

Workshop "From Active Matter to Complex Fluids"

Organizers: Alvaro Marin, Giorgio Volpe, Giovanni Volpe, Fernando Peruani **Funding:** COST Action Flowing Matter

workshop pr	workshop program				
from	to	DAY 1	DAY 2	DAY 3	
9:00:00 am	9:35:00 am	Frey, Erwin	Löwen, Hartmut	Speck, Thomas	
9:35:00 am	10:50:00 am	contributed talks (1-6)	contributed talks (12-17)	contributed talks (23-28)	
10:50:00 am	11:20:00 am	coffee break	coffee break	coffee break	
11:20:00 am	11:55:00 am	Beta, Carsten	Simmchen, Juliane	Golestanian, Ramin	
11:55:00 am	12:30:00 pm	Isa, Lucio	Gompper, Gerhard	Chaté, Hugues/Shi, Xiaqing	
12:30:00 pm	1:05:00 pm	Durham, William	Sagues, Francesc	Bertin, Eric	
1:05:00 pm	2:35:00 pm	Lunch	Lunch	Lunch	
2:35:00 pm	3:10:00 pm	Stenhammar, Joakim	Lindner, Anke	Di Leonardo, Roberto	
3:10:00 pm	4:10:00 pm	contributed talks (7-11)	contributed talks (18-22)	contributed talks (29-33)	
4:10:00 pm	4:30:00 pm	coffee break	coffee break	coffee break	
4:30:00 pm	5:05:00 pm	Pagonabarraga, Ignacio	Wilczek, Michael	Tuval, Idan	
5:05:00 pm	5:40:00 pm	Sitti, Metin	Toschi, Federico	Polin, Marco	

workshop program

Contributed Talks

Monday 8th	Tuesday 9th	Wednesday 10th
Morning session	Morning session	Morning session
Micheline Abbas	Robert Großmann	Massimiliano Rossi
Dario Vincenzi	Moritz Linkmann	Sanjay Kumar
F. Alarcon Oseguera	Emanuele Locatelli	Henry Christophe
Alessandro Magazzu	Tuğba Andaç	Massiera Gladys
Arianna Bottinelli	Daniel Strömbom	Maziyar Jalaal
Mickael Bourgoin	Thomas Voigtmann	Emiliano Perez Ipiña
Afternoon session	Afternoon session	Afternoon session
Luis A. Gómez Nava	Borge ten Hagen	Cesare Nardini
M.L. Ekiel-Jezewska	Jalpa Soni	Hossein Nili
Thomas Franosch	Mihail Popescu	Oleksandr Chepizhko
Maria Helena Godinho	William Uspal	Tyler Shendruk
Giuseppe Gonnella	Ron Shnapp	Christopher Trombley

The titles and abstracts of invited talks, contributed talks, and posters are listed below in the order they appear in the program.

Luis Alberto Gómez Nava

Markovian microrobots - How to perform complex tasks by local sensing without memory

Today's medicine aims at, among many other examples, fabricating micrometer-sized robots for target-specific drug delivery, clearing clogged-up arteries or early detection of cancer cells. Motion at the microscale underlies a series of physical constains: viscous forces dominate over intertial ones, thermal fluctuations are not negligible and external signals can only be sensed locally (instantaneous concentrations gradients are inaccessible). How to navigate under these physical constraints is a nontrivial task. Here, we provide a proof of principle by intrducing a class of theoretical, autonomous machines called Markovian microrobots which can perform complex tasks at the microscale, e.g. chemotaxis, chemokinesis, detection of concentration minima or maxima or following a desired level of concentration in a dynamical concentration field, notably without the use of memory.

Maria L. Ekiel-Jezewska

Sedimenting elastic trumbbells

We examine theoretically and numerically the impact of a chosen elastic model on the dynamics of filaments and trumbbells settling in a viscous fluid under gravity at low-Reynolds-number. We use the Rotne-Prager mobility to describe hydrodynamic interactions between the trumbbell beads. As the most significant result, we provide examples which illustrate that the Kratky-Porod bending model (often used in the literature) can lead to a spurious dynamics that qualitatively and quantitatively differs from the results obtained using the classical harmonic bending model. Moreover, we find a new family of periodic oscillations of two elastic trumbbells and demonstrate that bending energy plays the essential stabilizing role – analogical configurations of dumbbells repel each other horizontally.

Thomas Franosch

Spatiotemporal dynamics of catalytic Janus particles

Self-propelled particles are intrinsically out of equilibrium and exhibit peculiar dynamical behavior due to the complex interplay of stochastic fluctuations and directed swimming motion. We use differential dynamic microscopy and singleparticle tracking to characterize the spatiotemporal behavior of active Janus colloids in terms of the intermediate scattering function. We provide an analytical solution for the intermediate scattering function of the paradigmatic active Brownian particle model and find striking agreement from the smallest length-scales where translational Brownian motion dominates, up to the largest ones, which probe effective diffusion due to rotational Brownian motion. Characteristic oscillations emerge as most prominent feature at intermediate length scales which resolve the crossover from the persistent swimming motion to the relaxation of the orientation. These intermediate