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ABSTRACT

Steady plastic cyclea are shown to const@tute limit etates of transitory processes of
plagtic deforumtion under oyalically varying loads and external temperature.. Unique=
nags of steady cycles is discussed and it is chown that euperposed fixed displacements
on-the struature cannot atfect tho form of the stoady cycle. Some extensions of Melan'’s
shake-down theorem are shown. for hardening materials and for the case of partially elae
stio shake-down. Starting from the notion of statically and kinematically admissible
cycles, some inequalitias ave proved; these may be useful in finding an approximate
golution to the nteady cyole.

1. INTRODUCTION

Whaen metals are subjected to momotonically inoreasing loading beyond the elastio
range, they usually harden; however, during cyclic stressing or straining the matals
may barden or soften depending on their initial atate. When cyclic loading is applied
to the annealed state, the material hardens during oyclic straining; on the other hand,
wetals initially bardened by previous plastic deformation may soften. In general, there
exists a steady limiting atate to which cycles are tending during initial transitory
period. For a large olass motals and other struotural matorials this state does not
sgem to dopeand upon initial state or previous doformation history and for a givea ma-
terinl it is uniquely defined by prescribed oyclic leads or displacezants. Such ateady
plastic oyoles bave been investigated exparimentally, wmostly for uniaxial or biaxial
stresa gtates, of., for instance,ref, /1-67.



- 490 -
Bacouge tho stady cyclic state sots in befor failure phenomenon oceurs, ite proper-
ties are fundamental in establishing proper low-cyole fatigue criteria. Furthermore,
the possibility of finding A solution for steady cyclic state without following the
whole previous deformation history can greatly facilitate the analysis of structures

subjected to cyclic loads. In the next section, we shall di the uniq of

stoeady oycles and in Seotion 4 gome inequalitios will be derived which may be helpful
in finding the approximate solution. In Section 3, two extensions of Melan'a shake-
down theorem are presented. The considerad material will be regarded as a composgi-
tion of elastic, viscous, and perfectly plastic or hardening elements.

The existence of ateady cycles independent of the initial atate, exhibits the
phenomenon of fading memory /or asymptotic stability / in dissipative media. However,
this is not a general property of all workhardening materials. It is known, for ins-
tance,that some alloys are sensitive to pravious deformation history during ayclie
loading. Therofore the phenomenological approach based upon the assunption that the
material ia a composition of elastic-plastic and viscous elements may not simulate

fundamental properties of some workhardening materials during cyclic loading.

2. UNIQUENESS THEOReM FOR STEADY CYCLES

i/ Convergenca of transitory processes to steady cycles

Let the body be composed of linearly elastic and viscoplastic, linearly hardening
alaments aceording to the rule of kinematic hardening. In this case, the yield sur-
face translates in the stress aspace like A rigid body; for the stress point lying
on the yield surface, the instantaneous tranalation is assumed to occur in the dire-
ction of the outward normal at this point. For the associated flow law, we have

Fls-%)-s=C ,  &=cégr, Ny
vhere C and G, are material constants of the element, This model of hardening,
firet introduced my Melan /107, waa later discussed by numerous authors. It was alac
racently appliad in numerical crlculations of plastic cycles in structures by Armen,
Isnkson and Piflo [12]. Our Analysis will later be generalized by comsidering an
arbitrary form of the stress-strain curve and assuming that the element is a composi-
tion of kinamatically hardenin sub-elaments.

Viscous strain rates _év and the temperature &  define n potential function

Dv('é"; '@‘) , such that
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and satisfying the convexity eondition

DL ®) - D.(E,0) - (&- &, )90,“(51,9) .

for any pair of strain rates _f'zv and fl.,v and the fixed temperature (@ . This
condition can alternatively be written in the form

(6:-5)- (€& - £Y) >0, 74/
vhere §;_ and §’., are related to é; And _§1V by /2/. Similarly, for a convex

vield surface and the associated flow law, by the principle of maximum plastic work,

wa have
! t P op
(.62'._97! )'(-52 ‘51 ) >0/ /5/
l
where §,=8,~, , G; X, Are stross vectors iesuing from the centers of the

yiald surfaces corresponding to the arbitrary atates O . _§.,P and é_z. E'z /see Fig.
1a/. The dot betwaen two symbols denotes the scalar product and vactor notation is
ueed for the second order temsors. The inequality /5/ implies that there exists a

. I}
plastic dissipation function Dp (_gf& ) which defines tha effactive stresses &
by the potential law .

&= nEr

We nssume that at any point the total atrain ias a sum of elastic, plastic, viscous

and thermal componenta

M

e P v &
.+§ +§ + £ /6/

where elastic etrains are linearly ralated to stresaes and the specific elastic

'§=

energy is a quadratic, positive definite function of etrains. It is assumed that
thermal strain is defined by the prescribed temperature field and temperature varia-
tion due to internal diesipation and thermoelastic ecoupling is neglectad. The body
can be inhomogeneous; thua plastic, elastic and viscous proparties can vary from
olement to element. The daformatiens are assumed to be small and geemetry changes
do rnot affect the equilibrium equations.

One of general properties of such model is convargence of any two deformation
procasnas starting from different initial states, but induced by the same boundary
tractions and displacementa. This question wae previously discussad for an elastic,

parfectly plastic material by Mréz /11/. Now, we shall generalize somewhat the ana-
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lvsis by considering dynamical processes and assuming more general material model.

Congider any two doformation procssses A and B corrasponding te the same loading
and deformation programmes defined by specifyving the surface tractions and displace-
uente on the portions Iy amd Su of the boundary as funotions of time. The initial
atates from which these two processes atart for ¥=%, are differont aince one of
the bodies was pravioualy subjested to mtg plastic deformation procesa or heat
troatment, so that residunl strese distributions before initiating the processes A
and B are different. Ac a meagure of distanse apart of thage two processos at any °
instant %7Zo, the following positive-definite quantity ie assumed

E= j% 6o ) (667 )« sl '+ 2elia-a,Y ] y

vhere & ,§2 and f.,e, fae Are gtresses and elastic strains for the processes A
and B, interrelated by the Hookes law; j.’f . f; are the corresponding plastic strains
and -_1;}4,1('2 are the rates of displacoments. The first term of /2.7/ representa the
elastic energy alfze" gf') of the strain diffarence and the second term can be inter-
protod as the elastic ansrgy of residual microatresses (r (5:1 p) within the e6lo-
ment; the last term in /2,7/ representa the kinatic emergy K (g;—g..) corresponding
to the differenge ;f_"z‘é,, and @ is the specific material density. The time

derivative of E equals

E = f[@z;é? ).Lg‘;.f;e) + Cé‘z".é”)'é‘;’ig” +§ (ot ) (B~ iy Bdl_//a/
Since the two procesaes proceed for the same surface tractions and digplacements,

wo have

[Em Yz, )V §3bhril) a4t )4V=0 /o1
Substituting /7/ into /6/ and aceounting for /.1/, and /4/, we have

== o) b ) V) - (Gs) @ yay,
whereo Vp and V\, denote tho volumes of regiona whare plastic and viecous
flow ogeuras, respaectively. In view of /4/ and /5/, it is ensy to see that beth
integrands in /8/ are positive-definite for all f;'ff'," and f':a( ,é.',,v . Tus E<O
and the processes A and B starting from their initial states will approach each
other 5o that the aseumed mensuro of distange L will diminuigh. For a final
stato which can be reached asymptotically, there ia  E=0 and ,§;= .g.,", _f;: ,? 4".
For regular funstions of #iscous and plastic dissipation this implies that §,= G

within the viscous ard plastioc regions. On the other hand, the plastic deformatione
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and hence the total translations S, 9l of the yleld surfaces and the etress

otates within the elastic regions can differ. Thue in the space of external loads
or displacements the two proceeses in the €inal state need not coincide but ean pro-
ceed parallelly /fig. 1b/.

Suppoge now that the surface loads are prescribed in the form of rapeating cysles.
Ve can ageume that the process A corresponds to the instant t of loading and a sot
of processes B to the instant t+nT , where | denotea the pariod of the leading
and temperature cycle, and n is an arbitrary integer. Since for A and B the exterw
nal loads vary identically in time, the traneitory process will tend to A ateady
oyole; this eycle is charncterized by the property that for any € and £+n¥
the fields of strase and irreversible etrain rate are the eame within both viscous
and plastic regions.

ii/ Uniqueness of limiting oyocles

From the previous analyeis it follows that steady cycles exiat as limiting states
for bodies subjected to cyclically varying loads. The uniquensss of steady cycles
cAn also bo deduced from this mnalysis. In fact, E=0 only when the fields _épg f-v
and henco the stress field & are uniquely defined within the plastic and
viscouS rogions and do not depend on previous deformation history; similarly, the
displacament rates »g— are algo unique throughout the whole body. Howsever, the
gtregs digtribution within the olastic region and the pogition of the camtre of
the yiold surace is mot uniquely detined in the steady state. For E=U , let ua
intemta/{%gm 1, to %,+T and suppose that labels 1 and 2 raofer to any two su=
pposed solutions for the staady cycle. Since the atress dietribution at the instantse
%, and %+T should be the sams at each point of the body, we have .

&+T e se

L{ So-m ) &-£8 ) =0, /1/
tuT
so gk (e Vat vus § B Gt )iord) dt <
1 '
ER

2 z =
. .= 2 [@'-‘9.‘\)‘&:*«7- = @“2‘\):-1,]-0
gince 4l,=4, o From /12/ it follows that Y,~ql, must be the eame for any ¢, and

712/

4,+T .« In other words, the centres of the yield surfaces trace the game curve

in the strees space but these surfaces neod not coincide,

iii/ Superposition of constant di. emant

Consider two deforzation programmes ditfering by preseribed displacezents
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on the portion S‘“ of the boundary, the surface tractions being the same on the
portion 57 + For one deformation programme, let the displacements be praescribed
in the form .= ﬂ°"£‘~'(*} vhercas for the other 4= 4'(2} Here 4o denotes the
fixed displacement field applied on Sw batora imposing the time-dependent displa-
cement _-9-’("' o« Lot 5.8 g, ,f; be the stresses and strain rates corres-
ponding to these two deformation programmes. It is seen that the equality /9/ is
8till valid eince 5'1 ’_{'z are derived from the velocity fields eatisfying the same
boundary conditions -, = f.z = é.'(’t) on S. amd 5,53 are in equi-
librium with the same sutface tractions on §r « In view of /10/, we have E<O
and in the limiting state there should be §1v=_'f‘av, g'}_f;" in both viscous and

plastic rogions. Thus the following conclusion can be stated: A fixed initial dis-

placement of a part »f boundary cannot affact the form of the steady eyole for any

superpoeed loading programme. Obviously, this property does not depend on existence
of viscous terms. For instance, if a beam is subjected to initial extension which

is maintained econatant during subsequent cyclic flexural deformation of pregeribad
magnitude, A form of the stendy cvcle im banding ehould not depend on this axtension.
Experimental observations by Ross and Daan Morrow /127 for the cmse of uniaxial

atregg cycle superposad on initial extension seem to confirm this genernl property.

iv/ Generalizations to mora complex workhardening models

All general conclusiona ning existence, uniqueness of steady cycles and their

independence of fixed displacements ramain valid for a material element ragarded
A8 AN arbitrary composition of elastic and kinematically hardening elements. In tact,
any hardening curve can can be modelled by a properly arranged set of subalements
esatiefying /1/, Fig.1c. For instance, for serisg or parallel connactions of such

eubelements, we have respectively

; r -
a) -4§P= ‘r'ii"l'.ﬂ . F=3e, ‘4
avoy - “=3,2,... 1
b) dg=ege F= PR 713/

where all plastic elements obay /1/. Such hardening models have baen recently
appliad by Iwan /16/ and Viells and Paslay/17/ to description of hysteretic phenome~
na And hardening for complex lording pathe. The function E now takes the form

E- (36w ) gy Sta(el-af V], st

where C: nre constants corresponding to C in /1/.
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One characteristic feature of such complex models is inability to describe proegressive
flow during plastic cycling. This fact is schematically illustrated for series connec—
tion of kinematically hardening elemeants satisfying Mises yield csendition and for the
casa of biaxial stress state. Let the stross Uxy , alternating between the valuos at
N and H' , Fig 1d, be superposed upon fixed initial stress Gx . Asymptotic state
will Always be rapreseanted by particular yield surfaces with centres on the line Mm'
and with rdstrain accumulation, f: =0. Thie prediction is contrary to numerous oxperimen-
tal data /1-6/. It seems therefore that such medels cannot bo generally applied te
predict structural behaviour under cyclic loads. This problem is discussed in detail
in refs. /14, 15/ where alternative models are proposed and their properties are dis-

cugsed.
3. ON THE EXT:iNSION OF MELAN’S SHAKE-DOWN THEOR:M

The preceding analysis can ansily be adjusted to extend the delan’s shake-dewn thao=-
rem for the case of dynamic loads and occurence of partially aelastic shake-down,

i/ Assume that viacous terms are not present and such residunl stress state - _§'.:
and such position of the centre of yield surface X " can be found that superposed

~1

alastic atreas state does not violate the yield condition, that is

o

-~ -
3h = Qe t 2 ) T (-2 ) €3 . 1
24 5

for any dvnamic process satisfying the equations of motion and boundary conditions;

here 3¢ denotes the streea state corresponding to purely alastic solution. Lot the
firat process correspond to elastic behaviour whersas the sacond be the mctual process

occuring within the body. Defining E by /7/, we have

E= - j@:‘r'zz)»(?,-z.) el <O 16/

Thus nny elastic-plastic daformation process will tend to an elastic state. The dynamic
ehake-down theorem for more particular mssumptions wng also proved by Ceradini / 7/.
sxigtence of viscous straina within the body invalidates this theorem since any residu-
al stress state will relax to viscoelmstic solution, Thus if wa find such position

of ﬁ(: that the viscoslastic stress nowhare exceesds the yield surface, no plaastic

flow will oceur in the meymptotic state for glow rycles.

ii/ Consider now the caae when under the prescribad cyelic loading system 1-1 , the
staady static or dyvnmmic plastio cyclea is eatablishad with a variable plastic region

\/‘7 « Lat the sacond loading svstem ;f}_ bas superposed on the portion of the
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boundary. I¢ such a residual strese ctato axists that the superposed elagtic stress does
not vislate tho yioeld condition beyend Vp and does zot change tho stress distribution
within V5 , the secend leading eystem'will mot atfect the plastic behavicur due to
the loading syatem 1+  and the body bayond Vs "will ehake-down to elastic stata,
This cbvious thoorem may prove very useful whan atudying the behaviour of structures under
tvo-parameter variable lsad eystems. Lot us illustrate its appliecation by a simple example.
Congider a ractangular deam of unit width and the thickness 2h, subjected to altarnatin,
bending moment * M, superposed upon constant axial foree N . Asmihatthomtb-
rial is elagtis, parfootly plastic with no vigcous effects. Our aim is to determine
on the /i-N/-plane the regions of variatien ef M whens i/ elastio shake-down cceurs, ii/
flexural plastio ayclos ccour with no axial elongation, iii/ there is ... plastic intore
action between M and §, and axial elongation cccurs in the course of flaxural oyoling,
Let tho bending moment involve plastiec flow during each cyole. Then the gtress distri-
bution for extreme valuas of U: will ba that presented in Fig. 2b. Since in the elagtic
region between M and M'thm ‘is no increage of atress during unloading and raveras loa-
ding, the adriesible axial foree will correspond to the stress distribution om'. Thua
wobave M= & (h-36), M=6oS ,

2
m= My = 1~ %&2} = 1= %, "y

vhere M,=G;h  ana Ao=6;2h demote limit values of M and N. Equation /17/ definag
th%e_ginp where only fléxural plastiec oysles cceur with no influense of the axial foroe,
To obtain the region of elastic shako-down, we agsuze the stress distribution of Fig. 20,
The édmieuible axinl force corresponds to the stress dlatribution MM)'HM This glvea us
the relation
n= fo=a- 3o Fm e

In Fig. 2a the parallelogram ABCDA defines the initia) olastic region whereas AKCLA
ie the limit yield locus. The region of elastic ghake-down is denoted by AEFCEGA, whe-
reas the region of partial elastioc shake-down-is bounded by parabolas EKF and GHL defi-
ned by Eqe /17/ and the two horizontal lines EF and GH. Thus the flexural plastic cvole
ie not affacted by the axial force provided provided tho minimm and maximum valuss

' of the bending moment Are reprasented by pointe within EKF and ECL. Boyond AEKFCthe
flaxural oycles will be aceompanied by aceumulating axial alongation. It seams that
regions of elastic or partial elastic shake-down can be found for any strusture by
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applying this generalization of Melan's theorem.

4. TWO INEQUALITIES FOR STEADY PLASTIC CYCLES

Lot us econsider now sufficiently elow cycles, so that inertia terms can be noglected.
The material ie assumed to be elastic, perfectly-plastic with no viscous deformations,
First, we sball intreduce notions od statically and kinematically admiasible velocity
cycles.

The statically admissible stress cycle GO (t,g_c) ie a continuous, cyclically va-
rying stress field which satisfies the boundary conditions on S',. and novwhers viola-
tes the yield condition. Thus

Sugn Vu = T. on Sy f (§—>) <9

whore ). is the unit normal veotor to the boundary S+ and T denotes the oyclo

9/

perioed.
The kinematically admissible velocity cycle U-k(!n*)ia A cyclically varying rate of

displacement field, satisfying the kinematie boundary conditions on Sa. and the equa-

lity 4T T
. - P .
fj‘f‘-g,,( dt dSy = ff@n £ dtdl ;
~ 2 -~ /20/
‘t,‘ a
moreover taT
. P
jﬁk ot = diLK 721/

T,

where 4_{»}: denotes the permanent displacemont aceumulatimg after each cycle. These
two definitions are similar to these introduced by Koiter /9/.

Assume that the body is rigidly supported on SM and the cyclically varying loads
are applied on ST . For any pair of kinematically and statically admisaible cycles

Wy, and GT wa can write
-~ -~ ’

€T € 4T CHT .
fg Tt dtdSy = ffg__\-g': etdV + ff S £x et eV, 122/
- *" 1
Subtmc:i.ng /19/ from /22/, we obtain )
I= IS gﬁ‘ g‘.: ditdU = y(gk ‘,..@3 ) §: dtd U >O /23/

Thus the work of any statically admissible etress cycle on the elastic strain ef kine-
matically admissible velocity cycle within the period is positive-definite and vanishes

when both cycles represent the actual solution. The inequality /23/ may prove helpful
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in construoting an approximate selution for the asteady oyole.
Consider nsw the case when the altermating loads I‘L are superpesed en fixed

-4
loads I « For the steady atate, we have u
. -

LT . -
SSTradtds, + (Thplds, = ((sEfdtdV. 124/
= s
Introduce now any statically admissible stress field G-  aatiefying equilibrium -
equations and beundary conditiens G, vy =7}° on S,, and 335'1’5 =0
on Sz o We can thus write T
ﬁ"-ag.”dsq = ff§°' ghedtey. /2.5/
h2)
Subtracting /24/ frem /25/, wa obtain wr
L) anlfds — [(T5 ddtds, = (§&,-5)- 7 dtdU¢O.
f(:l' T°)-aufds, fg; ~ 2 *(,S; > 8)€ /26/

The inequality /26/ can be used to fird an upper bound on plastic displacement
Acoumulating after each cycle. Lat, for instance, 1_, and 3'1 be concentrated
leads, and <445 denotes the permanent displacement in the direction of T .

From /26/, woe have 4T
[ 'I'"‘. L dtdsS,

P 2 ° -
Ay = 17>-7°1 21/

The best bound is obtained when T °=T , whare 7T " demotes the static collapee
load of the bedy under the fixsd load T°. In order te apply /27/, the value of the

plastic work ef alternating forces /or at least its upper bound/ should be known.
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Q) b)

c) d)

Figuroe 1. Simulation of workhardening by kinematically hardening elements: a/ poasi-
ble positions of two yield surfaces in the ateady etate, b/ two equivalent ateady
cyclea ABCD and A’B‘C’D; ¢/ hardening ouve for connection of kinematicaRly hardening
elements, d/ inability of deecribing plastic strain aceumulation induced by cyclically
varying stress Txy between M

and M’ superposed upon constant stresa i .
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Figure 2 Regions of olastio and partially elastic shake-down for alternating bending
momemnt M superposed upon constant axial ferce N, a/, and corresponding stress diatri-

butiona, b/ and c/.



