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The problem of homogenization of a piezoelectric periodic composite in which
thermal effects are taken into account is treated by a method of 2-scale asymp-
totic expansions. Albeit a nonlinear entropy-temperature relation is used, the local
problems are formulated in a way similar to that of a linear theory. Also, effec-
tive material coefficients are in majority the same as those obtained in a linearized
theory. The difference appears in the homogenized thermoelastic, thermoelectric
and specific heat coefficients only. A Francfort type result on shift of the initial
conditions for a homogenized problem is also obtained.

1. Introduction

There are two ways of every man’s activity, especially in physics; analytical one in
which a general idea is used to understand inner structure of matter, and a synthetical one
when knowledge of the properties of a number of elements leads to a general result. The
atomic paradigm is the most known example of such conceptual approach and statistical
physics is one of the ways of its realization. Another program, associated with some of
the most famous names in science, is to determine the properties of a composite material
from those of its components considered at the level not as deep as atomic or molecular.
J. C. Maxwell (1873) and Lord Rayleigh (1892) computed the effective conductivity of
composites consisting of a matrix with spherical and cylindrical inclusions, respectively,
(1, 2]. Maxwell’s result was verified experimentally by Lise Meitner in 1906 [3]. In the
same year Albert Einstein proposed a method of calculating the effective viscosity of a
dilute suspension of rigid spherical particles [4]. In 1910, assuming uniform strain in a
polycrystalline aggregate, W. Voigt found the lower bounds on its elastic properties [5].
The elastic properties of such an aggregate were calculated by I. M. Lifshitz and L.N.
Rozenzweig in 1946, [6]. The main idea of these works, especially visible in the Einstein’s
dissertation was that the inclusions resulted in the modified equations of motion for a
matrix with “corrected” material coefficients.
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A homogenization procedure is one of the many mathematical methods that lead to
finding the properties of composite materials. Its idea is based on a small parameter se-
ries expansion, similar to that proposed by G. Sandri in the 60’s [7], and, in particular, on
so called two-scale asymptotic expansions. For example, to study wave propagation in a
periodically nonhomogeneous elastic body of period Y one introduces Y -scale of the het-
erogeneity for material coefficients, and one looks for a homogenized wave of length much
greater then Y. The two-scale homogenization methods were discussed by G. Duvaut [8],
A. Bensoussan, J. L. Lions and G. Papanicolau [9], and E. Sanchez-Palencia [10].

Thus, the homogenization is a mathematical procedure in which a heterogeneous
body (elastic solid) is replaced by a homogeneous one, the physical properties of which
are to some extent equivalent to those of the original body. As a result, an initial
boundary value problem for a nonhomogeneous elastic solid is replaced by an initial
boundary value problem for a homogeneous body. In [11] a homogenization procedure
was described for a thermopiezoelectric composite. The case was studied by a 2-scale
asymptotic expansions method and the results were obtained under a linear entropy-
-temperature relationship. Such a hypothesis inherent for a linear thermoelasticity was
used earlier in G. A. Francfort’s works on the homogenization of a linear thermoelastic
composite [12, 13].

It appears however that linear thermoelasticity in which the entropy s is a linear
function of temperature 7 {cf. D.E. Carlson [14], W. Nowacki [15]), and the nonlinear
term T'$ in the energy equation is replaced by the linear terms Tp$ (Tp = reference
temperature), is overlinearized as far as a homogenization procedure is concerned.

In the present paper we are to outline a homogenization procedure for a periodic
piezoelectric composite using a quasi-linear thermoelasticity in which the law of elasticity
and the law of heat conduction are linear, but the entropy is a nonlinear function of
temperature, and there is no need to linearize the term T'$ in the energy equation. Such an
approach to other problems of thermomechanics has been proposed before by J. Ignaczak
[16]. The paper extends the author’s results on the homogenization of a quasi-linear
thermoelastic body [17] to a quasi-linear piezoelectric thermoelastic body. It is shown
that local problems are the same as in a linear theory. Also, effective material coefficients
are shown to be, in general, the same as those obtained in a linearized theory. The
difference appears only for the homogenized thermoelastic, thermoelectric and specific
heat coefficients.

To obtain the homogenized material constants, a two scale expansion method (cf.
[18-24]) is used.

2. Piezoelectric body

We consider a piezoelectric body occupying a volume 2 and made of the identical
elementary cells such that physical properties of the body change periodically and the
period is equal to the dimension of an elementary cell.

The relation between strain tensor €;; and displacement u; is given by

_ 1/ Ou; 8u]‘
gij =35 (8@ + 6:172-) . (2.1)
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Electric field E; is given by the gradient of electric potential ¢

99
6.’131' )

Ei - (22)

The relation betwes=n strain €;;, stress g;;, absolute temperature T' and electrical field E;
is assumed to be linear, cf. Landau and Lifshitz [25], Nowacki [26]

€ij = QijmnTmn + Qij (T -To) + Agii By,

where a;jmn, 0 and Ag,; denote the compliance, thermal expansion and strain-electrical
tensors, respectively. T is the temperature of reference at which the strain, stress and
entropy vanish.

If we define the stress-temperature tensor v;; by

Yij = CijmnOmn
and the piezoelectric tensor m;; by
Tkij = CijmnAkmn
we obtain the inverse relation
035 = Cijmn€mn — Yij (T — To) — Tij Bk, (2.3)

where ¢;jmn are elasticities. The formula for the electric induction D; is postulated also
in the linear form

Di = Mimn€mn + /\z(T - TO) + 6ik:Ek: s (24)

where A; and €;; are the induction-temperature and dielectric coefficients.

A nonlinear temperature—entropy relation is assumed in the form
T = Tpelo~mscis~XiB)/Ce (2.5)

where C, = C¢ g,, denotes the specific heat at a constant triple (g;;, E;, p) .
The body is to obey the following balance laws: the equation of motion

. 0
pii; = a_mjo'ij ) (2.6)
Gauss’ law o
—D; =0, .
Bz, (2.7)
and the conservation of energy
. 17}
Ts=—-—2—q
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with the heat flux ¢; given by Fourier law

g
¢ = —Ki; %;T‘
Hence 5 5
Ts = 3_117, Kij ET) (28)
or equivalently
i OInTolnT 0 OlnT ,
5= ”_—3331- ——“3zj + E <Kzg—azj ) . (2.8)

Here p is the density of solid and K;; is the heat conductivity tensor. The coefficients

£, Cijmn, Yij and K;; satisfy the inequalities

p>0, (2.9)
Cijmn&ij€mn 2 0, Véi; € B3, (2.10)
emin; 2 0, Vm €R®, (2.11)
Kijmin; 2 0, Vni €R®. (2.12)

3. Basic equations

Let 2 C R® be a bounded, sufficiently regular domain and (0,7), 7 > 0, a time
interval. We identify 2 with the underformed state of the thermopiezoelectric composite
with a microperiodic structure. Thus, for £ > 0 the material functions just introduced
are ¢Y-periodic, where Y = (0,Y7) x (0,Y3) x (0,Y3) is the so-called basic cell, cf. [10].
More precisely, we write

ijkz(w) = Cijkl (g) ) ijk(m) = Tijk (%) , etc.,
where z € {2 and the functions ¢f;;;, 7j;;, etc. are eY-periodic, where £ > 0 is a small
parameter.

For a fixed € > 0 the basic relations describing a linear, thermopiezoelectric solid with
the microperiodic structure are then given by

. 5] ous, e 0¢°
£ _ G m o L€ §° _ € 1
pY; 31:‘7 {cmmn axn ’Yl]TO[e 1]} + 7rk1.7 a-'L'k ’ (3 )
0 e 6ufn ¢ se € 0 e\ _
Bz {Wimn 5z, + A{Tole 1] €55 _(9.’)3]' =0, (3.2)
e e 05°0S° 9 [, 85°
5= Kij 6.’17, ij 8.’13,' [ g Bz]J ’ (33)

where

€ €
S€ 1 (Ss__,ye (’)um+/\€8¢).

e ™ Bz, "0z,

These are the three equations for fields ¢, u{ and s°, and they will be discussed below.
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4. Homogenization—an outline of the procedure

The 2-scale asymptotic expansions for uf, ¢° and s° are postulated (fore > 0, — 0),

ui = u§°’ (x,y) + sugl)(x, y) + 52u22)(x,y) +oey, (4.1)
¢ = 6O (x,y) + eV (x,y) + 2P (x,y) + -, (4.2)
§¢ = sO(x,y) +esV(x,y) + 2P (x,y) + - (4.3)

The functions uf,$® and s¢ are £Y periodic with respect to y = x/e. Substituting
(4.1-4.3) into (3.1-3.3) and taking into account the relation 8/0z;f(x,y) = (0/0z; +

e~18/0y;) f(x,y) we get

. 7] 10 0 10 c
Puf = (EE; + Ea—y]) {Cijmn (a—xn + EE) ufn - ’)’ijTo[es - 1] (4.4)

o 10 o 10\ .
0= (5 2a) (o (5o 22 ) o (49)

. o 1 8
TS 1] — e 1
FATole e (3%' T 31/1) d)}

e _p [ 9 c

; ‘K“[(axi*eay) ] { eay,>s] (46)
9 10 8 10

(8:1:, +56yz> {K ((%J +58_y;> 5° } ’

e 1 0 19 R o 10 .
s —Ce[ 7ab(6xb+66yb)u“+)\a (6ma+28ya)¢]'

The material coefficients €;;, p, Cijmn, Kij etc. in (4.4-4.6) are assumed to be the
€Y -periodic functions of y coordinate only.

and

where

5. Homogenization of the energy equation

(i) Equating to zero the coefficient at €™* in (4.6) and denoting

1 17} 0
I IS (O Y 4(0)
f Ce[ 'Yabaybua +Aaaya¢ , (5.1)
of

fi:Byi’
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we obtain
By the positive definiteness of K;;, (5.3) yields f; =0 or
0 1 0 19}
2 ey — (0 4y 0L =, 4
Ay {Ce [ Yot gy e A gy. ]} (54)
Integrating over the cell Y we find
1 0 0
| —Aap—1D + AV | = t 5
Ce [ Vbaybua + aaya¢ :| w(xv )a (5 )

where the function w(x,t) plays the role of the integration constant (for variable y) to
be determined.

(i) Keeping in mind (5.5), the coefficient at £~ vanishes.

(iit) Denoting

1 au(o) au(l) a¢(0) 64)(1)
5O = — |50 _ ) id ze Ao .
c. |’ Tab Az + Ay + Oz, + Yo ’ (56)
and equating the coefficient at €2 to zero, we have
95 980 9 of 9 95
0=K;j—— K;;— — ¢ Kii— ¢, .
oy oy, | oa { ! dy; } " oy, { ! dy; } (57)

and after using (5.5) we arrive at

) 3 1 ol gtV 9l V)
g (0) _ up P A —0.
Fy; { Y By] P { Ce [3 e ( Oz, - 9yq A ( Oz, * Oyq ) 0

(5.7)

Bearing in mind (2.12), the above equation implies

1 duy’  oup) 99”  9gV

where Cr(x,t) is an arbitrary function and the index T indicates a relation of Cr(x,t)
with a homogenized temperature TH. In the following we show that Cr(x,t) = TH /Tj
(Cr > 0); cf. also (2.5). Taking logarithms on both sides of (5.8) we get

(0) (1) (0) (1)
i [S(O) — Ypq (% + aup > + Aq (8¢_ + a¢ )] = lnC'T(x,t) . (59)

C. O0xg Oyq Oz, 9y,
(iv) Equating the coefficient at £™! to zero, after some transformations one gets
0 = Kijyi—n— o {w(x, t)}+ 0 +—{InCr(x,t)} (5.10)
~ Y bz,0z, K a T '

oull  oul? AV 9p®
 _ P P e
’ ””"(faxq "y, “"(axq * ayq) '

0 0 1
— K { =
+3yi{ 7 By; {Ce
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If we introduce a function 8(y) that satisfies the following local equation on Y

9 : C8%k(y) _
8yi (Kz}c -+ K;] ay] =0 s (511}
then (5.10) takes the form
0 = {wix, t)} +5 9 -4 i{InC (x,t)} (5.12)
= Kipron; aJ Kii gy | o om0 '

1 Buy ” au("‘ 8D e
— s — z Ag | ——— .
+Ce [s '}”’q(ax * Byq * "(axq + 3yq>
In the subsequent section it will be shown that w(x,t) = 0, cf. (6.2). The positive
definiteness of K;; implies that

a
— —a-;:;{ln Cr(x,t)}

1 oul)  ouf) apl)  9¢?
b |8V — g | 22—+ 2 |+ A (——+ ) = k(x,1),
Ce [ Pa\ Oz, Jdyq T\ Oz, Oyq (x,)
where k is an arbitrary function of x and ¢.

(v) Now, we are ready to analyse the last term of the energy equation, by equating
coefficient at €° in (4.6) to zero. The result is given by

G a9 a(—0k) . 09
L Y SANLLY il .
o Tuli + Lig tlat =50 Lig,tLa (5.14)

a ,  9(=9%) g
+6wi{K”[L”+ 3, L’“]}Jray@-{ }

dlnCr(x,t)
6:(11‘
and the last term 8/0y;{} is inessential because its contribution vanishes after cell-
averaging.
We introduce an operation of averaging over elementary cell Y’

L
(-n= m!(m) dy. (5.15)

(5.13)

O = Ky {LL + -

where

Li=

Averaging (5.14) yields

50 = (Kij>LiLj+<sz% LyL; + Li Kwagk>Lk
0 dy;

Y%, 89, 0 9 (5.16)
k - k
"‘F<K’z‘7 6% 3y3 > Lqu + — ErS <{Kik + szég}> L.
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Integrating by parts and using periodic boundary conditions imposed on 9% we get

9, B9 %%
K, 20k _ (g DU\
< 7 By 3yj> < "6y.->

Reducing other terms in (5.16) in a similar way we arrive at the result

g 0*InCr(x,t)

50 = gH dInCr(x,t) dlnCr(x,t)

ox; Oz + K 0z, 0z, ' (5.17)
where a9
K7 = (K, e ,
ik <Kk + Kt] ay] > (5 18)

6. Homogenization of the equation of motion and Gauss’ law

The equation of motion (4.4) and Gauss’ law (4.5), similar in structure, are to be
homogenized parallely.

First, we note that the highest singularity on right-hand side of these equations is
due to the exponent factor at the temperature term

1 0 0 1
exp { ol [—’Yaba—ybufzo) + Aa @45(0)] } = exp {g“’(x’ t)} , (6.1)

cf. (5.5). So, in order to remove this singularity to comply with left-hand side of (4.3)
and (4.4), we let

w(x,t)=0. {(6.2)
Next, equating coefficients of ¢ =2 in (4.4) and (4.5) to zero, we get respectively
] duln’ 840
—_ Ci imn _+_ Thij = O 63
ayj{ T G T B (63)
and ©
a Oum A
72— { Timn—— —€j—5— ¢ =0. 4
47 {“‘ By Ty [ ° ®
Consider now the average, cf. (2.10),
8u'® aulY
I={cCijjmn—F7>— ; I>0. 6.5
< 7 By Oya (65)

By (6.3-6.4) we find that I =0, and u%”’ and ¢(*) depend on x and ¢ only,
USIO) = UEP)(xf t) s (66)

P9 = ¢ (x,¢). (6.7)
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In order to find coefficients at e~! and €° in (4.4) and (4.5) let us begin with an analysis
of e-order of terms produced by the exponential component on RHS of (4.4) and (4.5),
which we denote by g; and [, respectively. Denoting

InC
= e[k(x,t) + ‘9_“5!_;52‘_}_)]4_52[...“...
we get
9i = — ET() { 3y; [Cr(x,t)e 1] + %;Cr(x, t)e 3y, (6.8)

and observe that g; produces terms of order ¢! (the first member) and ¢° (the second
member) as € — 0. In a similar way we also find

1 oA oy g OF
l= STO {63; [Cr(x, t)e =1} + MCr(x,t)e 5%} (6.9)

and make the similar observation: ! produces terms of order ¢! (the first member) and
€° (the second member) as ¢ — 0.

Using this result we find:

(i) Equating the coefficient at ¢! to zero, by virtue of (6.6-6.7) one has

d duly) | ouby FRORNEY Y
0 = %{Cijmn (mﬁ- Bum ’)’@]9-{-7(’}“3 ( £ + £ ) , (6.10)

o oulY  Bull 80 9ph)
0 = %;{Wimn (—_aTE:+ 3 -—)\,-9+eij (-C:)E;_+ 8yj ) R (6.11}

where
0 = O(x,t) = [Cr(x,t) — 1]. (6.12)
Thus we let
(0)
u{ )= meq(Y) 6 + 5 (6.13)
(0) 860
O = byuly) G + Fal9) o + QO (614

and observe that (6.10-6.11) are satisfied if the local functions Xmpq, Fmq> Gq, ¥pg, Py and
Q satisfy the equations

a -  OXmpq Opg | _
6y] {Clqu + Cz}mn 6y + k‘l] a = 0 S (6-15)

8 OF g oP,
L i + Cipmn e+ T =L b = 0, :
ayj {qug + Cijmn 6yn + T ¥ 6yk (6 16)
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O—Z_{ Yig +C13mn This o } = 0, (6.17)
ai { Tipg + Timn ax"”’q + € 381/);:; 0, (6.18)
Biyi {Ai + m'""%i_;n - fija_y]_} = 0. (6.20)

Eqs. (6.15)-(6.20) are identical with those resulting from a homogenization of linear
thermoelasticity of piezoelectrics (cf. [11, 18]).
(ii) Equating to zero the coefficient at €° (as ¢ — 0), using (6.10) we obtain

. 8 ould  ouly
piiy” = Fr {Cijmn (W + ol i To[Cr(x,t) — 1]
J n n

9Cr(x,t 8 (1)
s 3 o (300
dy;  Ozy Oc; O Oy

) G, 0 0tV 9p?
D w2 @ I A 4
+ 6yj {czgmn <az" Uy + aynum ) + Mhij ( Ozx + 3yk >} .

Averaging over the cell Y yields
(0) (1)
..(0) 0 Oum’ O
0 — e | B Tm T t) -1 22
il = 5 {<m (amn + G )> + (i) TolCr(x,6) — 1] (6.22)

09; 9o Fplb)
+<%qa >TOCT(X t)+<7fkij (—g;k + g;k >>} .

If we compare (6.22) with (2.6) and (2.3) we see that the term Tp[Cr(x,t) — 1] in (6.22)
is equivalent to the temperature difference (TH — Tj) for a homogenized body, with TH
being a temperature of such a body; therefore

71]T0 (621)

0 =TlCr(x,t) - 1] = (T¥ - Tp), (6.23)

H

Cr(x,t) = —%— . (6.24)

The same result is obtained by comparison of (5.17) with (3.3) and (2.5). By virtue of
(6.13) and (6.14) we obtain

(Pi® = el Puy) 00 | 4 8%

SO R - et SNV . il SR — 6.25
¢ c’”’qazj('?:cq i dz; szjamjamk ( )
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In a similar way we arrive at the homogenized Gauss law

Pup) 500 _ g P

3 : =Uu, 6.26
Timn gl ¢ Oz 00w, (6.26)
where
dx o
H —
Cijpg = <Ciqu + Cijmn a;npq + Thij 3 pq> (6.27)
IF ok oP,
’ﬂ’fg_j = <7i'k13 + Cijmn :;: + Tmij aym> s (628)
ap;

H m

€; - < ’/Tmm mg +6im£::> , (6.29)
aQ av;

H m
i i - — mij o i .30
72‘7 <7] CZJ Y, -7 J ay + Yi q Byq> (6 3 )

9G; Yy,
; im g T Tij —L+Xig— ). 6.31
Also, we obtain
v

Kf = <sz + Kij g "> (5.18)

Clearly, the tensor cwm given by (6.27) is identical with that derived in a linear theory

while fy” given by (6.30) is inherent for a quasi-linear theory: we observe that 'yw
composed of the two terms:

aY;
H __  HL oY 30
Yi; F Yt <7"I ayq> (6.30)
with s 90
HL _ e T A 2
Yi; = <'ng Cijmn Sy Tmij aym> (6.32)
being the homogenized 7;; coefficient of the linear theory, cf. [11}; similarly,
09,
ME = \EE <A —> 6.31°
Oyq ( )
with 90 -
)\f!L = <)\, - Gimﬂ + Wijmay_.,i> . (632’)

Substituting (6.13) and (6.14) into (5.9) and taking the mean value of this result and
using (6.17), we obtain

, (0)
(s0) -z 20 gy~ comrim), (@39)
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where

0Gm
> <7mn ai N Ama_Q> , (6.34)

and 'yHL and AEL are given by (6.32). Eq. (6.33) is a transcendental equation for an
unknown TH. It can be cast into

Aull 3¢
(0) HL m HL H H
(s©) =itk G + Mk g = O (T /1) (6.35)
with the following “homogenized” specific heat
TH — T,
H _ 0
C: =(Ce) + T TETy) (6.36)

Also, by virtue of (6.24), the averaged entropy production equation (5.17) takes the form

) OlnTH(x,t) 0InTH(x,t) 0?InTH (x,t)
0\ - gH ) ) H
<3 > K oz Oz, K5, 0y, (6:37)
. 0?°TH(x,t)
H 0\ _ prH x,t
T (x,t) <s > = K BT e (6.38)

This equation is similar to (2.8).

7. Shift of the initial condition for temperature

A shift of the initial condition for the temperature appears to be a paradox in the
result obtained by Francfort [12]. To see this take the initial conditions in the form

ui(%,0) = Ui(x);  %(x,0) = Ui(x); T(x,0)=T(x); o(x,0)=f(x). (7.1)

The equivalent form of (2.5)

Ou; Oy
- Vi m— oz, -+ Ajo— B =C. In(T/Tp) (7.2)
taken at ¢t = 0 reads
x\ oU; x\ Of x
= () Bz, T (2) g = - (Z) miT/T0), (73)
and after averaging we obtain
oU; of
3 £ — .. PRN— p— - —
Bim (5°(x,0)) = () " + (O} (T /To) = () - (7.4

On the other hand, from (6.35) taken at t = 0 one gets

aU; 8
(sO(x,y,0)) = v+ 5— 5.+ CH (T (x,0)/To) - ,\f,{L%. (7.5)
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A comparison of (7.4) and (7.5) yields

i 5]
() 5ot + (CYR(T/T) = () 35 (7.)
oU; of
= 75La_m; + CHIn(TH (x,0)/Tp) ~ ,\gL%: .
Hence
1 U, 1 of
CE [(vis) — v *] 3z, CH () — AFE] Fr.
= In(T#(x,0)/To) ~ ((Ce) /CI) In(T / To)
or

1,0 =70 (1) exp { g [ () =) 52 = (M =9 52|} o
with
n=(C) /0l

Thus, in general T (x,0) # 7T (x). If the exponent is expanded into a series, and because

of T T-T
Z =1 _-0
T

we get after linearization

ou;
633]'

This expression is identical with the result in [11], p. 323.

((N) = AZEE) of (7.8)

TH(x,0)-Tp = CLH (Ce) (T = To) + To | ({vis) — ¥) Bz

8. Conclusions

The homogenized field equations and the effective coefficients for a homogenized
quasi-linear thermo-piezoelectric body may be obtained if, similarly to the linear case
seven local problems are solved, Egs. (5.11), {6.15)—(6.20). The homogenized coefficients
g Thij» €41 and K] are the same as in the linear theory while vH and AF are different.
The homogenized nonlinear energy equation takes the form (6.38). A shift of the initial
value of temperature after linearization transforms into one of the Francfort type given
in [11].
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