behaviour
can be investigated by means of a rigid body motifdur degrees of freedom. Then, the
generalized coordinates corresponding to them ibestwo translational displacements
of the rigid body mass center in the two mutuallygendicular directions with respect of
the rotor-shaft rotation axis as well as two angdiaplacements with respect of mutually
perpendicular axes passing the mass center ofritlics body. In order to take into
consideration a rotor-shaft support in a possildpegal way, the anisotropic and non-
symmetrical visco-elastic properties of bearingseh#een assumed in the form of
stiffness and damping coefficients containing dls® proper cross-coupling terms. The
proposed rigid body model of the overhung rotorftskapported on two bearings is
presented in Fig. 1.

Y

Figure 1. The rigid-body model of the double-begmverhung rotor
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Motion of the rotor-shaft has been described in ittextial orthogonal coordinate
systemOxyz with the origin placed in the rigid body model tamof gravityO. Axis Ox
coincides with the bearing axis and ax®s Oz respectively determine the vertical and
horizontal direction. The plains of bearing intdi@e crossOx axis in points A and B
distant ofl; in the case of bearing #1 andlpin the case of bearing #2, as shown in Fig.
1. The motion equation of the assumed rotor-sligifi body model have the following
form:

M () +(C+ )T M) +K D‘(t)=F(t,.Qz), O

wherer (t)= col [y(t), z(t), (1), ()] is the generalized coordinate vector with congraa
corresponding respectively to the translationgbldisements alon@y andOz axes and
to the angular displacements arou®z and Oy axes. SymboM denotes the diagonal
inertial matrix,C andK are respectively the symmetrical bearing dampimdy tiffness
matrices andG is the skew-symmetrical matrix of gyroscopic effecThe external
excitation vectoF has the following components:

Mg + Me 27 sin(Q2t) +U (t)

F(tigz) _|  Me2%cos@t) +V(1)
0
0

wheregis the eccentricity of the rotor-shaft residuatistunbalanceyl denotes the entire
mass of the rigid rotor and(t), V(t) are the control forces acting in the vertical and
horizontal direction, respectively. Such equatiomse very convenient here for
a demonstration of relatively easy implementatiérihe proposed algorithm of semi-
active control of the steady state forced lateitadations of the considered object.

The rotating machines usually operate in steady-standitions at constant rotational
speeds, more or less far away from the criticalscasociated with the corresponding
lateral eigenvibration modes. Thus, the goal of ffdper is to propose a computationally
effective numerical method for determination of dpgimal control function applied here
for the mechanical system under periodical vibratidue to the residual unbalance. In
order to distinguish such successive mutually uplalieigenmodes of the considered
gyroscopic, nonconservative rotor-shaft systems ihecessary to perform a complex
modal analysis of Egs. (1) according e.g. to ther@gch presented in [2,4]. Then, the
investigations reduce to control of steady-statenioaic oscillations of simple single
degree-of-freedom oscillators shown in Fig. 2 (a).
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Figure 2. Single DOF dynamic oscillator (a), coliiole damper force function (b)
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An equation of motion of such oscillator has théofeing form:

mK(t) + ¢ OK(t) + k (X(t) = & [{ f [Eos@t - g) - u(x(1))), )
where according to [4], the modal damping coeffitie = 2dm, the modal stiffness

k= (52 + a)z)m K= (Jr - a)s), mis the modal mas®), wdenote respectively the real

and imaginary part of the complex eigenvalue c@aading to the considered eigenmode,
r,sare respectively the real and imaginary part efdbmplex left eigenvector component,
X(t) denotes the modal displacement of the contraligenmode and is phase shift angle.

As shown in Fig. 2b, for the assumed linear refetiop between the shaft/bearing
vibratory velocity and the control forde; generated by the MRF damper built in the
bearing housing, one can express in @)= u(x(t)), whereu denotes the control
variable. The slope of the damping force curve ddp®n the instant value of the control
currentl. Control current cannot exceed the boundary lim&g0, I,,,,). Also, it is
assumed that the control current can change itseevaktantly. Because the controllable
damper characteristic is linear, it may be assuthatd

u=1
[umin =Lpin =0 . 4)

Umax = Imin

For the simplification of further considerationssitconvenient to transform Equation (3)
into the state-space representation:

{ 41 = q2
. k
q; = _;%_i‘h —%(fcos(!)t) —uqy) ®)

where state variables are defined in the folloviorgn:

X q1
1= 3] = g, - ©)
In order to define the optimal control problem & hecessary to introduce
a performance index which will represent a meastingbration level. One of possible
choices is to select the performance index asglesstalar value that will represent the
average motion mean energy of the considered system

J = fotf E (kqi + mqg) + ruz] dt = fothdt . 7)
In the above equation, apart from the motion enemyponentl/Xg.%mg.? ), the other
component has been added, nanefy This expression refers to the amount of energy
consumed by the controlled damping element. Thispoment has been added into Eq.
(7) in order to simplify further transformationshd termru? should be treated as
negligible, since a minimization of the control emehas not been considered as a primary

goal for mechanical systems under periodical etioita Therefore, it is assumed that
scalam nearly equals zero. Variabtedenotes the integrand function.



Vibrationsin Physical Systems Vol. 27 (2016)

Using the Optimal Control Theory (OCT) it is podsilo derive the set of equations
specifying the optimal control function profil&, providing a minimization of functional
J. For this purpose, it is necessary to apply thmroon OCT control function derivation
procedure given in [5,6]. It starts with a defiaitiof the Hamiltonian function:

H = E+Aq . @8)

Next, using the necessary condition for minimizatad functionald, namely:4/=0, the
following set of equations can be derived:
. 9H

o
OH

dq ) (9)
H(q, 2", u") < H(q",A",u)
u E <0' umax>

wherel denotes the costate vector. Upon an expansidmeahird inequality standing in
(9) and an application of the Pontryagin princigieally the following set of equations
defining the optimal control can be derived:

0H

G = o, 12
G2 = gr = =01 = =d> + = (f cos(20) — ugy)
A = —;’—Z = —kqy + 21 . (10)
A, = _:THz =-mq, — 4 +%Az+/12u
u* = sat (sign()l*zq*z))

In order to find exact function values, all equai®f the above system have to be solved
simultaneously. It requires a specification of badany values of the state and costate
vectors. For the considered vibrating system omeassume that under optimal control
function this system will eventually fall into sthastate vibrations, starting from an
arbitrary initial state condition. Different initiatate conditions will only affect a duration
time of the transient phase of motion up to theaims when the steady-state vibration
phase shall be established. Concluding, the initadition for the state vector can be
arbitrarily chosen agy(0) = 0.

The second condition follows directly from the famdentals of the OCT. Provided
that the considered system of Egs. (10) has tontegriated in the finite time range
t € (0, Tf), the optimal problem in the OCT nomenclature carclassified aéree-end,
fixed-time problem, [5]. The phrasdrée-end” refers to a lack of constraints specified for
the state vector at the end of the simulation tivimelow. The phrasefixed-time” refers
to the finite value of the simulation time rarige For such kind of the optimal control
problem the OCT provides the additional boundamydition, i.e.:A(Tr)=0.

Concluding, because the known boundary conditioesspecified partially at the
beginning and partially at the end of the simulatione window, this problem can be
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classified as the Two-Point Boundary Value ProbléRPBVP). The TPBVPs are
generally considered as difficult numerical prokdein order to solve the TPBVP for the
considered system, the following algorithm has tdsreloped:

1. initialize theA(0) vector with random values,
2. integrate the coupled state-costate equations @nirtte intervak0, T) assuming
q(0) = 0 and taking (0) from point 1,
3. after an integration check, whether terminal caadihas been satisfiet{Tr)=0,
4. conditional step:
a. if the terminal condition from step 3 has beensf@til, terminate the algorithm,
b. if the terminal condition from step 3 has not besmiisfied, find the new
estimation of the (0) condition by means of theeexal, numerical optimization
algorithm; then, repeat the steps 1-4 as long msirtal condition is not being

satisfied.
2. Forward integration
1. Initial shot 3. Condition checking
Ay Ae, =0

q
0] | q= /',A)] [xe,]

[0] A=g(x,x2)
Ao u=h(2)

Il

1 4a. Terminate (if

condition 3 has
been satisfied)

4b. Initial shot correcti
Figure 3. Optimal control problem computationaloalthm

The algorithm described above can be illustratedri®aans of the following diagram
presented in Fig. 3. It is important to choosediiciently largeT; value, so the steady-
state phase of motion could be significantly longean either transient phase at the
beginning or at the end of the simulation time vawd

3. Computational example

In the computational example the rigid overhungrathaft of the industrial blower
supported on two identical rolling bearings is ussdan object of considerations. This
rotor-shaft of a total weight ca. 60.13 kg andh&f bearing span 0.275 m is characterized
by a relatively heavy impeller and light shaft, down in Fig. 1. Its total polar and
diametral mass moments of inertia are respectigglyal to 7.02 and 12.75 kgnit is
assumed that bushings of the isotropic and radsilffyrolling bearings are embedded in
the bearing housings by means of layers made afively soft and viscous vulcanized
rubber. The bearing suspension stiffness coeffisieme assumed constant within the
entire shaft rotational speed range 0-7200 rpm.

In Fig. 4a there are presented the imaginary f@endsin Fig. 4b the real parts of
four eigenvalues of the considered rotor-shaft, reltee grey lines correspond to the
original system and the black ones to the systemppgd with the MRF damper built in
the bearing support #1 and operating passivelynRhe obtained plots it follows that
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Figure 4. Imaginary (a) and real (b) parts of th@r-shaft eigenvalues
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Figure 5. Entire vibratory mechanical energy pesifor the passive and semi-actively
damped system for thé' eigenmode backward precession of 6.1 Hz at 3080 rp

the optimal passive control effectively stabilizbe backward and forward branches of
the second eigenmode and the forward branch dirtteigenmode. But it has almost no
influence on a stabilization of its backward bramttaracterized by the close to zero
natural frequency and modal damping coefficiengrmater rotational speeds, Fig. 4.
However, the semi-active control realized usingit®F- damper and the proposed control
algorithm can result in an effective stabilizatiof this almost no damped backward
precession of theleigenmode excited here e.g. by means of perieticding frictional
loads in the bearings. As shown in Fig. 5, the saetive control minimizes fluctuation
amplitudes of this backward mode by ca. 8%. Moreotke semi-active control
suppresses lateral vibration amplitudes even by f@%he first eigenmode forward
precession induced by unbalances at the overdnititational speed 110 rev/s, i.e. 6600
rev/min, as it follows from the time-history plaiepicted in Fig. 6.
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damped system for thé'igenmode forward precession of 13.67 Hz at 660 r

4. Conclusions

In the paper there were considered passively amitaetively controlled periodic lateral
vibrations of the rigid overhung rotor suspendedlerible bearings equipped with the
MRF dampers. From the results of an eigenvalueyaisit follows that additional passive
damping introduced into this system can effectiv@ippress its oscillation amplitudes
and increase stability regions only for sufficigratable eigenmodes. But it is not the case
for unstable or almost stable eigenmodes, e.g. tdugyroscopic effects or skew-
symmetrical bearing properties. Here, the semivactontrol realized according to the
proposed algorithm based on the Optimal Controbffneeems to be a very advantageous
and universal tool for engineering applications |téor stabilization of vibrating
mechanical systems and for an attenuation of teillation amplitudes.
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