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Time-periodic driving facilitates a wealth of novel quantum states and quantum engineering. The
interplay of Floquet states and strong interactions is particularly intriguing, which we study using time-
periodic fields in a one-dimensional quantum gas, modeled by a Luttinger liquid with periodically
changing interactions. By developing a time-periodic operator algebra, we are able to solve and analyze the
complete set of nonequilibrium steady states in terms of a Floquet-Bogoliubov ansatz and known analytic
functions. Complex valued Floquet eigenenergies occur when integer multiples of the driving frequency
approximately match twice the dispersion energy, which correspond to resonant states. In experimental
systems of Lieb-Liniger bosons we predict a change from power-law correlations to dominant collective
density wave excitations at the corresponding wave numbers as the frequency is lowered below a
characteristic cutoff.

DOI: 10.1103/PhysRevLett.126.243401

Introduction.—Controlled time-periodic driving of quan-
tum systems has recently pushed the development of
fascinating quantum phenomena such as topological phases
[1,2], many body localization [3], cavity optomechanics
[4–12], Floquet time crystals [13,14], artificial gauge fields
[15–20], transmission resonances [21–23], dynamic locali-
zation [24–29], pairing [30,31], driven Bose-Einstein con-
densates [32–39], and anyons [40–44]. However, when
complications from strong correlations and nonequilibrium
physics become intertwined, understanding the dynamics
becomes very difficult. Theoretical progress has been made
in the high frequency limit [45–47], which is useful for
Floquet engineering. On the other hand, it is extremely rare
to obtain full solutions of time-periodically driven many-
body systems, which could give much needed insight in
Floquet-induced strong correlations near resonances.
In this Letter we now provide the many-body eigenstate

solution and report resonance phenomena in one-
dimensional (1D) interacting quantum systems with
time-periodically driven parameters. Our analysis applies
to time-periodic driving of generic Tomonaga-Luttinger
liquids (TLL), which describe a large class of effectively

1D many-body systems [48] and can also be realized using
ultracold gases [49–52]. The time-evolution of an initially
prepared state in a TLL has been calculated before [53–60],
but much less is known about the nature of possible
nonequilibrium steady states under periodic driving. It is
therefore desirable to obtain the full eigenbasis of the
Floquet eigenvalue problem, which gives systematic infor-
mation about all stable steady states and their corresponding
dominant correlations. We now obtain the explicit steady
state solutions of the time-dependent Schrödinger equation
of a quantum many-body system in terms of a time-periodic
operator algebra, which not only allow a full analysis using
closed analytic functions but also show regions of insta-
bilities in frequency and momentum space. We therefore
predict large-amplitude density waves at the characteristic
wave vectors in trapped ultracold boson systems.
Model.—We will develop a Floquet-Bogoliubov ansatz

for general driven TLL models. To make concrete pre-
dictions for decoupled 1D tubes of interacting bosons in
optical lattices [49–52] we choose the Lieb-Liniger
Hamiltonian [61] as a starting point

H0 ¼ −
1

2m

XN
i¼1

∂2

∂x2i þ g
XN
i<j¼1

δðxi − xjÞ ð1Þ

where ℏ ¼ 1 and g ¼ 2a0=½ma⊥ða⊥ − 1.03a0Þ� is the 1D
onsite interaction strength, which is tunable via the 3D
scattering length a0 and the perpendicular confinement
length a⊥ [62–65]. The static system is integrable and
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correlations are known to be well described by a TLL
model in the long-wavelength limit q < qc [48,63,64]

HTLL ¼ v
2π

Z
dx½Kð∂xθÞ2 þ K−1ð∂xϕÞ2� ¼

X
q>0

Hq;

Hq ¼ vFq½ð1þ g4Þ2J0;q þ g2ðJþ;q þ J−;qÞ� ð2Þ

where 2J0;q ¼ b†L;qbL;q þ bR;qb
†
R;q and Jþ;q ¼ J†−;q ¼

b†L;qb
†
R;q are SU(1,1) generators [66–68] in terms of bosonic

operators b†L=R;q, which create left- and right-moving
density waves at wave-vector q [48]. For the Lieb-
Lininger model the Luttinger parameter K is known exactly
[63–65]. It depends only on the ratio mg=n, where n is the
1D particle density. The cutoff qc above which the TLL
description fails has also been determined [64]. The
scattering amplitudes g2 and g4 are rescaled from the
traditional “g-ology” scheme [69] and related to v and K
by [48]

vK ¼ vFð1þ g4 − g2Þ;
v
K

¼ vFð1þ g4 þ g2Þ; ð3Þ

where vF ¼ πn=m. Values of g2 ¼ g4 ¼ ð1=K2 − 1Þ=2 for
the Lieb-Liniger model are shown in Fig. 1.
We now turn to systems with time-periodically changing

control parameters a0 and a⊥, which will result in time-
periodic couplings g, g2, and g4, all of which can be
determined exactly. Any desired time-periodic couplings
can be created by suitable fields given by the inverted
relations, including a pure sinusoidal behavior [70]

2g2ðtÞ ¼ 2g4ðtÞ ¼ ρ̄þ ρ cosωt ð4Þ

with constant parameters ρ̄ and ρ. We will later consider
more general behavior. For the Lieb-Liniger model it is
known that vK ¼ vF and K > 1 [63,64], so that from
Eq. (3) −1=2 < g2 ¼ g4 < 0 as shown in Fig. 1.

Floquet ansatz.—We now seek to solve the time-
dependent Schrödinger equation {∂tjΨðtÞi ¼ HqðtÞjΨðtÞi
for each momentum q separately, which remains a good
quantum number and can be omitted in the following.
According to Floquet theory [27,46,47,71] there exists a
complete set of quantum numbers n for steady state
solutions jΨnðtÞi¼e−{ϵntjunðtÞi. Here junðtÞi¼junðtþTÞi
with T ¼ 2π=ω obey the Floquet equation

½HðtÞ − {∂t�junðtÞi ¼ ϵnjunðtÞi ð5Þ

where ϵn are the Floquet quasienergies. We now wish to
map this problem onto a static eigenvalue problem [72]

H̃jni ¼ ðQHQ† − iQ∂tQ†Þjni ¼ ϵnjni: ð6Þ

Floquet theory has been reviewed extensively [27,46,
47,71], but the ansatz (6) goes beyond the usual time-
evolution approach since it makes the problem static,
diagonalizes it in the original Hilbert space, and determines
all steady states for all times in one single unitary trans-
formationQðtÞ, which is an ambitious goal. The relation of
Q ¼ P

n jnihunðtÞj to Floquet concepts is discussed in the
Supplemental Material [73]: While the time-evolution
operator WðtÞ is not the topic here, it can be simply
obtained WðtÞ ¼ Q†ðtÞe−iH̃tQð0Þ. However, it is not pos-
sible to construct Q using W. Likewise, the so-called
Floquet Hamiltonian [27,46,47,71] HF ¼ Q†ð0ÞH̃Qð0Þ
can be found using Q. We now proceed to find an explicit
expression for QðtÞ for the model in Eq. (2).
Floquet Bogoliubov solution.—The goal is to find a static

eigenbasis in the rotating frame, which can be achieved if H̃
becomes diagonal and time independent. The interacting
model HqðtÞ in Eq. (2) is defined in left and right oscillator
Hilbert spaces χ ¼ L, R, so a static solution must be of
the form H̃ ¼ Δ

P
χ b

†
χbχ . The characteristic commutation

relation ½H̃; bL;R� ¼ −ΔbL;R transforms to

½ðHðtÞ − {∂tÞ; βL;RðtÞ� ¼ −ΔβL;RðtÞ with ð7Þ

βL;RðtÞ ¼ Q†ðtÞbL;RQðtÞ ¼ γ1ðtÞbL;R þ γ2ðtÞb†R;L ð8Þ

where we have used a general Floquet-Bogoliubov
ansatz for Q in Eq. (8) with the canonical constraint
jγ1ðtÞj2 − jγ2ðtÞj2 ¼ 1. The defining relation in Eq. (7)
provides differential equations for the time-periodic coef-
ficients γ1;2

{_γ1;2 ¼ ðΔ ∓ λ1Þγ1;2 � λ2γ2;1 ð9Þ

where λ1 ¼ vFqð1þ g4Þ and λ2 ¼ vFqg2. The relation (9)
applies to general TLL, but for the Lieb-Liniger model it
simplifies since λ1 − λ2 ¼ qvF is constant due to Galilean

FIG. 1. Coupling constants g2 ¼ g4 ¼ ð1=K2 − 1Þ=2 for the
Lieb-Liniger model as a function of mg=n [63–65], which can be
determined for any value of a0 and a⊥.
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invariance. Using f�ðtÞ ¼ e{Δt½γ1ðtÞ � γ2ðtÞ� and Eq. (4)
we obtain a Mathieu equation

f̈−ðtÞ þ q2v2Fð1þ ρ̄þ ρ cosωtÞf−ðtÞ ¼ 0 ð10Þ

and fþ ¼ −{ _f−=qvF. The solution can be expressed as

f−ðtÞ ¼ c1Cða; p; τÞ þ c2Sða; p; τÞ

where a ¼ 4
q2v2F
ω2

ð1þ ρ̄Þ; p ¼ −2
q2v2F
ω2

ρ; τ ¼ ωt
2
;

ð11Þ

and Cða; p; τÞ, Sða; p; τÞ are even and odd Mathieu
functions normalized with Cða; p; 0Þ ¼ Sða; p; πÞ ¼ 1.
The coefficients c1;2 are determined by the time periodicity
of steady states junðtÞi and operators βðtÞ, which also fixes
the quantization condition for Δ: We use Floquet’s theorem
to write the solution of Eq. (10) f−ðtÞ ¼ e{ντPνðτÞ with
PνðτÞ ¼ Pνðτ þ πÞ [74]. Since γ1=2 are periodic, we find
that the Mathieu characteristic exponent is ν ¼ 2Δ=ω,
which must be real for stable steady states, just like for
the Mathieu stability chart [75] of Paul traps [76]. From
the normalization above follows cosðπνÞ ¼ C½a; p; π�,
which gives [73]

Δ ¼ arccos½Cða; p; πÞ�=T; c2 ¼ {c1 sinTΔ; ð12Þ

and c1 is fixed by jγ1j2 − jγ2j2 ¼ 1. Last but not least, we
can use the solutions of γ1;2 to uniquely define three real
time periodic functions θ, ϕ, r, which parametrize an
explicit expression of QðtÞ in Eq. (8) in terms of the
SU(1,1) generators J0, J−, and Jþ in Eq. (2) [66–68]

QðtÞ ¼ eiθJ0erðJþ−J−Þe−iϕJ0 with ð13Þ

γ1 ¼ eiðθ−ϕÞ=2 cosh r; γ2 ¼ eiðθþϕÞ=2 sinh r: ð14Þ

In the Supplemental Material [73] it is shown that QðtÞ
in Eq. (13) gives H̃ ¼ Δðb†LbL þ bRb

†
RÞ and the form

of the transformed ground state ju0ðtÞi ¼ Q†j0i is
provided [73], which obeys βL;RðtÞju0ðtÞi ¼ 0∀ t.
Therefore, from Eqs. (7) and (8) all Floquet modes
junðtÞiwith ϵn ¼ ðnL þ nR þ 1ÞΔ are found by application
of ½β†LðtÞ�nL ½β†RðtÞ�nR on ju0ðtÞi.
Instability regions.—Before calculating physical observ-

ables, we need to analyze the stability of the differential
equations, which may not always have a solution due to
the periodicity constraint. In Fig. 2 (top) we plot the
value of ν ¼ 2Δ=ω as a function of rescaled momenta
qvF=ω using ρ̄ ¼ −0.6 and amplitude ρ ¼ 0.25. We
observe that for certain regions of momenta there are no
real solutions for Δ. These “instability regions” will have
interesting physical implications as discussed below. The
stable regions are shown as a function of amplitude ρ in

Fig. 2 (bottom) for ρ̄ ¼ −0.6. For small ρ the instability
regions are equally spaced at integer values l ∈ N corre-
sponding to a ¼ l2 or l ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
1þ ρ̄

p
qvF=ω. Defining an

average velocity v̄ ¼ vF=K̄ ¼ vF
ffiffiffiffiffiffiffiffiffiffiffi
1þ ρ̄

p
the instability

regions therefore correspond to integer multiples of fre-
quency which match twice the interacting dispersion
relation lω ¼ 2v̄ql, so the physical cause can be traced
to resonant excitations on the linear branches of left movers
from −v̄ql to right movers at v̄ql and vice versa.
As shown in Fig. 3, the region of instabilities also

occurs for more general TLL models where the restriction
g2ðtÞ ¼ g4ðtÞ in Eq. (4) is lifted [60] and/or contains higher
harmonics. A general analytic solution remains elusive, but
the corresponding differential equation (9) is still valid,
which we have solved numerically by Fourier decompo-
sition for several parameters. Instability regions are always
expected since the problem is analogous to forbidden
energy regions in a band structure of a periodic potential
[71], which is of course generic. In Fig. 3 we show the
behavior of ν as a function of qvF=ω for the case that only
the g2 scattering process is periodically modulated in time
with ρ̄ ¼ −0.6 and ρ ¼ 0.25 in Eq. (4) while g4 ¼ −0.4.

FIG. 2. Top: value of ν ¼ 2Δ=ω as a function of qvF=ω using
ρ̄ ¼ −0.6 and amplitude ρ ¼ 0.25. Shaded regions indicate
complex values of Δ. Bottom: stability chart of the Mathieu
equation with ρ̄ ¼ −0.6. Grey areas are the instability regions
around the resonance points ql ¼ lω=2v̄.

PHYSICAL REVIEW LETTERS 126, 243401 (2021)

243401-3



While quantitative changes compared to Fig. 2 (top) can be
identified, the regions of instabilities are again found at
resonant wave vectors. In Figs. 2 (top) and 3 we see that
ν → 1 near the unstable regions and the ratio c2=c1 in
Eq. (12) becomes singular.
To understand the physical significance of the instability

regions, it is essential to consider damping. Intrinsic
damping is always present in the TLL description due to
higher order boson-boson interaction terms [48], which
lead to a finite quasiparticle lifetime. A corresponding
broadening of spectral peaks is seen numerically for finite
energies and in finite systems [77,78]. The size of damping
is not universal since it depends on microscopic details
including the system size, but it can be assumed to be
smaller than all other energy scales. In Ref. [75] it was
shown that solutions of damped Mathieu equations become
always stable for amplitudes below a given threshold. We
also find that a finite lifetime τ0 in the form of an imaginary
energy correction Imλ1 ¼ −1=τ0 leads to convergence of
instabilities as discussed below.
Results.—We are now in the position to calculate

physical observables. The main effect of the time periodic
driving is the excitation of density waves in the steady state.
The number of density excitations b†χqbχq (χ ¼ L or R) in
the transformed ground state ju0ðtÞi is given by

ηq ¼ hu0ðtÞjb†χqbχqju0ðtÞi ¼ h0jβ†χqβχqj0i ¼ jγ2ðtÞj2: ð15Þ

In Fig. 4 we plot the time average η̄q. For small q we find
that η̄q approaches the static limit, but a strong divergence is
observed as the instability region around ql is approached.
In the inset of Fig. 4 we exemplarily show that a finite
lifetime τ0 ¼ 104=vFq turns the divergences of η̄q into large
maxima around ql. The height of the maxima can be tuned
by the product ρτ0.
A universal physical picture emerges analogous to a

resonance catastrophe: A finite lifetime has little effect away
from resonance, but the resonance response is overwhelm-
ingly large and proportional to τ0. If ql ¼ lω=2v̄ < qc is in
the TLL regime, such maxima will therefore dominate the

correlations. We find that qc ∼ v̄m=2 is a good estimate
for the cutoff.
It is well known how TLL correlations are calculated

[48], which is reviewed in the Supplemental Material [73]
for the example of density-density correlations [73]. An
overwhelming maximum of ηq will dominate the correla-
tions and lead to long-range density order [73]

hu0jnðxÞnðyÞju0i ∝ cos qlðx − yÞ: ð16Þ

For large driving amplitudes ρ the magnitude of the
induced density waves can become larger than the back-
ground density, which may lead to fragmentation into
irregular density grains.
Discussion.—The three energy scales ω, v̄qc, and vFq

determine the behavior of the system, which undergoes
three different regimes as the frequency is changed: (i) High
frequencies: for ω≳ v̄qc the instability regions are outside
the TLL regime, so the physical relevant region is free of
resonances. The transformation Q results in a systematic
change of ηq shown in Fig. 4, which approaches the static
limit as q → 0. The famous power-law correlations [48]
are corrected for intermediate distances, but the asymptotic
static limit is recovered. (ii) Intermediate frequencies:
as the frequency is lowered, the resonant wave numbers
ql ¼ lω=2v̄ drop below the cutoff qc into the TLL regime.
The number of density waves ηql becomes very large,
dominating the correlations in Eq. (16). Instead of power-
law correlations, standing density waves at wave numbers
ql become stable throughout the system. (iii) Very low
frequencies: for ω ≪ v̄qc extended regions of instability
will lead to a large number of excitations and heating,
destroying the correlations.
Using typical experimental parameters for a 1D 87Rb gas

from Ref. [51] of n ¼ 6.2 × 106= m and mg=n ¼ 0.6, we

FIG. 3. Characteristic exponent ν for g4 ¼ −0.4, while only
g2ðtÞ is driven with ρ̄ ¼ −0.6 and ρ ¼ 0.25 in Eq. (4).
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arrive at K̄ ≈ 4 and a cutoff of ωc ¼ v̄qc ≈ 2π × 1.4 kHz in
the middle of the trap. Driving the perpendicular confine-
ment with a frequency of ω ¼ 2π × 500 Hz results in a
resonance at q1 ¼ ω=2v̄ ¼ 444 × 103= m. We therefore
predict a standing density wave with wavelength
λ ¼ 2π=q1 in the μm range, which is observable in real
space with optical methods or an electron beam [51,52].
The confining trapping potential leads to lower local

densities n near edges [51,52] and reduced velocities
vF ¼ πn=m. Everywhere n agrees with the local density
approximation (LDA) of TLL correlations for the local trap
potential [51,52]. The trapping potential is therefore turning
into an advantage: Instead of changing the frequency ω,
different regimes can be reached using the changing density
n. As a function of n we know v̄¼ ffiffiffiffiffiffiffiffiffiffiffi

ng=m
p

[63–65],
which in turn determines the resonant wave vectors ql ¼
lω

ffiffiffiffiffiffiffiffiffiffiffi
m=ng

p
=2 and the cutoff qc ¼ ffiffiffiffiffiffiffiffiffi

ngm
p

=2. Therefore, we
move into the high frequency regime ql=qc ∝ ω=ng as the
density is lowered. Note that the density wave numbers ql
increase near edges in contrast to fermionic Friedel density
wave numbers, which decrease with lower densities in a
trap [79]. In the proposed experiment, we therefore predict
standing density waves at λ ∼ 14 μm in the middle of the
trap, which become shorter λ ∝

ffiffiffi
n

p
and weaker near the

edge. It is an interesting open problem if significant
corrections would be observed when going beyond the
present LDA analysis for a typical trap size of 120 μm
in Ref. [51].
Interesting many-body density excitations have been

experimentally observed in driven 1D and 2D systems
[80,81]. For 1D elongated bosonic 7Li gases μm-sized
density grains emerge at 2π × 80 Hz driving, which were
identified as stable many-body effects [80]. Experimental
images show grains that appear smaller and weaker near
edges which resemble features predicted above but in a
random pattern [80]. All correlations disappear for very low
frequencies ω. A future grain size analysis as a function
of ω and n may clarify if there is a relation to TLL density
waves in Eq. (16).
Conclusion.—We have considered time-periodically

driven interacting systems in the steady state, correspond-
ing to generic TLL models in general or the Lieb-Liniger
model in particular, which e.g., applies to 1D confined
atoms in ultracold gas experiments with tunable parame-
ters. As we have shown, this setup is one of the very rare
cases where the combination of nonequilibrium steady
states with many-body physics can be analyzed in great
detail. In particular, we have developed a Floquet-
Bogoliubov approach by constructing time-periodic crea-
tion and annihilation operators, which solve the eigenvalue
equation for the steady state by acting on the entire Floquet
space. We also identify regions in frequency-momentum
space where damped resonant behavior leads to a large
number of density excitations. The known static power-law

correlations [48] are recovered for large distances ≫ v̄=ω,
but for frequencies below the cutoff v̄qc characteristic
density waves at integer-spaced resonant wave numbers
ql ¼ lω=2v̄ will become dominant.
We emphasize that the proposed Floquet-Bogoliubov

algebra is completely general and can be used to solve
any time-periodically driven model with Bogoliubov-type
interactions exactly. The explicitly known transformationQ
maps all steady states onto a diagonal static oscillator basis
for all times, which paves the way for a complete analysis
of time-dependent effects in strongly interacting systems
using a combination of powerful experimental, analytic,
and numerical techniques.
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