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The problem of homogenization of a piezoelectric periodic composite in which 
thermal effects are taken into account is treated by a method of 2-scale asymp- 
totic expansions. Albeit a nonlinear entropy-temperature relation is used, the local 
problems are formulated in a way similar to that of a linear theory. Also, effec- 
tive material coefficients are in majority the same as those obtained in a linearized 
theory. The difference appears in the homogenized thermoelastic, thermoelectric 
and specific heat coefficients only. A Francfort type result on shift of the initial 
conditions for a homogenized problem is also obtained. 

1. Introduction 

There are two ways of every man’s activity, especially in physics; analytical one in 

which a general idea is used to understand inner structure of matter, and a synthetical one 
when knowledge of the properties of a number of elements leads to a general result. The 

atomic paradigm is the most known example of such conceptual approach and statistical 
physics is one of the ways of its realization. Another program, associated with some of 
the most famous names in science, is to determine the properties of a composite material 

from those of its components considered at the level not as deep as atomic or molecular. 

J. C. Maxwell (1873) and Lord Rayleigh (1892) computed the effective conductivity of 
composites consisting of a matrix with spherical and cylindrical inclusions, respectively, 

[l, 21. Maxwell’s result was verified experimentally by Lise Meitner in 1906 [3]. In the 
same year Albert Einstein proposed a method of calculating the effective viscosity of a 
dilute suspension of rigid spherical particles [4]. In 1910, assuming uniform strain in a 
polycrystalline aggregate, W. Voigt found the lower bounds on its elastic properties [5]. 
The elastic properties of such an aggregate were calculated by I. M. Lifshitz and L. N. 
Rozenzweig in 1946, [6]. The main idea of these works, especially visible in the Einstein’s 
dissertation was that the inclusions resulted in the modified equations of motion for a 
matrix with “corrected” material coefficients. 

[5851 
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A homogenization procedure is one of the many mathematical methods that lead to 
finding the properties of composite materials. Its idea is based on a small parameter se- 
ries expansion, similar to that proposed by G. Sandri in the 60’s [7], and, in particular, on 
so called two-scale asymptotic expansions. For example, to study wave propagation in a 
periodically nonhomogeneous elastic body of period Y one introduces Y-scale of the het- 
erogeneity for material coefficients, and one looks for a homogenized wave of length much 
greater then Y. The two-scale homogenization methods were discussed by G. Duvaut [8], 
A. Bensoussan, J. L. Lions and G. Papanicolau [9], and E. Sanchez-Palencia [lo]. 

Thus, the homogenization is a mathematical procedure in which a heterogeneous 
body (elastic solid) is replaced by a homogeneous one, the physical properties of which 
are to some extent equivalent to those of the original body. As a result, an initial 
boundary value problem for a nonhomogeneous elastic solid is replaced by an initial 
boundary value problem for a homogeneous body. In [ll] a homogenization procedure 
was described for a thermopiezoelectric composite. The case was studied by a 2-scale 
asymptotic expansions method and the results were obtained under a linear entropy- 
-temperature relationship. Such a hypothesis inherent for a linear thermoelasticity was 
used earlier in G. A. Francfort’s works on the homogenization of a linear thermoelastic 
composite [12, 131. 

It appears however that linear thermoelasticity in which the entropy s is a linear 
function of temperature T (cf. D. E. Carlson [14], W. Nowacki [15]), and the nonlinear 
term Ti in the energy equation is replaced by the linear terms Toi (To = reference 
temperature), is overlinearized as far as a homogenization procedure is concerned. 

In the present paper we are to outline a homogenization procedure for a periodic 
piezoelectric composite using a quasi-linear thermoelasticity in which the law of elasticity 
and the law of heat conduction are linear, but the entropy is a nonlinear function of 
temperature, and there is no need to linearize the term T9 in the energy equation. Such an 
approach to other problems of thermomechanics has been proposed before by J. Ignaczak 
[16]. The paper extends the author’s results on the homogenization of a quasi-linear 
thermoelastic body [17] to a quasi-linear piezoelectric thermoelastic body. It is shown 
that local problems are the same as in a linear theory. Also, effective material coefficients 
are shown to be, in general, the same as those obtained in a linearized theory. The 
difference appears only for the homogenized thermoelastic, thermoelectric and specific 
heat coefficients. 

To obtain the homogenized material constants, a two scale expansion method (cf. 
[18-241) is used. 

2. Piezoelectric body 

We consider a piezoelectric body occupying a volume 0 and made of the identical 
elementary cells such that physical properties of the body change periodically and the 
period is equal to the dimension of an elementary cell. 

The relation between strain tensor ci3 and displacement ui is given by 

(2.1) 
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Electric field Ei is given by the gradient of electric potential 4 

E.=_!!!. z 
8Xi 

(2.2) 

The relation between strain sij, stress cij, absolute temperature T and electrical field Ei 
is assumed to be linear, cf. Landau and Lifshitz [25], Nowacki [26] 

~ij = aijmncmn + Wj (2” - TO) + Acij Ek , 

where aijmn, aij and Akij denote the compliance, thermal expansion and strain-electrical 
tensors, respectively. TO is the temperature of reference at which the strain, stress and 
entropy vanish. 

If we define the stress-temperature tensor yij by 

Yij = CijmnWnn 

and the piezoelectric tensor K&j by 

nkij = Cijmn A kmn > 

we obtain the inverse relation 

Uij = Cijmnfmn - yij(T - TO) - 'GijEk > (2.3) 

where cijmn are elasticities. The formula for the electric induction Di is postulated also 
in the linear form 

Di=K. E ZTnrl mn + &(T - TO) + EikEk , 

where Xi and eik are the induction-temperature and dielectric coefficients. 

A nonlinear temperature-entropy relation is assumed in the form 

(2.4) 

T = T~~(s-Y.~E~,-X.E,)/C= , 
(2.5) 

where C, - Ce,E,p denotes the specific heat at a constant triple (&ij, E,, p) . 

The body is to obey the following balance laws: the equation of motion 

Gauss’ law 

. . a 
Pui = Gffij j (2.6) 

EDi =O, 
22 

(2.7) 

and the conservation of energy 
d 

TS = -zqi 
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with the heat flux qi given by Fourier law 

Hence 

(2.8) 

or equivalently 
s = K,_alnTdlnT 

--+& (Kii?). 
23 axi axj 

(2.8’) 

Here p is the density of solid and Kii is the heat conductivity tensor. The coefficients 
p, cijmn, yij and Kij satisfy the inequalities 

P.0, (2.9) 

GjmntijImn 2 0 > vtij E Ei 7 (2.10) 

fijrlirlj 2 0 3 VQ E IR3 , (2.11) 

KiiniVi > 0 3 Vqi E lR3. (2.12) 

3. Basic equations 

Let 6’ c Iw3 be a bounded, sufficiently regular domain and (O,r), 7 > 0, a time 
interval. We identify fi with the underformed state of the thermopiezoelectric composite 
with a microperiodic structure. Thus, for E > 0 the material functions just introduced 

are &Y-periodic, where Y = (0, Yr) x (0, Yz) x (0, Ys) is the so-called basic cell, cf. [lo]. 
More precisely, we write 

X 

Cfjkl(X) = CijkZ ; > 0 
rf,jk(x) = rijk E , 

( > 
etc., 

where x E 0 and the functions ctikl, rfjk, etc. are &Y-periodic, where E > 0 is a small 

parameter. 
For a fixed E > 0 the basic relations describing a linear, thermopiezoelectric solid with 

the microperiodic structure are then given by 

where 

(3.1) 

(3.2) 

(3.3) 

These are the three equations for fields ‘p’, ui and .sE, and they will be discussed below. 
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4. Homogenization-an outline of the procedure 

The Z-scale asymptotic expansions for ut, 4” and sE are postulated (for E > 0, E + 0), 

u; = “to) (x, y) + EU!l) (x, y) + E%~“‘(X, y) + . . . ) (4.1) 

4” = @(x, y) + E&)(X, y) + E2$(2)(x, y) + . . . , (4.2) 

SE = s(O)(x, y) + ES (l)(x, y) + E W(x, y) + . . . (4.3) 

The functions 2~5, c#P and sE are EY periodic with respect to y = X/E. Substituting 
(4.1-4.3) into (3.1-3.3) and taking into account the relation ~/~z~f(x, y) = (a/hi + 

E-lalayi).f(x, Y) we get 

“E 
P% = 

d+ld 
BZi 

E aYj 
- @o[eSC - 11 (4.4) 

()= g+‘” ( H ( a i a 
E aYi 

Rimn 
2 

aS,+EG U& ) (4.5) 

+X$70 [P - l] - Eij & + I.-!- 4 
( 3 s ayj 11 

and 

(4.6) 

+(&+~&){K~j(&+~&)sC}~ 

where 

SE = $ 
1 ( 
SE - 7ab 

e 
&+$&-)~~+Aa(~+g-)m~]~ 

The material coefficients eij, p, cijmn, Kij etc. in (4.4-4.6) are assumed to be the 

EY -periodic functions of y coordinate only. 

5. Homogenization of the energy equation 

(i) Equating to zero the coefficient at se4 in (4.6) and denoting 

(5.1) 

(5.2) 
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we obtain 

By the positive definiteness of K,j, (5.3) yields fi = 0 or 

= 0, 

Integrating over the cell Y we find 

1 - 
C, 

-Tab &-Ui” 1 = w(x, t) , 

(5.3) 

(5.4) 

(5.5) 

where the function w(x, t) plays the role of the integration constant (for variable y) to 
be determined. 

(ii) Keeping in mind (5.5), the coefficient at E-~ vanishes. 
(iii) Denoting 

s(‘)=$ [8”)-~~b(~+~)+i.(~+~)] , (5.6) 

and equating the coefficient at sm2 to zero, we have 

as(o) as(o) 

O = Kij ayi ayj -~+&{Ki~~}+&{K~~~}, (5.7) 

and after using (5.5) we arrive at 

&{Kj&exp{& [s(“)-hy(~+$$) +h,(g+s)]}}=o. 

(5.7’) 
Bearing in mind (2.12), the above equation implies 

exp(& [li’)-~~~(~+~)+~.(~+~)]}=C~(~.t), (5.8) 

where CT(X, t) is an arbitrary function and the index T indicates a relation of CT(X, t) 
with a homogenized temperature T H. In the following we show that CT(X, t) = TH/To 
(CT > 0); cf. also (2.5). Taking logarithms on both sides of (5.8) we get 

(iv) Equating the coefficient at c-1 to zero, after some transformations one gets 
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If we introduce a function ok(y) that satisfies the following local equation on Y 

(5.11) 

then (5.10) takes the form 

0 = (5.12) 

In the subsequent section it will be shown that w(x,t) = 0, cf. (6.2). The positive 
definiteness of Kij implies that 

-dka d2k {In Wx, t)l 

where k is an arbitrary function of x and t. 
(v) Now, we are ready to analyse the last term of the energy eq~ut~on, by equating 

coefficient at 8 in (4.6) to zero. The result is given by 

where 
L, = ~lnC+,t) 

z 
dXi 

and the last term a/&i{ ) is inessential because its contribution vanishes after cell- 

averaging. 
We introduce an operation of averaging over elementary cell Y 

Averaging (5.14) yields 

(5.15) 

(5.16) 
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Integrating by parts and using periodic boundary conditions imposed on Zltk we get 

Reducing other terms in (5.16) in a similar way we arrive at the result 

$0) _ KF a In &(X7 t, a In ‘dx7 t> + K~ a2 In ‘dx7 t> - tk C3Xi axk 
tk tki?&k ’ 

(5.17) 

(5.18) 

6. Homogenization of the equation of motion and Gauss’ law 

The equation of motion (4.4) and Gauss’ law (4.5), similar in structure, are to be 

homogenized parallely. 

First, we note that the highest singularity on right-hand side of these equations is 
due to the exponent factor at the temperature term 

1 
exp 

{ [ EC, 
a (0)+x a -Yab aYbUa a@ a 

(‘)I} =exp{ $J(x,t)} , 6-W 

cf. (5.5). So, in order to remove this singularity to comply with left-hand side of (4.3) 
and (4.4): we let 

w(x, t) = 0. tw 

Next, equating coefficients of E-~ in (4.4) and (4.5) to zero, we get respectively 

a 

-{ ayj 

and 
a au:) a@O) 
ayi { rimn - _ E.._ = 

BY?% 13 ayj I O * 

Consider now the average, cf. (2.10), 

( auto) au(O) m 
I= cijmnz- . 

@yj ah 
> 

’ 
I>O. 

(6.3) 

(6.4) 

(6.5) 

By (6.3-6.4) we find that I = 0, and uhol and 4(O) depend on x and t only, 

U(O) = zQ)(x: t> : a (6.6) 

fp) = c$Jyx,q. (6.7) 
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In order to find coefficients at &ml and EO in (4.4) and (4.5) let us begin with an analysis 

of c-order of terms produced by the exponential component on RHS of (4.4) and (4.51, 
which we denote by gi and I, respectively. Denoting 

E = E[k(x, t) + ‘dk aln~~x,t)]+E1!...)+... 

we get 

g< = :;To !?!I$ [CT(X,+P - l] +hjCr(x,t)eE~} (6.8) 
3 3 

and observe that gi produces terms of order e-l (the first member) and E’ (the second 
member) as E --t 0. In a similar way we also find 

Z = ~TO {g [CT(x,t)e” L 1] ‘+ X&‘T(x, t)eEg 
2 2 

(6.9) 

and make the similar observation: I produces terms of order ~-l (the first member) and 
E’ (the second member) as E ---) 0. 

Using this result we find: 
(i) Equating the coefficient at E-I to z<ro, by virtue of (6.6-6.7),one has 

where 
8 = @(x, t) = To[CT(x, t) - 11. (6.12) 

Thus we let 

(6.13) 

aup 
P = &q(Y) - 

af#AO) 
ds 

9 

+ Pad + Q(Y)@ > 

4 

(6.10) 

(6.11) 

(6.14) 

and observe that (6.10-6.11) are satisfied if the local functions xmpq, Frrsg, G,, $J~~, Pq and 
Q satisfy the equations 

(6.15) 

(6.16) 
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= 0, (6.17) 

(6.18) 

(6.19) 

(6.20) 

Eqs. (6.15)-(6.20) are identical with those resulting from a homogenization of linear 
thermoelasticity of piezoelectrics (cf. [ll, 181). 

(ii) Equating to zero the coefficient at EO (as E + 0), using (6.10) we obtain 

(6.21) 

Averaging over the cell Y yields 

(p)~{“)=&{(cijmn (z-kg)) +(~ij)TO[CT(x,t)-I] (6.22) 

. 

If we compare (6.22) with (2.6) and (2.3) we see that the term To[CT(x, t) - I] in (6.22) 
is equivalent to the temperature difference (TH - TO) for a homogenized body, with TH 
being a temperature of such a body; therefore 

0 = To[cT(X, t) - l] = (TH - To), (6.23) 

TH 
cT(x,t) = - . 

To 
(6.24) 

The same result is obtained by comparison of (5.17) with (3.3) and (2.5). By virtue of 
(6.13) and (6.14) we obtain 

(6.25) 
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In a similar way we arrive at the homogenized Gauss law 

a2ug 
4L axiaxn 2 

a240) +X”g+L-_= 
23 dxiaxj 

0, 

where 

Also, we obtain 

(6.26) 

(6.27) 

(6.28) 

(6.29) 

(6.30) 

(6.31) 

(5.18) 

Clearly, the tensor c& given by (6.27) is identical with that derived in a linear theory 

while 7%: given by (6.30) is inherent for a quasi-linear theory: we observe that $7 is 
composed of the two terms: 

with 

dtij 

$ =rzL + Yiqdy, ( ) 
-/[L = ( Gn aQ 

Yij - cijmn~ - K ..- 
mz3 ay, > 

being the homogenized rij coeflicient of the linear theory, cf. ill]; similarly, 

with 

(6.30’) 

(6.32) 

(6.31’) 

(6.32’) 

Substituting (6.13) and (6.14) into (5.9) and taking the mean value of this result and 
using (6.17), we obtain 

vwz g + ~~~~ - a(TH - TO) = (CEf ln~TH/To), (6.33) 
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where 

Cl= (6.34) 

and T,H,~ and Xg” are given by (6.32). Eq. (6.33) is a transcendental equation for an 

unknown TH. It can be cast into 

(6.35) 

with the following “homogenized” specific heat 

c: = (G) + g 
TH-To 

ln(TH/To) ’ 
(6.36) 

Also, by virtue of (6.24), the averaged entropy production equation (5.17) takes the form 

_KHalnTH(x,t) alnTH(x,t) +KH621nTH(~,t) - zk 
8X, dxk 

zk 
dx&k 

(6.37) 

or 

TH (x, t) (i(O)) = Kz a2;x;;z’ t, . 
z k 

(6.38) 

This equation is similar to (2.8). 

7. Shift of the initial condition for temperature 

A shift of the initial condition for the temperature appears to be a paradox in the 
result obtained by F’rancfort [12]. To see this take the initial conditions in the form 

z&(x, 0) = Vi(x); tii(X, 0) = !Qx); T(x, 0) = I(x); cp(x, 0) = f(x). (7.1) 

The equivalent form of (2.5) 

alLi dp 
s - Yij dzj + Ai dzi = C ln(T/To) E 

taken at t = 0 reads 

X 8Ui 
SE - yij ; 0 z+.Ai f s=Ce ’ 

3 
0 5% ( > & 

W/To), 

and after averaging we obtain 

Jiio (a’(xl6)) = (‘Yij) g + (CE) ln(7/To) - (xi) $ . 
3 2 

On the other hand, from (6.35) taken at t = 0 one gets 

+ C,” ln(TH (x, O)/To) - A:” ff$ 
m 

(7.2) 

(7.3) 

(7.4) 

(7.5) 
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A comparison of (7.4) and (7.5) yields 

(rij) f$ + (G) ln(llT0) - (A) g (7.6) 
z 

Hence 

= ln(TH(x, O)/To) - ((G) /C,“) ln(llT0) 

or 

TH(x’O)=TO(~)~exP{~[((y,j)-y~)~-((Xi)-hHL)~]} (7.7) 

with 
n = (Cc) /C,” . 

Thus, in general TH(x, 0) # T(x). If the exponent is expanded into a series, and because 
of 

7 I - To 
-=1+-, 
To To 

we get after linearization 

THW)-To = $ [(Cd (I- To)+To [((yij) - 7:) 2 - ((Xi) - XEL) $1 (7.8) 
3 m 

This expression is identical with the result in [ll], p. 323. 

8. Conclusions 

The homogenized field equations and the effective coefficients for a homogenized 
quasi-linear thermo-piezoelectric body may be obtained if, similarly to the linear case 
seven local problems are solved, Eqs. (5.11), (6.15)-(6.20). The homogenized coefficients 

c&g 7 nij, E$ and Kty are the same as in the linear theory while 7%: and XF are different. 
The homogenized nonlinear energy equation takes the form (6.38). A shift of the initial 
value of temperature after linearization transforms into one of the Francfort type given 
in [ll]. 
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